Persulfate-Promoted Carbamoylation/Cyclization of Alkenes: Synthesis of Amide-Containing Quinazolinones
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. General Information
3.2. General Procedure for the Preparation of 3
3.3. Gram-Scale Synthesis of 3a
3.4. Characterization Data of Products 3a–3z
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bowman, W.R.; Elsegood, M.R.J.; Stein, T.; Weaver, G.W. Radical reactions with 3H-quinazolin-4-ones: Synthesis of deoxyvasicinone, mackinazolinone, luotonin A, rutaecarpine and tryptanthrin. Org. Biomol. Chem. 2007, 5, 103–113. [Google Scholar] [CrossRef]
- Mahindroo, N.; Ahmed, Z.; Bhagat, A.; Lal Bedi, K.; Kant Khajuria, R.; Kumar Kapoor, V.; Lal Dhar, K. Synthesis and Structure-Activity Relationships of Vasicine Analogues as Bronchodilatory Agents. Med. Chem. Res. 2005, 14, 347–368. [Google Scholar] [CrossRef]
- Zheng, F.; Zhan, M.; Huang, X.; Abdul Hameed, M.D.M.; Zhan, C.-G. Modeling in vitro inhibition of butyrylcholinesterase using molecular docking, multi-linear regression and artificial neural network approaches. Biorg. Med. Chem. 2014, 22, 538–549. [Google Scholar] [CrossRef] [PubMed]
- Al-Shamma, A.; Drake, S.; Flynn, D.L.; Mitscher, L.A.; Park, Y.H.; Rao, G.S.R.; Simpson, A.; Swayze, J.K.; Veysoglu, T.; Wu, S.T.S. Antimicrobial Agents From Higher Plants. Antimicrobial Agents From Peganum harmala Seeds. J. Nat. Prod. 1981, 44, 745–747. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.H.; Shin, E.M.; Kim, Y.S.; Cai, X.F.; Lee, J.J.; Kim, H.P. Anti-inflammatory principles from the fruits of Evodia rutaecarpa and their cellular action mechanisms. Arch. Pharmacal Res. 2006, 29, 293–297. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.-P.; Xiao, L.; Deng, H.-W.; Li, Y.-J. The Cardioprotection of Rutaecarpine is Mediated by Endogenous Calcitonin Related-Gene Peptide Through Activation of Vanilloid Receptors in Guinea-Pig Hearts. Planta Med. 2002, 68, 705–709. [Google Scholar] [CrossRef] [PubMed]
- Mehta, D.R.; Naravane, J.S.; Desai, R.M. Vasicinone. A Bronchodilator Principle from Adhatoda Vasica Nees (N. O. Acanthaceae). J. Org. Chem. 1963, 28, 445–448. [Google Scholar] [CrossRef]
- Narkhede, R.R.; Pise, A.V.; Cheke, R.S.; Shinde, S.D. Recognition of Natural Products as Potential Inhibitors of COVID-19 Main Protease (Mpro): In-Silico Evidences. Nat. Product. Bioprosp. 2020, 10, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Song, S.-Z.; Meng, Y.-N.; Li, Q.; Wei, W.-T. Recent Progress in the Construction of C−N Bonds via Metal-Free Radical C(sp3)−H Functionalization. Adv. Synth. Catal. 2020, 362, 2120–2134. [Google Scholar] [CrossRef]
- Picos-Corrales, L.A.; Sarmiento-Sánchez, J.I. Synthesis of quinazolin-4(3H)-ones, an update (microreview). Chem. Heterocycl. Com. 2018, 54, 762–764. [Google Scholar] [CrossRef]
- Chen, J.; Su, W.; Wu, H.; Liu, M.; Jin, C. Eco-friendly synthesis of 2,3-dihydroquinazolin-4(1H)-ones in ionic liquids or ionic liquid–water without additional catalyst. Green Chem. 2007, 9, 972–975. [Google Scholar] [CrossRef]
- Qian, P.; Deng, Y.; Mei, H.; Han, J.; Zhou, J.; Pan, Y. Visible-Light Photoredox Catalyzed Oxidative/Reductive Cyclization Reaction of N-Cyanamide Alkenes for the Synthesis of Sulfonated Quinazolinones. Org. Lett. 2017, 19, 4798–4801. [Google Scholar] [CrossRef] [PubMed]
- Qiao, R.; Ye, L.; Hu, K.; Yu, S.; Yang, W.; Liu, M.; Chen, J.; Ding, J.; Wu, H. Copper-catalyzed C–O bond cleavage and cyclization: Synthesis of indazolo[3,2-b]quinazolinones. Org. Biomol. Chem. 2017, 15, 2168–2173. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Qiao, R.; Chen, J.; Huang, X.; Liu, M.; Gao, W.; Ding, J.; Wu, H. Palladium-Catalyzed Cascade Reaction of 2-Amino-N′-arylbenzohydrazides with Triethyl Orthobenzoates To Construct Indazolo[3,2-b]quinazolinones. J. Org. Chem. 2015, 80, 482–489. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Shao, Y.; Gong, J.; Zhu, J.; Cheng, T.; Chen, J. Selenium-Catalyzed Oxidative C–H Amination of (E)-3-(Arylamino)-2-styrylquinazolin-4(3H)-ones: A Metal-Free Synthesis of 1,2-Diarylpyrazolo[5,1-b]quinazolin-9(1H)-ones. J. Org. Chem. 2019, 84, 2798–2807. [Google Scholar] [CrossRef] [PubMed]
- Jing, D.; Lu, C.; Chen, Z.; Jin, S.; Xie, L.; Meng, Z.; Su, Z.; Zheng, K. Light-Driven Intramolecular C−N Cross-Coupling via a Long-Lived Photoactive Photoisomer Complex. Angew. Chem. Int. Ed. 2019, 58, 14666–14672. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Su, Z.; Jing, D.; Jin, S.; Xie, L.; Li, L.; Zheng, K. Intramolecular Reductive Cyclization of o-Nitroarenes via Biradical Recombination. Org. Lett. 2019, 21, 1438–1443. [Google Scholar] [CrossRef] [PubMed]
- Ly, D.; Nguyen, T.T.; Tran, C.T.H.; Nguyen, V.P.T.; Nguyen, K.X.; Pham, P.H.; Le, N.T.H.; Nguyen, T.T.; Phan, N.T.S. Metal-Free Annulation of 2-Nitrobenzyl Alcohols and Tetrahydroisoquinolines toward the Divergent Synthesis of Quinazolinones and Quinazolinethiones. J. Org. Chem. 2022, 87, 103–113. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Nguyen, K.X.; Pham, P.H.; Ly, D.; Nguyen, D.K.; Nguyen, K.D.; Nguyen, T.T.; Phan, N.T.S. Copper-catalyzed synthesis of pyrido-fused quinazolinones from 2-aminoarylmethanols and isoquinolines or tetrahydroisoquinolines. Org. Biomol. Chem. 2021, 19, 4726–4732. [Google Scholar] [CrossRef]
- Xie, F.; Chen, Q.-H.; Xie, R.; Jiang, H.-F.; Zhang, M. MOF-Derived Nanocobalt for Oxidative Functionalization of Cyclic Amines to Quinazolinones with 2-Aminoarylmethanols. ACS Catal. 2018, 8, 5869–5874. [Google Scholar] [CrossRef]
- Xie, L.; Lu, C.; Jing, D.; Ou, X.; Zheng, K. Metal-Free Synthesis of Polycyclic Quinazolinones Enabled by a (NH4)2S2O8-Promoted Intramolecular Oxidative Cyclization. Eur. J. Org. Chem. 2019, 2019, 3649–3653. [Google Scholar] [CrossRef]
- Chen, X.; Xia, F.; Zhao, Y.; Ma, J.; Ma, Y.; Zhang, D.; Yang, L.; Sun, P. TBHP-Mediated Oxidative Decarboxylative Cyclization in Water: Direct and Sustainable Access to Anti-malarial Polycyclic Fused Quinazolinones and Rutaecarpine. Chin. J. Chem. 2020, 38, 1239–1244. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, X.; Lu, S.; Sun, P. Electrosynthesis of polycyclic quinazolinones and rutaecarpine from isatoic anhydrides and cyclic amines. RSC Adv. 2020, 10, 44382–44386. [Google Scholar] [CrossRef] [PubMed]
- Garia, A.; Jain, N. Transition-Metal-Free Synthesis of Fused Quinazolinones by Oxidative Cyclization of N-Pyridylindoles. J. Org. Chem. 2019, 84, 9661–9670. [Google Scholar] [CrossRef] [PubMed]
- Jia, F.-C.; Chen, T.-Z.; Hu, X.-Q. TFA/TBHP-promoted oxidative cyclisation for the construction of tetracyclic quinazolinones and rutaecarpine. Org. Chem. Front. 2020, 7, 1635–1639. [Google Scholar] [CrossRef]
- Li, J.; Wang, Z.-B.; Xu, Y.; Lu, X.-C.; Zhu, S.-R.; Liu, L. Catalyst-free cyclization of anthranils and cyclic amines: One-step synthesis of rutaecarpine. Chem. Commun. 2019, 55, 12072–12075. [Google Scholar] [CrossRef]
- Wang, D.; Xiao, F.; Zhang, F.; Huang, H.; Deng, G.-J. Copper-Catalyzed Aerobic Oxidative Ring Expansion of Isatins: A Facile Entry to Isoquinolino-Fused Quinazolinones. Chin. J. Chem. 2021, 39, 87–92. [Google Scholar] [CrossRef]
- Ye, Y.; Yue, Y.; Guo, X.; Chao, J.; Yang, Y.; Sun, C.; Lv, Q.; Liu, J. Copper-Catalyzed Aerobic Oxidation of N-Pyridylindole Leading to Fused Quinazolinones. Eur. J. Org. Chem. 2021, 2021, 3721–3725. [Google Scholar] [CrossRef]
- Feng, Y.; Tian, N.; Li, Y.; Jia, C.; Li, X.; Wang, L.; Cui, X. Construction of Fused Polyheterocycles through Sequential [4 + 2] and [3 + 2] Cycloadditions. Org. Lett. 2017, 19, 1658–1661. [Google Scholar] [CrossRef]
- Kumaran, S.; Parthasarathy, K. Cobalt(III)-Catalyzed Synthesis of Fused Quinazolinones by C–H/N–H Annulation of 2-Arylquinazolinones with Alkynes. Eur. J. Org. Chem. 2020, 2020, 866–869. [Google Scholar] [CrossRef]
- Wang, Z.-H.; Wang, H.; Wang, H.; Li, L.; Zhou, M.-D. Ruthenium(II)-Catalyzed C–C/C–N Coupling of 2-Arylquinazolinones with Vinylene Carbonate: Access to Fused Quinazolinones. Org. Lett. 2021, 23, 995–999. [Google Scholar] [CrossRef] [PubMed]
- (32) Zhang, J.; Wang, X.; Chen, D.; Kang, Y.; Ma, Y.; Szostak, M. Synthesis of C6-Substituted Isoquinolino[1,2-b]quinazolines via Rh(III)-Catalyzed C–H Annulation with Sulfoxonium Ylides. J. Org. Chem. 2020, 85, 3192–3201. [Google Scholar] [CrossRef]
- Wang, W.; Zou, P.-S.; Pang, L.; Pan, C.-X.; Mo, D.-L.; Su, G.-F. Recent advances in the synthesis of 2,3-fused quinazolinones. Org. Biomol. Chem. 2022, 20, 6293–6313. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.-J.; Cui, W.; Jiang, D.-L.; Yuan, H.; Liang, X.-W.; Wang, S.-G. Visible-light-promoted photoredox-catalyzed N-aminoalkylation of quinazolinones with simple alkylamide. Tetrahedron Lett. 2023, 132, 154801. [Google Scholar] [CrossRef]
- Sun, B.; Tang, X.; Shi, R.; Yan, Z.; Li, B.; Tang, C.; Jin, C.; Wu, C.L.; Shen, R.P. Self-photocatalyzed Homolytic Dehalogenative Alkylation/Cyclization of Unactivated Alkenes Based on the Quinazolinone Skeleton via Energy Transfer. Asian. J. Org. Chem. 2021, 10, 3390–3395. [Google Scholar] [CrossRef]
- Ghouse, A.M.; Akondi, S.M. Dicarbofunctionalization of unactivated alkenes via organo-photoredox catalysis in water: Access to cyanoalkylated fused quinazolinones. Org. Biomol. Chem. 2023, 21, 5351–5355. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Yang, Z.; Huang, G.; Yu, J.-T.; Pan, C. Cyanomethylative cyclization of unactivated alkenes with nitriles for the synthesis of cyano-containing ring-fused quinazolin-4(3H)-ones. New J. Chem. 2022, 46, 1347–1352. [Google Scholar] [CrossRef]
- Sun, B.; Shi, R.; Zhang, K.; Tang, X.; Shi, X.; Xu, J.; Yang, J.; Jin, C. Photoinduced homolytic decarboxylative acylation/cyclization of unactivated alkenes with α-keto acid under external oxidant and photocatalyst free conditions: Access to quinazolinone derivatives. Chem. Commun. 2021, 57, 6050–6053. [Google Scholar] [CrossRef]
- Gui, Q.-W.; Teng, F.; Yang, H.; Xun, C.; Huang, W.-J.; Lu, Z.-Q.; Zhu, M.-X.; Ouyang, W.-T.; He, W.-M. Visible-Light Photosynthesis of CHF2/CClF2/CBrF2-Substituted Ring-fused Quinazolinones in Dimethyl Carbonate. Chem. Asian. J. 2022, 17, e202101139. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, W.; Xu, C.; He, J.; Xu, Z.; Yang, Z.; Ling, F.; Zhong, W. Electrosynthesis of CF3-Substituted Polycyclic Quinazolinones via Cascade Trifluoromethylation/Cyclization of Unactivated Alkene. Adv. Synth. Catal. 2022, 364, 1319–1325. [Google Scholar] [CrossRef]
- Sun, B.; Huang, P.; Yan, Z.; Shi, X.; Tang, X.; Yang, J.; Jin, C. Self-Catalyzed Phototandem Perfluoroalkylation/Cyclization of Unactivated Alkenes: Synthesis of Perfluoroalkyl-Substituted Quinazolinones. Org. Lett. 2021, 23, 1026–1031. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Sun, B.; Ding, H.; Huang, P.-Y.; Tang, X.-L.; Shi, R.-C.; Yan, Z.-Y.; Yu, C.-M.; Jin, C. Photo-triggered self-catalyzed fluoroalkylation/cyclization of unactivated alkenes: Synthesis of quinazolinones containing the CF2R group. Green Chem. 2021, 23, 575–581. [Google Scholar] [CrossRef]
- Chen, X.; Liu, B.; Pei, C.; Li, J.; Zou, D.; Wu, Y.; Wu, Y. Visible-Light-Induced Radical Difluoromethylation/Cyclization of Unactivated Alkenes: Access to CF2H-Substituted Quinazolinones. Org. Lett. 2021, 23, 7787–7791. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Ding, H.; Tian, H.-X.; Huang, P.-Y.; Jin, C.; Wu, C.-L.; Shen, R.-P. Photo-Triggered Self-Induced Homolytic Dechlorinative Sulfonylation/Cyclization of Unactivated Alkenes: Synthesis of Quinazolinones Containing a Sulfonyl Group. Adv. Synth. Catal. 2022, 364, 766–772. [Google Scholar] [CrossRef]
- Pan, C.; Chen, D.; Chen, Y.; Yu, J.-T.; Zhu, C. Organic photoredox catalytic radical sulfonamidation/cyclization of unactivated alkenes towards polycyclic quinazolinones. Org. Chem. Front. 2022, 9, 6290–6294. [Google Scholar] [CrossRef]
- Dunetz, J.R.; Magano, J.; Weisenburger, G.A. Large-Scale Applications of Amide Coupling Reagents for the Synthesis of Pharmaceuticals. Org. Process Res. Dev. 2016, 20, 140–177. [Google Scholar] [CrossRef]
- Tangallapally, R.P.; Yendapally, R.; Lee, R.E.; Lenaerts, A.J.M.; Lee, R.E. Synthesis and Evaluation of Cyclic Secondary Amine Substituted Phenyl and Benzyl Nitrofuranyl Amides as Novel Antituberculosis Agents. J. Med. Chem. 2005, 48, 8261–8269. [Google Scholar] [CrossRef]
- Cheng, R.P.; Gellman, S.H.; DeGrado, W.F. β-Peptides: From Structure to Function. Chem. Rev. 2001, 101, 3219–3232. [Google Scholar] [CrossRef]
- Lundberg, H.; Tinnis, F.; Selander, N.; Adolfsson, H. Catalytic amide formation from non-activated carboxylic acids and amines. Chem. Soc. Rev. 2014, 43, 2714–2742. [Google Scholar] [CrossRef]
- Ojeda-Porras, A.; Gamba-Sánchez, D. Recent Developments in Amide Synthesis Using Nonactivated Starting Materials. J. Org. Chem. 2016, 81, 11548–11555. [Google Scholar] [CrossRef]
- Allen, C.L.; Williams, J.M.J. Metal-catalysed approaches to amide bond formation. Chem. Soc. Rev. 2011, 40, 3405–3415. [Google Scholar] [CrossRef]
- Bednarek, C.; Wehl, I.; Jung, N.; Schepers, U.; Bräse, S. The Staudinger Ligation. Chem. Rev. 2020, 120, 4301–4354. [Google Scholar] [CrossRef]
- de Figueiredo, R.M.; Suppo, J.-S.; Campagne, J.-M. Nonclassical Routes for Amide Bond Formation. Chem. Rev. 2016, 116, 12029–12122. [Google Scholar] [CrossRef] [PubMed]
- Ogbu, I.M.; Kurtay, G.; Robert, F.; Landais, Y. Oxamic acids: Useful precursors of carbamoyl radicals. Chem. Commun. 2022, 58, 7593–7607. [Google Scholar] [CrossRef]
- Mooney, D.T.; Moore, P.R.; Lee, A.-L. Direct Minisci-Type C–H Amidation of Purine Bases. Org. Lett. 2022, 24, 8008–8013. [Google Scholar] [CrossRef]
- Yuan, J.-W.; Chen, Q.; Li, C.; Zhu, J.-L.; Yang, L.-R.; Zhang, S.-R.; Mao, P.; Xiao, Y.-M.; Qu, L.-B. Silver-catalyzed direct C–H oxidative carbamoylation of quinolines with oxamic acids. Org. Biomol. Chem. 2020, 18, 2747–2757. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.-W.; Zhu, J.-L.; Zhu, H.-L.; Peng, F.; Yang, L.-Y.; Mao, P.; Zhang, S.-R.; Li, Y.-C.; Qu, L.-B. Transition-metal free direct C–H functionalization of quinoxalin-2(1H)-ones with oxamic acids leading to 3-carbamoyl quinoxalin-2(1H)-ones. Org. Chem. Front. 2020, 7, 273–285. [Google Scholar] [CrossRef]
- Matsuo, B.T.; Oliveira, P.H.R.; Pissinati, E.F.; Vega, K.B.; de Jesus, I.S.; Correia, J.T.M.; Paixao, M. Photoinduced carbamoylation reactions: Unlocking new reactivities towards amide synthesis. Chem. Commun. 2022, 58, 8322–8339. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.-Y.; Peng, S.; Yang, L.-H.; Liu, X.-W. Metal-Free Synthesis of Carbamoylated Chroman-4-Ones via Cascade Radical Annulation of 2-(Allyloxy)arylaldehydes with Oxamic Acids. Molecules 2022, 27, 7049. [Google Scholar] [CrossRef] [PubMed]
- Jing, Q.; Qiao, F.-C.; Sun, J.; Wang, J.-Y.; Zhou, M.-D. Persulfate promoted carbamoylation of N-arylacrylamides and N-arylcinnamamides with 4-carbamoyl-Hantzsch esters. Org. Biomol. Chem. 2023, 21, 7530–7534. [Google Scholar] [CrossRef]
- Han, Q.-Q.; Sun, Y.-Y.; Yang, S.-H.; Song, J.-C.; Wang, Z.-L. Persulfate promoted tandem radical cyclization of ortho-cyanoarylacrylamides with oxamic acids for construction of carbamoyl quinoline-2,4-diones under metal-free conditions. Chin. Chem. Lett. 2021, 32, 3632–3635. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, L.; Liu, J.; Ruan, S.; Li, P. Facile synthesis of carbamoylated benzimidazo[2,1-a]isoquinolin-6(5H)-ones via radical cascade cyclization under metal-free conditions. Org. Biomol. Chem. 2021, 19, 3489–3496. [Google Scholar] [CrossRef] [PubMed]
- Upreti, G.C.; Singh, T.; Chaudhary, D.; Singh, A. Cascade Cyclizations Triggered by Photochemically Generated Carbamoyl Radicals Derived from Alkyl Amines. J. Org. Chem. 2023, 88, 11801–11808. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.; Liu, J.; Yang, L.-H.; Xie, L.-Y. Sunlight Induced and Recyclable g-C3N4 Catalyzed C-H Sulfenylation of Quinoxalin-2(1H)-Ones. Molecules 2022, 27, 5044. [Google Scholar] [CrossRef]
- Xie, L.-Y.; Fang, T.-G.; Tan, J.-X.; Zhang, B.; Cao, Z.; Yang, L.-H.; He, W.-M. Visible-light-induced deoxygenative C2-sulfonylation of quinoline N-oxides with sulfinic acids. Green Chem. 2019, 21, 3858–3863. [Google Scholar] [CrossRef]
- Peng, Z.; Hong, Y.-Y.; Peng, S.; Xu, X.-Q.; Tang, S.-S.; Yang, L.-H.; Xie, L.-Y. Photosensitizer-free synthesis of β-keto sulfones via visible-light-induced oxysulfonylation of alkenes with sulfonic acids. Org. Biomol. Chem. 2021, 19, 4537–4541. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.-Y.; Bai, Y.-S.; Xu, X.-Q.; Peng, X.; Tang, H.-S.; Huang, Y.; Lin, Y.-W.; Cao, Z.; He, W.-M. Visible-light-induced decarboxylative acylation of quinoxalin-2(1H)-ones with α-oxo carboxylic acids under metal-, strong oxidant- and external photocatalyst-free conditions. Green Chem. 2020, 22, 1720–1725. [Google Scholar] [CrossRef]
- Xie, L.-Y.; Peng, S.; Yang, L.-H.; Peng, C.; Lin, Y.-W.; Yu, X.; Cao, Z.; Peng, Y.-Y.; He, W.-M. Aryl acyl peroxides for visible-light induced decarboxylative arylation of quinoxalin-2(1H)-ones under additive-, metal catalyst-, and external photosensitizer-free and ambient conditions. Green Chem. 2021, 23, 374–378. [Google Scholar] [CrossRef]
- Jatoi, A.H.; Pawar, G.G.; Robert, F.; Landais, Y. Visible-light mediated carbamoyl radical addition to heteroarenes. Chem. Commun. 2019, 55, 466–469. [Google Scholar] [CrossRef]
- Zhang, Z.; Jia, C.; Kong, X.; Hussain, M.; Liu, Z.; Liang, W.; Jiang, L.; Jiang, H.; Ma, J. Sustainable Approach to Azaheterocyclic Acetamides by Decarboxylative Aminoformylation. ACS Sustain. Chem. Eng. 2020, 8, 16463–16468. [Google Scholar] [CrossRef]
- Bhat, V.S.; Lee, A. Direct C3 Carbamoylation of 2H-Indazoles. Eur. J. Org. Chem. 2021, 2021, 3382–3385. [Google Scholar] [CrossRef]
- Petersen, W.F.; Taylor, R.J.K.; Donald, J.R. Photoredox-catalyzed procedure for carbamoyl radical generation: 3,4-dihydroquinolin-2-one and quinolin-2-one synthesis. Org. Biomol. Chem. 2017, 15, 5831–5845. [Google Scholar] [CrossRef] [PubMed]
Entry | Oxidant | Solvent | Temp | Yield of 3a b |
---|---|---|---|---|
1 | (NH4)2S2O8 | DMSO | 80 | 42% |
2 | K2S2O8 | DMSO | 80 | 18% |
3 | Na2S2O8 | DMSO | 80 | 24% |
4 | (NH4)2S2O8 | H2O | 80 | 27% |
5 | (NH4)2S2O8 | DMSO/H2O (500:1) | 80 | 43% |
6 | (NH4)2S2O8 | DMSO/H2O (100:1) | 80 | 57% |
7 | (NH4)2S2O8 | DMSO/H2O (10:1) | 80 | 46% |
8 | (NH4)2S2O8 | DMSO/H2O (100:1) | 90 | 64% |
9 | (NH4)2S2O8 | DMSO/H2O (100:1) | 100 | 76% |
10 | (NH4)2S2O8 | DMSO/H2O (100:1) | 110 | 73% |
11 | (NH4)2S2O8 | DMSO/H2O (100:1) | 70 | 16% |
12 c | (NH4)2S2O8 | DMSO/H2O (100:1) | 100 | 67% |
13 d | (NH4)2S2O8 | DMSO/H2O (100:1) | 100 | 82% |
14 e | (NH4)2S2O8 | DMSO/H2O (100:1) | 100 | 80% |
15 | None | DMSO/H2O (100:1) | 100 | 0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, J.-J.; Zhao, M.-Y.; Lin, Y.-J.; Yang, L.-H.; Xie, L.-Y. Persulfate-Promoted Carbamoylation/Cyclization of Alkenes: Synthesis of Amide-Containing Quinazolinones. Molecules 2024, 29, 997. https://doi.org/10.3390/molecules29050997
Tang J-J, Zhao M-Y, Lin Y-J, Yang L-H, Xie L-Y. Persulfate-Promoted Carbamoylation/Cyclization of Alkenes: Synthesis of Amide-Containing Quinazolinones. Molecules. 2024; 29(5):997. https://doi.org/10.3390/molecules29050997
Chicago/Turabian StyleTang, Jia-Jun, Meng-Yang Zhao, Ying-Jun Lin, Li-Hua Yang, and Long-Yong Xie. 2024. "Persulfate-Promoted Carbamoylation/Cyclization of Alkenes: Synthesis of Amide-Containing Quinazolinones" Molecules 29, no. 5: 997. https://doi.org/10.3390/molecules29050997
APA StyleTang, J.-J., Zhao, M.-Y., Lin, Y.-J., Yang, L.-H., & Xie, L.-Y. (2024). Persulfate-Promoted Carbamoylation/Cyclization of Alkenes: Synthesis of Amide-Containing Quinazolinones. Molecules, 29(5), 997. https://doi.org/10.3390/molecules29050997