Synergistic Effect of Co3(HPO4)2(OH)2 Cocatalyst and Al2O3 Passivation Layer on BiVO4 Photoanode for Enhanced Photoelectrochemical Water Oxidation
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. Preparation of Photoanodes
3.1.1. Synthesis of BVO Photoanode
3.1.2. Synthesis of ALO/BVO Photoanode
3.1.3. Synthesis of CoPH/BVO Photoanode
3.1.4. Synthesis of CoPH/ALO/BVO Photoanode
3.1.5. Synthesis of CoBi/BVO Photoanode
3.1.6. Synthesis of Co(OH)2/BVO Photoanode
3.1.7. Synthesis of CoPi/BVO Photoanode
3.2. Characterization
3.3. Photoelectrochemical Measurement
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Le, H.V.; Nguyen, M.D.; Pham, Y.T.H.; Nguyen, D.N.; Le, L.T.; Han, H.; Tran, P.D. Decoration of AgOx hole collector to boost photocatalytic water oxidation activity of BiVO4 photoanode. Mater. Today Energy 2021, 21, 9. [Google Scholar] [CrossRef]
- Majumder, S.; Gu, M.; Kim, K.H. Facile fabrication of BiVO4/Bi2S3/NiCoO2 for significant photoelectrochemical water splitting. Appl. Surf. Sci. 2022, 574, 14. [Google Scholar] [CrossRef]
- Zahraei, A.A.; Yaghobi, R.; Golmohammad, M. In situ synthesize Bi nanostructures on copper foam toward efficient electrocatalytic hydrogen evolution reaction. Chem. Pap. 2023, 77, 859–866. [Google Scholar] [CrossRef]
- Zhou, T.S.; Chen, S.; Wang, J.C.; Zhang, Y.; Li, J.H.; Bai, J.; Zhou, B.X. Dramatically enhanced solar-driven water splitting of BiVO4 photoanode via strengthening hole transfer and light harvesting by co-modification of CQDs and ultrathin β-FeOOH layers. Chem. Eng. J. 2021, 403, 13. [Google Scholar] [CrossRef]
- Wang, J.M.; Kuo, M.T.; Zeng, P.; Xu, L.; Chen, S.T.; Peng, T.Y. Few-layer BiVO4 nanosheets decorated with SrTiO3: Rh nanoparticles for highly efficient visible-light-driven overall water splitting. Appl. Catal. B-Environ. 2020, 279, 12. [Google Scholar] [CrossRef]
- Xu, D.B.; Xia, T.; Xu, H.M.; Fan, W.Q.; Shi, W.D. Synthesis of ternary spinel MCo2O4 (M = Mn, Zn)/BiVO4 photoelectrodes for photolectrochemical water splitting. Chem. Eng. J. 2020, 392, 9. [Google Scholar] [CrossRef]
- Huang, J.W.; Liu, T.T.; Wang, R.F.; Zhang, M.Y.; Wang, L.; She, H.D.; Wang, Q.Z. Facile loading of cobalt oxide on bismuth vanadate: Proved construction of p-n junction for efficient photoelectrochemical water oxidation. J. Colloid Interface Sci. 2020, 570, 89–98. [Google Scholar] [CrossRef]
- Zhang, B.B.; Chou, L.J.; Bi, Y.P. Tuning surface electronegativity of BiVO4 photoanodes toward high-performance water splitting. Appl. Catal. B-Environ. 2020, 262, 6. [Google Scholar] [CrossRef]
- Zhang, B.B.; Huang, X.J.; Zhang, Y.; Lu, G.X.; Chou, L.J.; Bi, Y.P. Unveiling the activity and stability origin of BiVO(4) photoanodes with FeNi oxyhydroxides for oxygen evolution. Angew. Chem.-Int. Ed. 2020, 59, 18990–18995. [Google Scholar] [CrossRef]
- Dabodiya, T.S.; Selvarasu, P.; Murugan, A.V. Tetragonal to monoclinic crystalline phases change of BiVO4 via microwave-hydrothermal reaction: In correlation with visible-light-driven photocatalytic performance. Inorg. Chem. 2019, 58, 5096–5110. [Google Scholar] [CrossRef]
- Parmar, K.P.S.; Kang, H.J.; Bist, A.; Dua, P.; Jang, J.S.; Lee, J.S. Photocatalytic and photoelectrochemical water oxidation over metal-doped monoclinic BiVO4 photoanodes. ChemSusChem 2012, 5, 1926–1934. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Tu, X.Y.; Wang, X.M.; Dai, B.L.; Zhang, L.L.; Xu, J.M.; Feng, Y.; Sheng, N.; Zhu, F.X. Novel p-n heterojunction photocatalyst fabricated by flower-like BiVO4 and Ag2S nanoparticles: Simple synthesis and excellent photocatalytic performance. Chem. Eng. J. 2019, 361, 1173–1181. [Google Scholar] [CrossRef]
- Zhong, M.; Hisatomi, T.; Kuang, Y.B.; Zhao, J.; Liu, M.; Iwase, A.; Jia, Q.X.; Nishiyama, H.; Minegishi, T.; Nakabayashi, M.; et al. Surface modification of CoOx loaded BiVO4 photoanodes with ultrathin p-type NiO layers for improved solar water oxidation. J. Am. Chem. Soc. 2015, 137, 5053–5060. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.W.; Choi, K.S. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 2014, 343, 990–994. [Google Scholar] [CrossRef] [PubMed]
- Ye, K.H.; Wang, Z.L.; Gu, J.W.; Xiao, S.; Yuan, Y.F.; Zhu, Y.; Zhang, Y.M.; Mai, W.J.; Yang, S.H. Carbon quantum dots as a visible light sensitizer to significantly increase the solar water splitting performance of bismuth vanadate photoanodes. Energy Environ. Sci. 2017, 10, 772–779. [Google Scholar] [CrossRef]
- Zhang, S.C.; Liu, Z.F.; Ruan, M.N.; Guo, Z.G.; Lei, E.; Zhao, W.; Zhao, D.; Wu, X.F.; Chen, D.M. Enhanced piezoelectric-effect-assisted photoelectrochemical performance in ZnO modified with dual cocatalysts. Appl. Catal. B-Environ. 2020, 262, 10. [Google Scholar] [CrossRef]
- Lu, W.X.; Wang, B.; Chen, W.J.; Xie, J.L.; Huang, Z.Q.; Jin, W.; Song, J.L. Nanosheet-like Co3(OH)2(HPO4)2 as a highly efficient and stable electrocatalyst for oxygen evolution reaction. ACS Sustain. Chem. Eng. 2019, 7, 3083–3091. [Google Scholar] [CrossRef]
- Khiarak, B.N.; Imanparast, S.; Yengejeh, M.M.; Zahraei, A.A.; Yaghobi, R.; Golmohammad, M. Efficient water oxidation catalyzed by a graphene oxide/copper electrode, supported on carbon cloth. Russ. J. Electrochem. 2021, 57, 1196–1206. [Google Scholar] [CrossRef]
- Jin, H.Y.; Mao, S.J.; Zhan, G.P.; Xu, F.; Bao, X.B.; Wang, Y. Fe incorporated α-Co(OH)2 nanosheets with remarkably improved activity towards the oxygen evolution reaction. J. Mater. Chem. A 2017, 5, 1078–1084. [Google Scholar] [CrossRef]
- Ning, X.M.; Yin, D.; Fan, Y.P.; Zhang, Q.; Du, P.Y.; Zhang, D.X.; Chen, J.; Lu, X.Q. Plasmon-Enhanced Charge Separation and Surface Reactions Based on Ag-Loaded Transition-Metal Hydroxide for Photoelectrochemical Water Oxidation. Adv. Energy Mater. 2021, 11, 8. [Google Scholar] [CrossRef]
- Bu, Q.J.; Li, S.; Zhang, K.; Lin, Y.H.; Wang, D.J.; Zou, X.X.; Xie, T.F. Hole transfer channel of ferrihydrite designed between Ti-Fe2O3 and CoPi as an efficient and durable photoanode. ACS Sustain. Chem. Eng. 2019, 7, 10971–10978. [Google Scholar] [CrossRef]
- Hernández, S.; Gerardi, G.; Bejtka, K.; Fina, A.; Russo, N. Evaluation of the charge transfer kinetics of spin-coated BiVO4 thin films for sun-driven water photoelectrolysis. Appl. Catal. B-Environ. 2016, 190, 66–74. [Google Scholar] [CrossRef]
- Reddy, D.A.; Kim, Y.; Shim, H.S.; Reddy, K.A.J.; Gopannagari, M.; Kumar, D.P.; Song, J.K.; Kim, T.K. Significant Improvements on BiVO4@CoPi Photoanode Solar Water Splitting Performance by Extending Visible-Light Harvesting Capacity and Charge Carrier Transportation. ACS Appl. Energy Mater. 2020, 3, 4474–4483. [Google Scholar] [CrossRef]
- Kumar, R.; Inta, H.R.; Koppisetti, H.; Ganguli, S.; Ghosh, S.; Mahalingam, V. Electrochemical reconstruction of Zn0.3Co2.7(PO4)2•4H2O for enhanced water oxidation performance. ACS Appl. Energy Mater. 2020, 3, 12088–12098. [Google Scholar] [CrossRef]
- Zhang, S.C.; Liu, Z.F.; Chen, D.; Yan, W.G. An efficient hole transfer pathway on hematite integrated by ultrathin Al2O3 interlayer and novel CuCoOx cocatalyst for efficient photoelectrochemical water oxidation. Appl. Catal. B-Environ. 2020, 277, 9. [Google Scholar] [CrossRef]
- Lu, P.C.; Chen, Y.F.; Zhou, R.Y.; Guo, C.C.; Liu, X.R.; Yang, F.F.; Zhu, Y.R. Novel bouquet-like cobalt phosphate as an ultrahigh-rate and durable battery-type cathode material for hybrid supercapacitors. Sci. China-Mater. 2022, 65, 1503–1511. [Google Scholar] [CrossRef]
- Kafizas, A.; Xing, X.T.; Selim, S.; Mesa, C.A.; Ma, Y.M.; Burgess, C.; McLachlan, M.A.; Durrant, J.R. Ultra-thin Al2O3 coatings on BiVO4 photoanodes: Impact on performance and charge carrier dynamics. Catal. Today 2019, 321, 59–66. [Google Scholar] [CrossRef]
- Chang, G.L.; Wang, D.G.; Zhang, Y.Y.; Aldalbahi, A.; Wang, L.H.; Li, Q.; Wang, K. ALD-coated ultrathin Al2O3 film on BiVO4 nanoparticles for efficient PEC water splitting. Nucl. Sci. Tech. 2016, 27, 6. [Google Scholar] [CrossRef]
- Ma, Z.Z.; Song, K.; Wang, L.; Gao, F.M.; Tang, B.; Hou, H.L.; Yang, W.Y. WO3/BiVO4 type-II heterojunction arrays decorated with oxygen-deficient ZnO passivation layer: A highly efficient and stable photoanode. ACS Appl. Mater. Interfaces 2019, 11, 889–897. [Google Scholar] [CrossRef]
- Malara, F.; Fabbri, F.; Marelli, M.; Naldoni, A. Controlling the surface energetics and kinetics of hematite photoanodes through few stomic layers of NiOx. ACS Catal. 2016, 6, 3619–3628. [Google Scholar] [CrossRef]
- Balaji, N.; Park, C.; Raja, J.; Ju, M.; Venkatesan, M.R.; Lee, H.; Yi, J. Low surface recombination velocity on P-Type Cz-Si surface by sol-gel deposition of Al2O3 films for solar cell applications. J. Nanosci. Nanotechnol. 2015, 15, 5123–5128. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Din, S.T.U.; Seo, W.C.; Lee, J.; Kim, Y.; Jung, H.; Yang, W. BiVO4 ternary photocatalyst co-modified with N-doped graphene nanodots and Ag nanoparticles for improved photocatalytic oxidation: A significant enhancement in photoinduced carrier separation and broad-spectrum light absorption. Sep. Purif. Technol. 2021, 264, 118423. [Google Scholar] [CrossRef]
- Xu, C.J.; Sun, W.J.; Dong, Y.J.; Dong, C.Z.; Hu, Q.Y.; Ma, B.C.; Ding, Y. A graphene oxide-molecular Cu porphyrin-integrated BiVO4 photoanode for improved photoelectrochemical water oxidation performance. J. Mater. Chem. A 2020, 8, 4062–4072. [Google Scholar] [CrossRef]
- Fan, K.; Chen, H.; He, B.W.; Yu, J.G. Cobalt polyoxometalate on N-doped carbon layer to boost photoelectrochemical water oxidation of BiVO4. Chem. Eng. J. 2020, 392, 123744. [Google Scholar] [CrossRef]
- Zhang, H.; Yu, Y.; Zhang, L.L.; Dong, S.J. Fuel-free Bio-photoelectrochemical cells based on a water/oxygen circulation system with a Ni:FeOOH/BiVO4 photoanode. Angew. Chem. Int. Ed. 2018, 57, 1547–1551. [Google Scholar] [CrossRef]
- Elkabouss, K.; Kacimi, M.; Ziyad, M.; Ammar, S.; Bozon-Verduraz, F. Cobalt-exchanged hydroxyapatite catalysts: Magnetic studies, spectroscopic investigations, performance in 2-butanol and ethane oxidative dehydrogenations. J. Catal. 2004, 226, 16–24. [Google Scholar] [CrossRef]
- Gogoi, D.; Koyani, R.; Golder, A.K.; Peela, N.R. Enhanced photocatalytic hydrogen evolution using green carbon quantum dots modified 1-D CdS nanowires under visible light irradiation. Sol. Energy 2020, 208, 966–977. [Google Scholar] [CrossRef]
- Ai, L.H.; Niu, Z.G.; Jiang, J. Mechanistic insight into oxygen evolution electrocatalysis of surface phosphate modified cobalt phosphide nanorod bundles and their superior performance for overall water splitting. Electrochim. Acta 2017, 242, 355–363. [Google Scholar] [CrossRef]
- Kuang, P.Y.; Zhang, L.Y.; Cheng, B.; Yu, J.G. Enhanced charge transfer kinetics of Fe2O3/CdS composite nanorod arrays using cobalt-phosphate as cocatalyst. Appl. Catal. B 2017, 218, 570–580. [Google Scholar] [CrossRef]
- Gao, J.; Sun, X.W.; Wang, Y.F.; Li, Y.; Li, X.C.; Chen, C.Z.; Ni, J.B. Ultrathin Al2O3 passivation layer-wrapped Ag@TiO2 nanorods by atomic layer deposition for enhanced photoelectrochemical performance. Appl. Surf. Sci. 2020, 499, 143971. [Google Scholar] [CrossRef]
- Huang, J.; Xiong, Y.S.; Peng, Z.Y.; Chen, L.F.; Wang, L.; Xu, Y.Z.; Tan, L.C.; Yuan, K.; Chen, Y.W. A general electrodeposition strategy for fabricating ultrathin nickel cobalt phosphate nanosheets with ultrahigh capacity and rate performance. ACS Nano 2020, 14, 14201–14211. [Google Scholar] [CrossRef] [PubMed]
- Ning, X.M.; Lu, B.Z.; Zhang, Z.; Du, P.Y.; Ren, H.X.; Shan, D.L.; Chen, J.; Gao, Y.J.; Lu, X.Q. An efficient strategy for boosting photogenerated charge separation by using porphyrins as interfacial charge mediators. Angew. Chem.-Int. Ed. 2019, 58, 16800–16805. [Google Scholar] [CrossRef] [PubMed]
- Li, X.T.; Jia, M.L.; Lu, Y.T.; Li, N.; Zheng, Y.Z.; Tao, X.; Huang, M.L. Co(OH)2/BiVO4 photoanode in tandem with a carbon-based perovskite solar cell for solar-driven overall water splitting. Electrochim. Acta 2020, 330, 9. [Google Scholar] [CrossRef]
- Wang, S.C.; Chen, P.; Yun, J.H.; Hu, Y.X.; Wang, L.Z. An electrochemically treated BiVO4 photoanode for efficient photoelectrochemical water splitting. Angew. Chem.-Int. Ed. 2017, 56, 8500–8504. [Google Scholar] [CrossRef] [PubMed]
- Zachäus, C.; Abdi, F.F.; Peter, L.M.; van de Krol, R. Photocurrent of BiVO4 is limited by surface recombination, not surface catalysis. Chem. Sci. 2017, 8, 3712–3719. [Google Scholar] [CrossRef]
- Li, Y.; Mei, Q.; Liu, Z.J.; Hu, X.S.; Zhou, Z.H.; Huang, J.W.; Bai, B.; Liu, H.; Ding, F.; Wang, Q.Z. Fluorine-doped iron oxyhydroxide cocatalyst: Promotion on the WO3 photoanode conducted photoelectrochemical water splitting. Appl. Catal. B-Environ. 2022, 304, 11. [Google Scholar] [CrossRef]
- Zhao, Y.L.; Xie, H.C.; Shi, W.W.; Wang, H.; Shao, C.Y.; Li, C. Unravelling the essential difference between TiOx and AlOx interface layers on Ta3N5 photoanode for photoelectrochemical water oxidation. J. Energy Chem. 2022, 64, 33–37. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Z.; Li, Z.; Chen, J.; Yang, Y.; Su, C.; Lv, Y.; Lu, Z.; He, X.; Wang, Y. Synergistic Effect of Co3(HPO4)2(OH)2 Cocatalyst and Al2O3 Passivation Layer on BiVO4 Photoanode for Enhanced Photoelectrochemical Water Oxidation. Molecules 2024, 29, 683. https://doi.org/10.3390/molecules29030683
Sun Z, Li Z, Chen J, Yang Y, Su C, Lv Y, Lu Z, He X, Wang Y. Synergistic Effect of Co3(HPO4)2(OH)2 Cocatalyst and Al2O3 Passivation Layer on BiVO4 Photoanode for Enhanced Photoelectrochemical Water Oxidation. Molecules. 2024; 29(3):683. https://doi.org/10.3390/molecules29030683
Chicago/Turabian StyleSun, Zijun, Zhen Li, Jinlin Chen, Yuying Yang, Chunrong Su, Yumin Lv, Zhenhong Lu, Xiong He, and Yongqing Wang. 2024. "Synergistic Effect of Co3(HPO4)2(OH)2 Cocatalyst and Al2O3 Passivation Layer on BiVO4 Photoanode for Enhanced Photoelectrochemical Water Oxidation" Molecules 29, no. 3: 683. https://doi.org/10.3390/molecules29030683
APA StyleSun, Z., Li, Z., Chen, J., Yang, Y., Su, C., Lv, Y., Lu, Z., He, X., & Wang, Y. (2024). Synergistic Effect of Co3(HPO4)2(OH)2 Cocatalyst and Al2O3 Passivation Layer on BiVO4 Photoanode for Enhanced Photoelectrochemical Water Oxidation. Molecules, 29(3), 683. https://doi.org/10.3390/molecules29030683