Broad Spectral Response FeOOH/BiO2−x Photocatalyst with Efficient Charge Transfer for Enhanced Photo-Fenton Synergistic Catalytic Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of As-Prepared Materials
2.2. Evaluation of Photocatalytic Performance
2.3. Photo-Fenton Synergy Mechanism
2.4. Optimization of Degradation Reaction Conditions
2.5. Degradation Test and Stability Test of Different Pollutants
3. Experiment Section
3.1. Synthesis of BiO2−x and FeOOH/BiO2−x
3.2. Characterization of Materials
3.3. Evaluation of Catalytic ACTIVITY
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W. Adsorptive removal of antibiotics from water and wastewater: Progress and challenges. Sci. Total Environ. 2015, 532, 112–126. [Google Scholar] [CrossRef]
- DAlexandrino, A.M.; Mucha, A.P.; Almeida, C.M.R.; Gao, W.; Jia, Z.; Carvalho, M.F. Biodegradation of the veterinary antibiotics enrofloxacin and ceftiofur and associated microbial community dynamics. Sci. Total Environ. 2017, 581–582, 359–368. [Google Scholar] [CrossRef] [PubMed]
- An, W.; Tian, L.; Hu, J.; Liu, L.; Cui, W.; Liang, Y. Efficient degradation of organic pollutants by catalytic ozonation and photocatalysis synergy system using double-functional MgO/g-C3N4 catalyst. Appl. Surf. Sci. 2020, 534, 147518. [Google Scholar] [CrossRef]
- Wang, Q.; Miao, Z.; Zhang, Y.; Yan, T.; Meng, L.; Wang, X. Photocatalytic Reduction of CO2 with H2O Mediated by Ce-Tailored Bismuth Oxybromide Surface Frustrated Lewis Pairs. ACS Catal. 2022, 12, 4016–4025. [Google Scholar] [CrossRef]
- Du, X.; Zhao, T.; Xiu, Z.; Yang, Z.; Xing, Z.; Li, Z.; Yang, S.; Zhou, W. Nano-zero-valent iron and MnOx selective deposition on BiVO4 decahedron superstructures for promoted spatial charge separation and exceptional catalytic activity in visible-light-driven photocatalysis-Fenton coupling system. J. Hazard. Mater. 2019, 377, 330–340. [Google Scholar] [CrossRef]
- Kuo, H.-H.; Vo, T.-G.; Hsu, Y.-J. From sunlight to valuable molecules: A journey through photocatalytic and photoelectrochemical glycerol oxidation towards valuable chemical products. J. Photochem. Photobiol. C Photochem. Rev. 2024, 58, 100649. [Google Scholar] [CrossRef]
- Dong, S.; Feng, J.; Fan, M.; Pi, Y.; Hu, L.; Han, X.; Liu, M.; Sun, J.; Sun, J. Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: A review. RSC Adv. 2015, 5, 14610–14630. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, P.; An, W.; Liu, L.; Liang, Y.; Cui, W. In-situ Fe-doped g-C3N4 heterogeneous catalyst via photocatalysis-Fenton reaction with enriched photocatalytic performance for removal of complex wastewater. Appl. Catal. B 2019, 245, 130–142. [Google Scholar] [CrossRef]
- Wang, N.; Zheng, T.; Zhang, G.; Wang, P. A review on Fenton-like processes for organic wastewater treatment. J. Environ. Chem. Eng. 2016, 4, 762–787. [Google Scholar] [CrossRef]
- Wu, Q.; Yang, H.; Kang, L.; Gao, Z.; Ren, F. Fe-based metal-organic frameworks as Fenton-like catalysts for highly efficient degradation of tetracycline hydrochloride over a wide pH range: Acceleration of Fe(II)/Fe(III) cycle under visible light irradiation. Appl. Catal. B 2020, 263, 118282. [Google Scholar] [CrossRef]
- Chen, C.; Duan, F.; Zhao, S.; Wang, W.; Yang, F.; Nuansing, W.; Zhang, B.; Qin, Y.; Knez, M. Porous Fe2O3 nanotubes with α-γ phase junction for enhanced charge separation and photocatalytic property produced by molecular layer deposition. Appl. Catal. B 2019, 248, 218–225. [Google Scholar] [CrossRef]
- Xu, P.; Xu, H.; Zheng, D.Y. The efficiency and mechanism in a novel electro-Fenton process assisted by anodic photocatalysis on advanced treatment of coal gasification wastewater. Chem. Eng. J. 2019, 361, 968–974. [Google Scholar] [CrossRef]
- Li, H.N.; Hu, D.H.; Li, Z.; Qu, Y. Emerging layered BiO2−x for photocatalysis: Status, challenges, and outlook. Sustain. Energy Fuels 2020, 4, 5378–5386. [Google Scholar] [CrossRef]
- Li, H.; Ai, Z.; Zhang, L. Surface structure-dependent photocatalytic O2 activation for pollutant removal with bismuth oxyhalides. Chem. Commun. 2020, 56, 15282–15296. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Zhang, Z. Bismuth-based photocatalytic semiconductors: Introduction, challenges and possible approaches. J. Mol. Catal. A Chem. 2016, 423, 533–549. [Google Scholar] [CrossRef]
- Li, J.H.; Ren, J.; Hao, Y.J.; Zhou, E.P.; Wang, Y.; Wang, X.J.; Su, R.; Liu, Y.; Qi, X.H.; Li, F.T. Construction of beta-Bi2O3/Bi2O2CO3 heterojunction photocatalyst for deep understanding the importance of separation efficiency and valence band position. J. Hazard. Mater. 2020, 401, 123262. [Google Scholar] [CrossRef]
- Zhao, K.; Zhang, Z.; Feng, Y.; Lin, S.; Li, H.; Gao, X. Surface oxygen vacancy modified Bi2MoO6/MIL-88B(Fe) heterostructure with enhanced spatial charge separation at the bulk & interface. Appl. Catal. B 2020, 268, 118740. [Google Scholar]
- Meng, Q.Q.; Lv, C.D.; Sun, J.X.; Hong, W.Z.; Xing, W.N.; Qiang, L.S.; Chen, G.; Jin, X.L. High-efficiency Fe-Mediated Bi2MoO6 nitrogen-fixing photocatalyst: Reduced surface work function and ameliorated surface reaction. Appl. Catal. B-Environ. 2019, 256, 9. [Google Scholar] [CrossRef]
- Liu, C.; Dai, H.; Tan, C.; Pan, Q.; Hu, F.; Peng, X. Photo-Fenton degradation of tetracycline over Z-scheme Fe-g-C3N4/Bi2WO6 heterojunctions: Mechanism insight, degradation pathways and DFT calculation. Appl. Catal. B 2022, 310, 121326. [Google Scholar] [CrossRef]
- Jaramillo-Páez, C.; Navío, J.A.; Hidalgo, M.C.; Bouziani, A.; Azzouzi, M.E. Mixed α-Fe2O3/Bi2WO6 oxides for photoassisted hetero-Fenton degradation of Methyl Orange and Phenol. J. Photochem. Photobiol. A Chem. 2017, 332, 521–533. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, L.; Zhang, Y.; Ding, Y.; Bi, Y. Ultrathin FeOOH Nanolayers with Abundant Oxygen Vacancies on BiVO4 Photoanodes for Efficient Water Oxidation. Angew. Chem. Int. Ed. Engl. 2018, 57, 2248–2252. [Google Scholar] [CrossRef] [PubMed]
- Saiduzzaman, M.; Yanagida, S.; Takei, T.; Kumada, N.; Ogawa, K.; Moriyoshi, C.; Kuroiwa, Y.; Kawaguchi, S. Crystal Structure, Thermal Behavior, and Photocatalytic Activity of NaBiO3·nH2O. Inorg. Chem. 2018, 57, 8903–8908. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Di, J.; Li, H.; Xu, H.; Li, H.; Guo, S. Ionic liquid-induced strategy for carbon quantum dots/BiOX (X = Br, Cl) hybrid nanosheets with superior visible light-driven photocatalysis. Appl. Catal. B 2016, 181, 260–269. [Google Scholar] [CrossRef]
- Siao, C.W.; Lee, W.W.; Dai, Y.M.; Chung, W.H.; Hung, J.T.; Huang, P.H.; Lin, W.Y.; Chen, C.C. BiOxCly/BiOmBrn/BiOpIq/GO quaternary composites: Syntheses and application of visible-light-driven photocatalytic activities. J. Colloid Interface Sci. 2019, 544, 25–36. [Google Scholar] [CrossRef]
- Huang, Y.; Li, H.; Balogun, M.S.; Liu, W.; Tong, Y.; Lu, X.; Ji, H. Oxygen vacancy induced bismuth oxyiodide with remarkably increased visible-light absorption and superior photocatalytic performance. ACS Appl. Mater. Interfaces 2014, 6, 22920–22927. [Google Scholar] [CrossRef]
- Li, J.; Wu, X.; Pan, W.; Zhang, G.; Chen, H. Vacancy-Rich Monolayer BiO2−x as a Highly Efficient UV, Visible, and Near-Infrared Responsive Photocatalyst. Angew. Chem. Int. Ed. 2018, 57, 491–495. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, Y.; Zhang, G.; Huang, H.; Wu, X. One-Dimensional/Two-Dimensional Core–Shell-Structured Bi2O4/BiO2−x Heterojunction for Highly Efficient Broad Spectrum Light-Driven Photocatalysis: Faster Interfacial Charge Transfer and Enhanced Molecular Oxygen Activation Mechanism. ACS Appl. Mater. Interfaces 2019, 11, 7112–7122. [Google Scholar] [CrossRef]
- Liu, X.; Yang, Z.; Zhang, L. In-situ fabrication of 3D hierarchical flower-like beta-Bi2O3@CoO Z-scheme heterojunction for visible-driven simultaneous degradation of multi-pollutants. J. Hazard. Mater. 2020, 403, 123566. [Google Scholar] [CrossRef]
- Mao, Y.; Wang, P.; Zhan, S. Unravelling the Synergy between Oxygen Vacancies and Oxygen Substitution in BiO2−x for Efficient Molecular-Oxygen Activation. Angew. Chem. Int. Ed. 2020, 59, 3685–3690. [Google Scholar] [CrossRef]
- Bai, S.; Zhang, N.; Gao, C.; Xiong, Y. Defect engineering in photocatalytic materials. Nano Energy 2018, 53, 296–336. [Google Scholar] [CrossRef]
- Hirakawa, H.; Hashimoto, M.; Shiraishi, Y.; Hirai, T. Photocatalytic Conversion of Nitrogen to Ammonia with Water on Surface Oxygen Vacancies of Titanium Dioxide. J. Am. Chem. Soc. 2017, 139, 10929–10936, Erratum in J. Am. Chem. Soc. 2018, 140, 528. [Google Scholar] [CrossRef]
- Yu, H.; Li, J.; Zhang, Y.; Yang, S.; Han, K.; Dong, F.; Ma, T.; Huang, H. Three-in-One Oxygen Vacancies: Whole Visible-Spectrum Absorption, Efficient Charge Separation, and Surface Site Activation for Robust CO2 Photoreduction. Angew. Chem. Int. Ed. Engl. 2019, 58, 3880–3884. [Google Scholar] [CrossRef] [PubMed]
- An, X.Q.; Zhang, L.; Wen, B.; Gu, Z.N.; Liu, L.M.; Qu, J.H.; Liu, H.J. Boosting photoelectrochemical activities of heterostructured photoanodes through interfacial modulation of oxygen vacancies. Nano Energy 2017, 35, 290–298. [Google Scholar] [CrossRef]
- Zhang, N.; Gao, C.; Xiong, Y. Defect engineering: A versatile tool for tuning the activation of key molecules in photocatalytic reactions. J. Energy Chem. 2019, 37, 43–57. [Google Scholar] [CrossRef]
- Li, H.; Shang, J.; Ai, Z.H.; Zhang, L.Z. Efficient Visible Light Nitrogen Fixation with BiOBr Nanosheets of Oxygen Vacancies on the Exposed {001} Facets. J. Am. Chem. Soc. 2015, 137, 6393–6399. [Google Scholar] [CrossRef]
- Zhang, N.; Li, X.; Ye, H.; Chen, S.; Ju, H.; Liu, D.; Lin, Y.; Ye, W.; Wang, C.; Xu, Q.; et al. Oxide Defect Engineering Enables to Couple Solar Energy into Oxygen Activation. J. Am. Chem. Soc. 2016, 138, 8928–8935. [Google Scholar] [CrossRef]
- Sun, B.; Qian, Y.; Liang, Z.; Guo, Y.; Xue, Y.; Tian, J.; Cui, H. Oxygen vacancy-rich BiO2−x ultra-thin nanosheet for efficient full-spectrum responsive photocatalytic oxygen evolution from water splitting. Sol. Energy Mater. Sol. Cells 2019, 195, 309–317. [Google Scholar] [CrossRef]
- Liang, M.; Zou, C.; Wang, W.; Yang, Z.; Shen, K.; Yang, Y.; Yang, S. Bi metal/oxygen-deficient BiO2−x with tetrahedral morphology and high photocatalytic activity. Nanotechnology 2021, 32, 065702. [Google Scholar] [CrossRef]
- Wang, M.; Tan, G.; Dang, M.; Wang, Y.; Zhang, B.; Ren, H.; Lv, L.; Xia, A.; Liu, W.; Liu, Y. Double build-in electric fields mediated double Z-scheme semiconductor-nonmetal plasma heterojunction for dark-full-spectrum-driven environmental clean. Appl. Surf. Sci. 2020, 533, 147565. [Google Scholar] [CrossRef]
- Jin, J.; Sun, J.; Lv, K.; Guo, X.; Liu, J.; Bai, Y.; Huang, X.; Liu, J.; Wang, J. Oxygen-Vacancy-Rich BiO2–x/Ag3PO4/CNT Composite for Polycyclic Aromatic Hydrocarbons (PAHs) Removal via Visible and Near-Infrared Light Irradiation. Ind. Eng. Chem. Res. 2020, 59, 5725–5735. [Google Scholar] [CrossRef]
- Liu, H.; Lu, X.; Li, M.; Zhang, L.; Pan, C.; Zhang, R.; Li, J.; Xiang, W. Structural Incorporation of Manganese into Goethite and Its Enhancement of Pb(II) Adsorption. Environ. Sci. Technol. 2018, 52, 4719–4727. [Google Scholar] [CrossRef]
- Wang, B.; Wu, H.; Yu, L.; Xu, R.; Lim, T.T.; Lou, X.W. Template-free formation of uniform urchin-like alpha-FeOOH hollow spheres with superior capability for water treatment. Adv. Mater. 2012, 24, 1111–1116. [Google Scholar] [CrossRef]
- Qian, X.; Ren, M.; Zhu, Y.; Yue, D.; Han, Y.; Jia, J.; Zhao, Y. Visible Light Assisted Heterogeneous Fenton-Like Degradation of Organic Pollutant via alpha-FeOOH/Mesoporous Carbon Composites. Environ. Sci. Technol. 2017, 51, 3993–4000. [Google Scholar] [CrossRef]
- Liu, J.; Huang, L.; Li, Y.; Yang, L.; Wang, C.; Liu, J.; Song, Y.; Yang, M.; Li, H. Construction of oxygen vacancy assisted Z-scheme BiO2−x/BiOBr heterojunction for LED light pollutants degradation and bacteria inactivation. J. Colloid Interface Sci. 2021, 600, 344–357. [Google Scholar] [CrossRef] [PubMed]
- Qian, X.; Wu, Y.; Kan, M.; Fang, M.; Yue, D.; Zeng, J.; Zhao, Y. FeOOH quantum dots coupled g-C3N4 for visible light driving photo-Fenton degradation of organic pollutants. Appl. Catal. B 2018, 237, 513–520. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, J. Face-to-face BiOCl/BiO2−x heterojunction composites with highly efficient charge separation and photocatalytic activity. J. Alloys Compd. 2020, 832, 153771. [Google Scholar] [CrossRef]
- Yang, M.; Li, Y.X.; Jiang, M.; Li, P.H.; Chen, S.H.; Liu, J.H.; Lin, C.H.; Huang, X.J.; Liu, W.Q. Identifying Phase-Dependent Electrochemical Stripping Performance of FeOOH Nanorod: Evidence from Kinetic Simulation and Analyte-Material Interactions. Small 2020, 16, e1906830. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Xu, J. Fabrication of BiO2−x@TiO2 heterostructures with enhanced photocatalytic activity and stability. Appl. Surf. Sci. 2020, 511, 145460. [Google Scholar] [CrossRef]
- Zhao, S.; Hou, C.; Shao, L.; An, W.; Cui, W. Adsorption and in-situ photocatalytic synergy degradation of 2,4-dichlorophenol by three-dimensional graphene hydrogel modified with highly dispersed TiO2 nanoparticles. Appl. Surf. Sci. 2022, 590, 153088. [Google Scholar] [CrossRef]
- Wang, S.; An, W.; Lu, J.; Liu, L.; Hu, J.; Liang, Y.; Cui, W. A Cu/CuFe2O4-OVs two-electron centre-based synergistic photocatalysis-Fenton system for efficient degradation of organic pollutants. Chem. Eng. J. 2022, 441, 135944. [Google Scholar] [CrossRef]
- Mao, C.; Cheng, H.; Tian, H.; Li, H.; Xiao, W.-J.; Xu, H.; Zhao, J.; Zhang, L. Visible light driven selective oxidation of amines to imines with BiOCl: Does oxygen vacancy concentration matter? Appl. Catal. B 2018, 228, 87–96. [Google Scholar] [CrossRef]
- Li, Z.; Sun, J.; Liang, H.; Ai, M.; Hao, J. Adsorption properties of the intermediates of oxygen reduction reaction on bismuthene and graphene/bismuthene heterojunction based on DFT study. Theor. Chem. Acc. 2021, 140, 103. [Google Scholar] [CrossRef]
- Qi, K.; Ye, Y.; Wei, B.; Li, M.; Lun, Y.; Xie, X.; Xie, H. N-CQDs from reed straw enriching charge over BiO2−x/BiOCl p-n heterojunction for improved visible-light-driven photodegradation of organic pollutants. J. Hazard. Mater. 2022, 432, 128759. [Google Scholar] [CrossRef]
- Jia, Y.; Li, S.; Gao, J.; Zhu, G.; Zhang, F.; Shi, X.; Huang, Y.; Liu, C. Highly efficient (BiO)2CO3-BiO2−x-graphene photocatalysts: Z-Scheme photocatalytic mechanism for their enhanced photocatalytic removal of NO. Appl. Catal. B 2019, 240, 241–252. [Google Scholar] [CrossRef]
- Wang, J.; Fan, Q.; Kou, L.; Chen, H.; Xing, X.; Duan, W.; Jiang, K. LED-driven sulfamethazine removal and bacterial disinfection by a novel photocatalytic textile impregnated with oxygen vacancy-rich BiO2−x/g-C3N4 hybrid. Chem. Eng. J. 2023, 474, 145590. [Google Scholar] [CrossRef]
- Zhang, M.; Lai, C.; Li, B.; Xu, F.; Huang, D.; Liu, S.; Qin, L.; Fu, Y.; Liu, X.; Yi, H.; et al. Unravelling the role of dual quantum dots cocatalyst in 0D/2D heterojunction photocatalyst for promoting photocatalytic organic pollutant degradation. Chem. Eng. J. 2020, 396, 125343. [Google Scholar] [CrossRef]
- Wei, F.Y.; Liu, Y.; Zhao, H.; Ren, X.N.; Liu, J.; Hasan, T.; Chen, L.H.; Li, Y.; Su, B.L. Oxygen self-doped g-C3N4 with tunable electronic band structure for unprecedentedly enhanced photocatalytic performance. Nanoscale 2018, 10, 4515–4522. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Li, J.; Cui, J.; An, W.; Liu, L.; Liang, Y.; Cui, W. Surface oxygen vacancies enriched FeOOH/Bi2MoO6 photocatalysis- fenton synergy degradation of organic pollutants. J. Hazard. Mater. 2020, 384, 121399. [Google Scholar] [CrossRef] [PubMed]
- Fu, F.; Shen, H.; Sun, X.; Xue, W.; Shoneye, A.; Ma, J.; Luo, L.; Wang, D.; Wang, J.; Tang, J. Synergistic effect of surface oxygen vacancies and interfacial charge transfer on Fe(III)/Bi2MoO6 for efficient photocatalysis. Appl. Catal. B 2019, 247, 150–162. [Google Scholar] [CrossRef]
- Jin, J.; Sun, J.; Lv, K.; Guo, X.; Hou, Q.; Liu, J.; Wang, J.; Bai, Y.; Huang, X. Oxygen vacancy BiO2−x/Bi2WO6 synchronous coupling with Bi metal for phenol removal via visible and near-infrared light irradiation. J. Colloid Interface Sci. 2022, 605, 342–353. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Tan, G.; Zhang, D.; Li, B.; Lv, L.; Wang, Y.; Ren, H.; Zhang, X.; Xia, A.; Liu, Y. Defect-mediated Z-scheme BiO2−x/Bi2O2.75 photocatalyst for full spectrum solar-driven organic dyes degradation. Appl. Catal. B 2019, 254, 98–112. [Google Scholar] [CrossRef]
- Wu, P.; Zhou, C.; Li, Y.; Zhang, M.; Tao, P.; Liu, Q.; Cui, W. Flower-like FeOOH hybridized with carbon quantum dots for efficient photo-Fenton degradation of organic pollutants. Appl. Surf. Sci. 2021, 540, 148362. [Google Scholar] [CrossRef]
- An, W.; Hu, S.; Yang, T.; Wang, H.; Hu, J.; Cui, W.; Liang, Y. Oxygen vacancies enhance Fe-doped BiOCl photocatalysis-Fenton synergy degradation of phenol. Mater. Lett. 2022, 322, 132466. [Google Scholar] [CrossRef]
- Li, H.; Shang, J.; Yang, Z.; Shen, W.; Ai, Z.; Zhang, L. Oxygen Vacancy Associated Surface Fenton Chemistry: Surface Structure Dependent Hydroxyl Radicals Generation and Substrate Dependent Reactivity. Environ. Sci. Technol. 2017, 51, 5685–5694. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Zhao, Y.; Dionysiou, D.D. Aligned α-FeOOH nanorods anchored on a graphene oxide-carbon nanotubes aerogel can serve as an effective Fenton-like oxidation catalyst. Appl. Catal. B 2017, 213, 74–86. [Google Scholar] [CrossRef]
- Cai, C.; Zhang, Z.; Liu, J.; Shan, N.; Zhang, H.; Dionysiou, D.D. Visible light-assisted heterogeneous Fenton with ZnFe2O4 for the degradation of Orange II in water. Appl. Catal. B 2016, 182, 456–468. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, J.; Hu, J.; Cui, C.; Liu, H. Interfacial Growth of TiO2-rGO Composite by Pickering Emulsion for Photocatalytic Degradation. Langmuir 2017, 33, 5015–5024. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Du, D.; Shen, B.; Cui, C.; Lu, L.; Wang, L.; Zhang, J. Synthesis of Yolk-Shell Structured Fe3O4@void@CdS Nanoparticles: A General and Effective Structure Design for Photo-Fenton Reaction. ACS Appl. Mater. Interfaces 2016, 8, 20831–20838. [Google Scholar] [CrossRef]
- Jiang, X.; Li, L.; Cui, Y.; Cui, F. New branch on old tree: Green-synthesized RGO/Fe3O4 composite as a photo-Fenton catalyst for rapid decomposition of methylene blue. Ceram. Int. 2017, 43, 14361–14368. [Google Scholar] [CrossRef]
- Zhang, Z.; Lin, S.; Li, X.; Li, H.; Zhang, T.; Cui, W. Enhanced Photocatalytic Activity toward Organic Pollutants Degradation and Mechanism Insight of Novel CQDs/Bi2O2CO3 Composite. Nanomaterials 2018, 8, 330. [Google Scholar] [CrossRef]
- Liu, Y.; Jin, W.; Zhao, Y.; Zhang, G.; Zhang, W. Enhanced catalytic degradation of methylene blue by α-Fe2O3/graphene oxide via heterogeneous photo-Fenton reactions. Appl. Catal. B 2017, 206, 642–652. [Google Scholar] [CrossRef]
- Lin, S.; Liu, L.; Liang, Y.; Cui, W.; Zhang, Z. Oil-in-Water Self-Assembled Synthesis of Ag@AgCl Nano-Particles on Flower-like Bi2O2CO3 with Enhanced Visible-Light-Driven Photocatalytic Activity. Materials 2016, 9, 486. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, P.; Qin, Y.; Gao, M.; Zheng, R.; Zhang, Y.; Li, X.; Liu, Z.; Zhang, Y.; Cao, Z.; Liu, Q. Broad Spectral Response FeOOH/BiO2−x Photocatalyst with Efficient Charge Transfer for Enhanced Photo-Fenton Synergistic Catalytic Activity. Molecules 2024, 29, 919. https://doi.org/10.3390/molecules29040919
Wu P, Qin Y, Gao M, Zheng R, Zhang Y, Li X, Liu Z, Zhang Y, Cao Z, Liu Q. Broad Spectral Response FeOOH/BiO2−x Photocatalyst with Efficient Charge Transfer for Enhanced Photo-Fenton Synergistic Catalytic Activity. Molecules. 2024; 29(4):919. https://doi.org/10.3390/molecules29040919
Chicago/Turabian StyleWu, Pengfei, Yufei Qin, Mengyuan Gao, Rui Zheng, Yixin Zhang, Xinli Li, Zhaolong Liu, Yingkun Zhang, Zhen Cao, and Qingling Liu. 2024. "Broad Spectral Response FeOOH/BiO2−x Photocatalyst with Efficient Charge Transfer for Enhanced Photo-Fenton Synergistic Catalytic Activity" Molecules 29, no. 4: 919. https://doi.org/10.3390/molecules29040919
APA StyleWu, P., Qin, Y., Gao, M., Zheng, R., Zhang, Y., Li, X., Liu, Z., Zhang, Y., Cao, Z., & Liu, Q. (2024). Broad Spectral Response FeOOH/BiO2−x Photocatalyst with Efficient Charge Transfer for Enhanced Photo-Fenton Synergistic Catalytic Activity. Molecules, 29(4), 919. https://doi.org/10.3390/molecules29040919