Matrix Selection Strategies for MALDI-TOF MS/MS Characterization of Cyclic Tetrapyrroles in Blood and Food Samples
Abstract
:1. Introduction
2. Results and Discussion
2.1. Matrix Evaluation for Protoporphyrin Analysis by MALDI MS
2.2. MALDI MS(/MS) of Phthalocyanines
2.3. MALDI MS(/MS) of Heme b and c in Standards and Real Samples
3. Materials and Methods
3.1. Chemicals
3.2. Instrumentation
3.3. Sample Preparation
3.3.1. Standard Phthalocyanines and Protoporphyrins
3.3.2. Standard Hemoglobin, Myoglobin, and Cytochrome c
3.3.3. Heme in Blood and Food Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Watanabe, F.; Yabuta, Y.; Bito, T.; Teng, F. Vitamin B12-containing plant food sources for vegetarians. Nutrients 2014, 6, 1861–1873. [Google Scholar] [CrossRef]
- Hopp, M.T.; Schmalohr, B.F.; Kühl, T.; Detzel, M.S.; Wißbrock, A.; Imhof, D. Heme Determination and Quantification Methods and Their Suitability for Practical Applications and Everyday Use. Anal. Chem. 2020, 92, 9429–9440. [Google Scholar] [CrossRef] [PubMed]
- Caughey, W.S.; Ibers, J.A. Crystal and Molecular Structure of the Free Base Porphyrin, Protoporphyrin IX Dimethyl Ester. J. Am. Chem. Soc. 1977, 99, 6639–6645. [Google Scholar] [CrossRef] [PubMed]
- Calvano, C.D.; Ventura, G.; Cataldi, T.R.I.; Palmisano, F. Improvement of chlorophyll identification in foodstuffs by MALDI ToF/ToF mass spectrometry using 1,5-diaminonaphthalene electron transfer secondary reaction matrix. Anal. Bioanal. Chem. 2015, 407, 6369–6379. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.C.; Hung, C.F.; Wu, W.B.; Chen, B.H. Determination of chlorophylls and their derivatives in Gynostemma pentaphyllum Makino by liquid chromatography-mass spectrometry. J. Pharm. Biomed. Anal. 2008, 48, 105–112. [Google Scholar] [CrossRef]
- Carlsson, M.L.R.; Kanagarajan, S.; Bülow, L.; Zhu, L.H. Plant based production of myoglobin—A novel source of the muscle heme-protein. Sci. Rep. 2020, 10, 920. [Google Scholar] [CrossRef]
- Xing, Y.; Gao, S.; Zhang, X.; Zang, J. Dietary Heme-Containing Proteins: Structures, Applications, and Challenges. Foods 2022, 11, 3594. [Google Scholar] [CrossRef]
- Shan, L.; Xu, X.; Zhang, J.; Cai, P.; Gao, H.; Lu, Y.; Shi, J.; Guo, Y.; Su, Y. Increased hemoglobin and heme in MALDI-TOF MS analysis induce ferroptosis and promote degeneration of herniated human nucleus pulposus. Mol. Med. 2021, 27, 103. [Google Scholar] [CrossRef]
- Hooda, J.; Shah, A.; Zhang, L. Heme, an essential nutrient from dietary proteins, critically impacts diverse physiological and pathological processes. Nutrients 2014, 6, 1080–1102. [Google Scholar] [CrossRef]
- Gu, S.; Marianov, A.N.; Lu, T.; Zhong, J. A review of the development of porphyrin-based catalysts for electrochemical CO2 reduction. Chem. Eng. J. 2023, 470, 144249. [Google Scholar] [CrossRef]
- Paolesse, R.; Nardis, S.; Monti, D.; Stefanelli, M.; Di Natale, C. Porphyrinoids for Chemical Sensor Applications. Chem. Rev. 2017, 117, 2517–2583. [Google Scholar] [CrossRef]
- Teo, R.D.; Hwang, J.Y.; Termini, J.; Gross, Z.; Gray, H.B. Fighting Cancer with Corroles. Chem. Rev. 2017, 117, 2711. [Google Scholar] [CrossRef] [PubMed]
- Gregory, P. Industrial applications of phthalocyanines. J. Porphyr. Phthalocyanines 2000, 4, 432–437. [Google Scholar] [CrossRef]
- Fernández, C.C.; Williams, F.J. Reactions involving the central cavity of porphyrin molecules attached to self-assembled monolayers. Inorganica Chim. Acta 2023, 556, 121678. [Google Scholar] [CrossRef]
- Zheng, W.; Shan, N.; Yu, L.; Wang, X. UV–visible, fluorescence and EPR properties of porphyrins and metalloporphyrins. Dye Pigment. 2008, 77, 153–157. [Google Scholar] [CrossRef]
- Wang, J.; Tan, S.; Liang, Q.; Guan, H.; Han, Q.; Ding, M. Selective separation of bovine hemoglobin using magnetic mesoporous rare-earth silicate microspheres. Talanta 2019, 204, 792–801. [Google Scholar] [CrossRef]
- Fateen, E.; Abd-Elfattah, A.; Gouda, A.; Ragab, L.; Nazim, W. Porphyrins profile by high performance liquid chromatography/electrospray ionization tandem mass spectrometry for the diagnosis of porphyria. Egypt. J. Med. Hum. Genet. 2011, 12, 49–58. [Google Scholar] [CrossRef]
- Woltering, M.; Tulipani, S.; Boreham, C.J.; Walshe, J.; Schwark, L.; Grice, K. Simultaneous quantitative analysis of Ni, VO, Cu, Zn and Mn geoporphyrins by liquid chromatography-high resolution multistage mass spectrometry: Method development and validation. Chem. Geol. 2016, 441, 81–91. [Google Scholar] [CrossRef]
- Magi, E.; Ianni, C.; Rivaro, P.; Frache, R. Determination of porphyrins and metalloporphyrins using liquid chromatography–diode array detection and mass spectrometry. J. Chromatogr. A 2001, 905, 141–149. [Google Scholar] [CrossRef]
- Monopoli, A.; Calvano, C.D.; Nacci, A.; Palmisano, F. Boronic acid chemistry in MALDI MS: A step forward in designing a reactive matrix with molecular recognition capabilities. Chem. Commun. 2014, 50, 4322–4324. [Google Scholar] [CrossRef]
- Bradshaw, R.; Bleay, S.; Clench, M.R.; Francese, S. Direct detection of blood in fingermarks by MALDI MS profiling and Imaging. Sci. Justice 2014, 54, 110–117. [Google Scholar] [CrossRef]
- Srinivasan, N.; Haney, C.A.; Lindsey, J.S.; Zhang, W.; Chait, B.T. Investigation of MALDI-TOF Mass Spectrometry of Diverse Synthetic Metalloporphyrins, Phthalocyanines and Multiporphyrin Arrays. J. Porphyr. Phthalocyanines 1999, 3, 283–291. [Google Scholar] [CrossRef]
- Kim, T.; Lee, J.; Kim, J. Effect of laser intensity on the apparent isotope patterns of heme and peptide ions in MALDI-TOF MS. Int. J. Mass. Spectrom. 2015, 376, 13–18. [Google Scholar] [CrossRef]
- Yang, H.J.; Park, K.H.; Shin, S.; Lee, J.H.; Park, S.; Kim, H.S.; Kim, J. Characterization of heme ions using MALDI-TOF MS and MALDI FT-ICR MS. Int. J. Mass. Spectrom. 2013, 343, 37–44. [Google Scholar] [CrossRef]
- Whiteaker, J.R.; Fenselau, C.C.; Fetterolf, D.; Steele, D.; Wilson, D. Quantitative Determination of Heme for Forensic Characterization of Bacillus Spores Using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Anal. Chem. 2004, 76, 2836–2841. [Google Scholar] [CrossRef]
- Yin, Z.; Sun, B.; Wang, X.; Cheng, X.; Hang, W.; Huang, B. Comprehensive analysis of metalloporphyrins via high irradiance laser ionization time-of-flight mass spectrometry. J. Anal. At. Spectrom. 2014, 29, 1714–1719. [Google Scholar] [CrossRef]
- Calvano, C.D.; Ventura, G.; Palmisano, F.; Cataldi, T.R.I. 4-Chloro-α-cyanocinnamic acid is an efficient soft matrix for cyanocobalamin detection in foodstuffs by matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). J. Mass Spectrom. 2016, 51, 841–848. [Google Scholar] [CrossRef] [PubMed]
- Calvano, C.D.; Ventura, G.; Trotta, M.; Bianco, G.; Cataldi, T.R.I.; Palmisano, F. Electron-Transfer Secondary Reaction Matrices for MALDI MS Analysis of Bacteriochlorophyll a in Rhodobacter sphaeroides and Its Zinc and Copper Analogue Pigments. J. Am. Soc. Mass Spectrom. 2017, 28, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Calvano, C.D.; Capozzi, M.A.M.; Punzi, A.; Farinola, G.M.; Cataldi, T.R.I.; Palmisano, F. 1,5-Diaminonaphtalene is a Highly Performing Electron-Transfer Secondary-Reaction Matrix for Laser Desorption Ionization Mass Spectrometry of Indolenine-Based Croconaines. ACS Omega 2018, 3, 17821–17827. [Google Scholar] [CrossRef]
- Calvano, C.D.; Monopoli, A.; Cataldi, T.R.I.; Palmisano, F. MALDI matrices for low molecular weight compounds: An endless story? Anal. Bioanal. Chem. 2018, 410, 4015–4038. [Google Scholar] [CrossRef]
- Buchler, J.W. Static coordination chemistry of metalloporphyrins. In Porphyrins and Metalloporphyrins; Smith, K.M.E., Ed.; Elsevier: Amsterdam, The Netherlands, 1975; pp. 157–231. [Google Scholar]
- Knochenmuss, R. An Introduction to MALDI Ionization Mechanisms for Users of Mass Spectrometry Imaging. In MALDI Mass Spectrometry Imaging: From Fundamentals to Spatial Omics; Porta Siegel, T., Ed.; The Royal Society of Chemistry: London, UK, 2021; pp. 1–19. [Google Scholar]
- Nazim Boutaghou, M.; Cole, R.B. 9,10-Diphenylanthracene as a matrix for MALDI-MS electron transfer secondary reactions. J. Mass Spectrom. 2012, 47, 995–1003. [Google Scholar] [CrossRef]
- Wei, J.; Li, H.; Barrow, M.P.; O’Connor, P.B. Structural characterization of chlorophyll-a by high resolution tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 2013, 24, 753–760. [Google Scholar] [CrossRef]
- Rigante, E.C.L.; Calvano, C.D.; Picca, R.A.; Modugno, F.; Cataldi, T.R.I. An insight into spray paints for street art: Chemical characterization of two yellow varnishes by spectroscopic and MS-based spectrometric techniques. Vacuum 2023, 215, 112350. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, Y.; Liu, J.A.; Xiong, S.X.; Wang, G.H.; Chen, J.; Yang, G.Q. New matrix of MALDI-TOF MS for analysis of small molecules. Chin. Chem. Lett. 2009, 20, 1495–1497. [Google Scholar] [CrossRef]
- Copper Phthalocyanine, CI 74160. Available online: https://webbook.nist.gov/cgi/inchi?ID=C147148&Mask=200#Mass-Spec (accessed on 28 December 2023).
- Nickel Phthalocyanine. Available online: https://webbook.nist.gov/cgi/inchi?ID=C14055028&Mask=200 (accessed on 28 December 2023).
- Achar, B.N.; Fohlen, G.M.; Lokesh, K.S. Degradation study on the thermally stable nickel phthalocyanine sheet polymer. Polym. Degrad. Stab. 2003, 80, 427–433. [Google Scholar] [CrossRef]
- Pashynska, V.A.; Van Den Heuvel, H.; Claeys, M.; Kosevich, M.V. Characterization of noncovalent complexes of antimalarial agents of the artemisinin-type and FE(III)-Heme by electrospray mass spectrometry and collisional activation tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 2004, 15, 1181–1190. [Google Scholar] [CrossRef] [PubMed]
- Demirev, P.A.; Feldman, A.B.; Kongkasuriyachai, D.; Scholl, P.; Sullivan, D.; Kumar, N. Detection of Malaria Parasites in Blood by Laser Desorption Mass Spectrometry. Anal. Chem. 2002, 74, 3262–3266. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.T.; Hsieh, Y.L.; Henion, J.D.; Ganem, B. Studies on heme binding in myoglobin, hemoglobin, and cytochrome c by ion spray mass spectrometry. J. Am. Soc. Mass Spectrom. 1993, 4, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Chiavarino, B.; Crestoni, M.E.; Fornarini, S.; Rovira, C. Protonated Heme. Chem.—A Eur. J. 2007, 13, 776–785. [Google Scholar] [CrossRef]
- Shin, S.; Yang, H.J.; Kim, J.H.; Kim, J.; Lee, J.H.; Park, K.H.; Kim, H.S.; Kim, J. Clarification of a peak at m/z 1634 from tryptically digested cytochrome c. J. Mass Spectrom. 2012, 47, 1576–1581. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, F.; Qian, W.J.; Brown, R.N.; Wang, Y.; Merkley, E.D.; Park, J.H.; Monroe, M.E.; Purvine, S.O.; Moore, R.J.; et al. Identification of c-Type Heme-Containing Peptides Using Non-Activated Immobilized Metal Affinity Cchromatography Resin Enrichment and Higher-Energy Collisional Dissociation. Anal. Chem. 2011, 83, 7260–7268. [Google Scholar] [CrossRef] [PubMed]
Product Ions | Proposed Formula | Loss of Chemical Species | Theoretical m/z Value | MALDI MS/MS | |
---|---|---|---|---|---|
m/z | Relative Intensity% | ||||
CoPP ([C34H32CoN4O4]+) at m/z 619.180 | |||||
B | [C32H29CoN4O4]+• | [CH2CH]• | 592.156 | 592.14 | 5.2 |
C | [C33H31CoN4O2]+• | [HCO2]• | 574.177 | 574.18 | 9.2 |
D | [C32H29CoN4O2]+• | [CH2COOH]• | 560.162 | 560.17 | 100 |
E | [C31H28CoN4O2]+ | [CH2CHCOOH] | 547.154 | 547.12 | 6.4 |
F | [C30H26CoN4]+ | 2×[CH2COOH]• | 501.148 | 501.16 | 32.3 |
G | [C29H23CoN4]+• | [C5H9O4]• | 486.125 | 486.15 | 8.7 |
ZnPP ([C34H32ZnN4O4]+•) at m/z 624.172 | |||||
B | [C33H31ZnN4O2]+ | [HCO2]• | 579.174 | 579.18 | 2.3 |
C | [C32H29ZnN4O2]+ | [CH2COOH]• | 565.158 | 565.16 | 100 |
D | [C31H28ZnN4O2]+ | [CH2CHCOOH] | 552.150 | 552.15 | 14.6 |
E | [C30H26ZnN4]+• | 2×[CH2COOH]• | 506.145 | 506.14 | 20.7 |
F | [C29H23ZnN4]+ | [C5H9O4]• | 491.121 | 491.12 | 7.6 |
G | [C28H21ZnN4]+ | [C6H11O4]• | 477.106 | 477.11 | 3.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bianco, M.; Ventura, G.; Calvano, C.D.; Losito, I.; Cataldi, T.R.I.; Monopoli, A. Matrix Selection Strategies for MALDI-TOF MS/MS Characterization of Cyclic Tetrapyrroles in Blood and Food Samples. Molecules 2024, 29, 868. https://doi.org/10.3390/molecules29040868
Bianco M, Ventura G, Calvano CD, Losito I, Cataldi TRI, Monopoli A. Matrix Selection Strategies for MALDI-TOF MS/MS Characterization of Cyclic Tetrapyrroles in Blood and Food Samples. Molecules. 2024; 29(4):868. https://doi.org/10.3390/molecules29040868
Chicago/Turabian StyleBianco, Mariachiara, Giovanni Ventura, Cosima Damiana Calvano, Ilario Losito, Tommaso R. I. Cataldi, and Antonio Monopoli. 2024. "Matrix Selection Strategies for MALDI-TOF MS/MS Characterization of Cyclic Tetrapyrroles in Blood and Food Samples" Molecules 29, no. 4: 868. https://doi.org/10.3390/molecules29040868
APA StyleBianco, M., Ventura, G., Calvano, C. D., Losito, I., Cataldi, T. R. I., & Monopoli, A. (2024). Matrix Selection Strategies for MALDI-TOF MS/MS Characterization of Cyclic Tetrapyrroles in Blood and Food Samples. Molecules, 29(4), 868. https://doi.org/10.3390/molecules29040868