Chemical Composition of Essential Oils from Natural Populations of Artemisia scoparia Collected at Different Altitudes: Antibacterial, Mosquito Repellent, and Larvicidal Effects
Abstract
:1. Introduction
2. Results
2.1. Yields of Essential Oils
2.2. Chemical Composition of Essential Oils
2.3. Antibacterial Activity
2.4. Mosquito-Repellent Activity
2.5. Larvicidal Activity
3. Discussion
4. Materials and Methods
4.1. Collection and Maintenance of Plant Material
4.2. Extraction of Essential Oils
4.3. Chemical Analysis of Essential Oils by GC–MS
4.4. Antibacterial Activity
4.5. Rearing of Ae. aegypti Mosquitoes
4.6. Mosquito Repellency Bioassay
4.7. Larvicidal Bioassay
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bolouri, P.; Salami, R.; Kouhi, S.; Kordi, M.; Asgari Lajayer, B.; Hadian, J.; Astatkie, T. Applications of essential oils and plant extracts in different industries. Molecules 2022, 27, 8999. [Google Scholar] [CrossRef]
- Becker, N. Mosquitoes and Their Control; Kluwer Academic/Plenum Publishers: New York, NY, USA, 2013. [Google Scholar]
- Leandro, A.d.S.; Rios, J.A.; Britto, A.d.S.; Galvao, S.R.; Lopes, R.D.; Rivas, A.V.; Martins, C.A.; da Silva, I.; Delai, R.M.; Goncalves, D.D. Malathion insecticide resistance in Aedes aegypti: Laboratory conditions and in situ experimental approach through adult entomological surveillance. Trop. Med. Int. Health 2020, 25, 1271–1282. [Google Scholar] [CrossRef]
- Afify, A.; Potter, C. Insect repellents mediate species-specific olfactory behaviours in mosquitoes. Malar. J. 2020, 19, 127. [Google Scholar] [CrossRef] [PubMed]
- Qiu, H.; Jun, H.W.; Dzimianski, M.; McCall, J. Reduced transdermal absorption of N, N-diethyl-m-toluamide from a new topical insect repellent formulation. Pharm. Dev. Technol. 1997, 2, 33–42. [Google Scholar] [CrossRef]
- Calafat, A.M.; Baker, S.E.; Wong, L.-Y.; Bishop, A.M.; Morales-A, P.; Valentin-Blasini, L. Novel exposure biomarkers of N, N-diethyl-m-toluamide (DEET): Data from the 2007–2010 National Health and Nutrition Examination Survey. Environ. Int. 2016, 92, 398–404. [Google Scholar] [CrossRef]
- Pavela, R. History, presence and perspective of using plant extracts as commercial botanical insecticides and farm products for protection against insects—A review. Plant Prot. Sci. 2016, 52, 229–241. [Google Scholar] [CrossRef]
- Magalhães, N.M.G.; Lima, R.; Espindola, L.S. Registro e perfil ecotoxicológico de produtos para controle de Aedes aegypti. Vigilância Sanitária Debate Soc. Ciência Tecnol. 2021, 9, 71–81. [Google Scholar] [CrossRef]
- Luu-Dam, N.A.; Le, C.V.C.; Satyal, P.; Le, T.M.H.; Bui, V.H.; Vo, V.H.; Ngo, G.H.; Bui, T.C.; Nguyen, H.H.; Setzer, W.N. Chemistry and Bioactivity of Croton Essential Oils: Literature Survey and Croton hirtus from Vietnam. Molecules 2023, 28, 2361. [Google Scholar] [CrossRef]
- De Souza, M.A.; da Silva, L.; Dos Santos, M.A.; Macêdo, M.J.; Lacerda-Neto, L.J.; Coutinho, H.D.; de Oliveira, L.C.; Cunha, F.A. Larvicidal activity of essential oils against Aedes aegypti (Diptera: Culicidae). Curr. Pharm. Des. 2020, 26, 4092–4111. [Google Scholar] [CrossRef]
- Abbas, M.G.; Haris, A.; Binyameen, M.; Nazir, A.; Mozūratis, R.; Azeem, M. Chemical Composition, Larvicidal and Repellent Activities of Wild Plant Essential Oils against Aedes aegypti. Biology 2023, 12, 8. [Google Scholar] [CrossRef]
- Michael, C.A.; Dominey-Howes, D.; Labbate, M. The antimicrobial resistance crisis: Causes, consequences, and management. Front. Public Health 2014, 2, 145. [Google Scholar] [CrossRef] [PubMed]
- Oftadeh, M.; Jalali Sendi, J.; Ebadollahi, A. Biologically active toxin identified from Artemisia annua against lesser mulberry pyralid, Glyphodes pyloalis. Toxin Rev. 2021, 40, 953–961. [Google Scholar] [CrossRef]
- Chávez-González, M.; Rodríguez-Herrera, R.; Aguilar, C. Essential oils: A natural alternative to combat antibiotics resistance. In Antibiotic Resistance, Mechanisms and New Antimicrobial Approaches; Kon, K., Rai, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 227–337. [Google Scholar]
- Tariq, S.; Wani, S.; Rasool, W.; Shafi, K.; Bhat, M.A.; Prabhakar, A.; Shalla, A.H.; Rather, M.A. A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens. Microb. Pathog. 2019, 134, 103580. [Google Scholar] [CrossRef]
- Mohiuddin, D.; Ganai, B.; Chishti, M.; Ahmad, F.; Dar, J.S. Phytochemical studies on the extract and essential oils of Artemisia dracunculus L.(Tarragon). Afr. J. Plant Sci. 2014, 8, 72–75. [Google Scholar]
- Ding, J.; Wang, L.; He, C.; Zhao, J.; Si, L.; Huang, H. Artemisia scoparia: Traditional uses, active constituents and pharmacological effects. J. Ethnopharmacol. 2021, 273, 113960. [Google Scholar] [CrossRef] [PubMed]
- Nigam, M.; Atanassova, M.; Mishra, A.P.; Pezzani, R.; Devkota, H.P.; Plygun, S.; Salehi, B.; Setzer, W.N.; Sharifi-Rad, J. Bioactive Compounds and Health Benefits of Artemisia Species. Nat. Prod. Commun. 2019, 14, 1934578X19850354. [Google Scholar] [CrossRef]
- Erel, Ş.B.; Reznicek, G.; Şenol, S.G.; Yavasoglu, N.Ü.K.; Konyalioğlu, S.; Zeybek, A.U. Antimicrobial and antioxidant properties of Artemisia L. species from western Anatolia. Turk. J. Biol. 2012, 36, 75–84. [Google Scholar] [CrossRef]
- Cho, J.-Y.; Jeong, S.-J.; La Lee, H.; Park, K.-H.; Park, S.-Y.; Lee, Y.G.; Moon, J.-H.; Ham, K.-S. Sesquiterpene lactones and scopoletins from Artemisia scoparia Waldst. & Kit. and their angiotensin I-converting enzyme inhibitory activities. Food Sci. Biotechnol. 2016, 25, 1701–1708. [Google Scholar]
- Zhigzhitzhapova, S.; Randalova, T.; Radnaeva, L. Composition of essential oil of Artemisia scoparia Waldst. et Kit. from Buryatia and Mongolia. Russ. J. Bioorg. Chem. 2016, 42, 730–734. [Google Scholar] [CrossRef]
- Cha, J.-D.; Jeong, M.-R.; Jeong, S.-I.; Moon, S.-E.; Kim, J.-Y.; Kil, B.-S.; Song, Y.-H. Chemical composition and antimicrobial activity of the essential oils of Artemisia scoparia and A. capillaris. Planta Medica 2005, 71, 186–190. [Google Scholar] [CrossRef]
- Safaei--Ghomi, J.; Bamoniri, A.; Sarafraz, M.B.; Batooli, H. Volatile components from Artemisia scoparia Waldst et Kit growing in central Iran. Flavour Fragr. J. 2005, 20, 650–652. [Google Scholar] [CrossRef]
- Mirjalili, M.; Tabatabaei, S.; Hadian, J.; Ebrahimi, S.N.; Sonboli, A. Phenological variation of the essential oil of Artemisia scoparia Waldst. et Kit from Iran. J. Essent. Oil Res. 2007, 19, 326–329. [Google Scholar] [CrossRef]
- Aati, H.Y.; Perveen, S.; Orfali, R.; Al-Taweel, A.M.; Aati, S.; Wanner, J.; Khan, A.; Mehmood, R. Chemical composition and antimicrobial activity of the essential oils of Artemisia absinthium, Artemisia scoparia, and Artemisia sieberi grown in Saudi Arabia. Arab. J. Chem. 2020, 13, 8209–8217. [Google Scholar] [CrossRef]
- Ali, A.; Tabanca, N.; Demirci, B.; Blythe, E.K.; Ali, Z.; Baser, K.H.C.; Khan, I.A. Chemical Composition and Biological Activity of Four Salvia Essential Oils and Individual Compounds against Two Species of Mosquitoes. J. Agric. Food Chem. 2015, 63, 447–456. [Google Scholar] [CrossRef]
- Hussain, A.I.; Anwar, F.; Sherazi, S.T.H.; Przybylski, R. Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations. Food Chem. 2008, 108, 986–995. [Google Scholar] [CrossRef]
- Singh, H.P.; Mittal, S.; Kaur, S.; Batish, D.R.; Kohli, R.K. Chemical composition and antioxidant activity of essential oil from residues of Artemisia scoparia. Food Chem. 2009, 114, 642–645. [Google Scholar] [CrossRef]
- Danesh, N.M.; Gazanchian, A.; Rahimizadeh, M.; Khayyat, M.H. Essential oil compositions of Artemisia scoparia Waldst. et. Kit native to north east of Iran. Adv. Environ. Biol. 2010, 4, 254–257. [Google Scholar]
- Ickovski, J.D.; Stepić, K.D.; Stojanović, G.S. Composition of essential oils and headspace constituents of Artemisia annua L. and A. scoparia Waldst. et Kit.-Short communication. J. Serbian Chem. Soc. 2020, 85, 1565–1575. [Google Scholar] [CrossRef]
- Sharopov, F.S.; Setzer, W.N. The essential oil of Artemisia scoparia from Tajikistan is dominated by phenyldiacetylenes. Nat. Prod. Commun. 2011, 6, 1934578X1100600128. [Google Scholar] [CrossRef]
- Nikitin, E.; Fitsev, I.; Egorova, A.; Logvinenko, L.; Terenzhev, D.; Bekmuratova, F.; Rakhmaeva, A.; Shumatbaev, G.; Gatiyatullina, A.; Shevchuk, O.; et al. Five Different Artemisia L. Species Ethanol Extracts’ Phytochemical Composition and Their Antimicrobial and Nematocide Activity. Int. J. Mol. Sci. 2023, 24, 14372. [Google Scholar] [CrossRef]
- Alam, K.; Al Farraj, D.A.; Mah-e-Fatima, S.; Yameen, M.A.; Elshikh, M.S.; Alkufeidy, R.M.; Mustafa, A.E.-Z.M.; Bhasme, P.; Alshammari, M.K.; Alkubaisi, N.A. Anti-biofilm activity of plant derived extracts against infectious pathogen-Pseudomonas aeruginosa PAO1. J. Infect. Public Health 2020, 13, 1734–1741. [Google Scholar] [CrossRef]
- Haris, A.; Azeem, M.; Binyameen, M. Mosquito Repellent Potential of Carpesium abrotanoides Essential Oil and Its Main Components Against a Dengue Vector, Aedes aegypti (Diptera: Culicidae). J. Med. Entomol. 2022, 59, 801–809. [Google Scholar] [CrossRef]
- Gualberto, D.A.; Demayo, C.G. Repellency of the essential oil extracted from the leaves of a local variety of Artemisia scoparia Waldst. & Kit. against Aedes aegypti L. using modified Y-tube olfactometer. Int. J. Mosq. Res. 2018, 5, 31–36. [Google Scholar]
- Negahban, M.; Moharramipour, S.; Sefidkon, F. Chemical composition and insecticidal activity of Artemisia scoparia essential oil against three coleopteran stored-product insects. J. Asia-Pac. Entomol. 2006, 9, 381–388. [Google Scholar] [CrossRef]
- Gul, M.; Zahid, M.; Ali, H. Larvicidal potential of different chromatographic fractions of the n-hexane extract of Artemisia scoparia against the vector mosquito Culex quinquefasciatus. Int. J. Trop. Insect Sci. 2021, 41, 897–902. [Google Scholar] [CrossRef]
- Azeem, M.; Zaman, T.; Abbasi, A.M.; Abid, M.; Mozūratis, R.; Alwahibi, M.S.; Elshikh, M.S. Pesticidal potential of some wild plant essential oils against grain pests Tribolium castaneum (Herbst, 1797) and Aspergillus flavus (Link, 1809). Arab. J. Chem. 2022, 15, 103482. [Google Scholar] [CrossRef]
- Azeem, M.; Zaman, T.; Tahir, M.; Haris, A.; Iqbal, Z.; Binyameen, M.; Nazir, A.; Shad, S.A.; Majeed, S.; Mozūraitis, R. Chemical composition and repellent activity of native plants essential oils against dengue mosquito, Aedes aegypti. Ind. Crops Prod. 2019, 140, 111609. [Google Scholar] [CrossRef]
- van Den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Khan, P.; Waheed, A.; Azeem, M.; Parveen, A.; Yameen, M.A.; Iqbal, J.; Ali, M.; Wang, S.; Qayyum, S.; Noor, A. Essential Oil from Tagetes minuta Has Antiquorum Sensing and Antibiofilm Potential against Pseudomonas aeruginosa Strain PAO1. ACS Omega 2023, 8, 35866–35873. [Google Scholar] [CrossRef]
- Albabtain, R.; Azeem, M.; Wondimu, Z.; Lindberg, T.; Borg-Karlson, A.K.; Gustafsson, A. Investigations of a Possible Chemical Effect of Salvadora persica Chewing Sticks. Evid.-Based Complement. Altern. Med. 2017, 2017, 2576548. [Google Scholar] [CrossRef] [PubMed]
- Haris, A.; Azeem, M.; Abbas, M.G.; Mumtaz, M.; Mozūratis, R.; Binyameen, M. Prolonged Repellent Activity of Plant Essential Oils against Dengue Vector, Aedes aegypti. Molecules 2023, 28, 1351. [Google Scholar] [CrossRef] [PubMed]
- Finney, D.J. Probit Analysis; Cambridge University Press: New York, NY, USA, 1971. [Google Scholar]
- Gaire, S.; Scharf, M.E.; Gondhalekar, A.D. Toxicity and neurophysiological impacts of plant essential oil components on bed bugs (Cimicidae: Hemiptera). Sci. Rep. 2019, 9, 3961. [Google Scholar] [CrossRef] [PubMed]
Sample Code | Plant Collection | Yield (%) | ||
---|---|---|---|---|
Area | Coordinates | Elevation (m) | ||
Asco-1 | Haripur | 33°55′50.6″ N 72°54′04.5″ E | 518 | 0.57 ± 0.04 a |
Asco-2 | Swat | 35°21′42.9″ N 72°36′07.7″ E | 1793 | 0.15 ± 0.01 c |
Asco-3 | Pindi Bhattian | 31°55′10.7″ N 73°26′49.3″ E | 199 | 0.35 ± 0.03 b |
Asco-4 | Abbottabad | 34°07′35.1″ N 73°20′06.4″ E | 1300 | 0.20 ± 0.02 c |
Asco-5 | Attock | 33°47′23.4″ N 72°25′36.1″ E | 385 | 0.44 ± 0.04 b |
Compound | RI * | Asco-1 ‡ | Asco-2 | Asco-3 | Asco-4 | Asco-5 |
---|---|---|---|---|---|---|
α-Thujene | 924 | ₸ 0.1 ± 0.0 a | 0.1 ± 0.0 a | 0.1 ± 0.0 a | 0.0 ± 0.0 b | 0.1 ± 0.0 a |
α-Pinene | 930 | 7.3 ± 0.3 a | 3.0 ± 0.1 c | 4.9 ± 0.2 b | 1.6 ± 0.1 d | 2.1 ± 0.2 d |
Sabinen | 972 | 0.5 ± 0.1 a | 0.5 ± 0.0 a | 0.5 ± 0.1 a | 0.2 ± 0.0 b | 0.5 ± 0.1 a |
β-Pinene | 973 | 0.6 ± 0.1 d | 1.2 ± 0.1 c | 2.0 ± 0.1 b | 2.8 ± 0.1 a | 1.5 ± 0.1 c |
β-Myrcene | 990 | 21.5 ± 0.7 a | 11.1 ± 0.6 b | 20.0 ± 0.5 a | 6.8 ± 0.3 c | 9.7 ± 0.4 b |
α-Terpinene | 1014 | 0.0 ± 0.0 d | 0.4 ± 0.1 b | 0.4 ± 0.0 b | 0.2 ± 0.0 c | 0.6 ± 0.1 a |
p-Cymene | 1024 | 14.6 ± 0.5 a | 6.8 ± 0.3 b | 7.7 ± 0.3 b | 3.2 ± 0.1 d | 5.1 ± 0.2 c |
Limonene | 1032 | 14.1 ± 0.4 a | 5.2 ± 0.2 cd | 10.6 ± 0.4 b | 4.4 ± 0.2 d | 6.1 ± 0.2 c |
Eucalyptol | 1031 | 1.2 ± 0.1 a | 1.3 ± 0.1 a | |||
cis-β-Ocimene | 1040 | 3.3 ± 0.2 d | 2.8 ± 0.1 d | 7.4 ± 0.2 a | 5.8 ± 0.3 b | 4.1 ± 0.2 c |
trans-β-Ocimene | 1050 | 0.9 ± 0.1 c | 2.0 ± 0.1 a | 1.3 ± 0.1 b | 1.7 ± 0.1 a | 0.7 ± 0.1 c |
γ-Terpinene | 1058 | 10.4 ± 0.4 c | 15.8 ± 0.5 b | 19.4 ± 0.4 a | 9.2 ± 0.3 c | 19.5 ± 0.3 a |
Terpinolene | 1089 | 0.3 ± 0.0 a | 0.3 ± 0.1 a | 0.3 ± 0.0 a | 0.1 ± 0.0 b | 0.3 ± 0.0 a |
Linalool | 1100 | 0.1 ± 0.0 a | 0.1 ± 0.0 a | 0.1 ± 0.0 a | ||
3,4-Dimethyl-2,4,6-octatriene | 1132 | 0.2 ± 0.0 b | 0.2 ± 0.0 b | 0.4 ± 0.0 a | 0.3 ± 0.1 a | 0.1 ± 0.0 b |
Terpinen-4-ol | 1175 | 0.1 ± 0.0 | ||||
α-Terpineol | 1188 | 0.1 ± 0.0 a | 0.1 ± 0.0 a | |||
2,4-Pentadiynylbenzene | 1285 | 1.6 ± 0.1 c | 6.1 ± 0.2 a | 2.7 ± 0.1 b | 0.4 ± 0.1 d | 0.6 ± 0.1 d |
Citronellolacetate | 1353 | 0.1 ± 0.0 a | 0.1 ± 0.0 a | 0.1 ± 0.0 a | ||
Eugenol | 1358 | 0.1 ± 0.0 c | 1.2 ± 0.1 b | 8.2 ± 0.3 a | ||
Geranylacetate | 1383 | 0.0 ± 0.0 c | 0.1 ± 0.0 b | 0.8 ± 0.1 a | 0.0 ± 0.0 c | 0.1 ± 0.0 b |
Methyleugenol | 1404 | 0.2 ± 0.0 d | 1.4 ± 0.1 c | 0.2 ± 0.0 d | 12.7 ± 0.4 a | 5.6 ± 0.2 b |
trans-β-Caryophyllene | 1420 | 0.8 ± 0.1 c | 12.31 ± 0.4 a | 1.1 ± 0.1 c | 12.4 ± 0.3 a | 6.6 ± 0.2 b |
Cedrene | 1449 | 0.2 ± 0.0 a | 0.0 ± 0.0 c | 0.1 ± 0.0 b | ||
α-Caryophyllene | 1456 | 0.1 ± 0.0 c | 0.8 ± 0.1 a | 0.0 ± 0.0 d | 0.7 ± 0.1 a | 0.4 ± 0.1 b |
β-Acoradiene | 1479 | 10.2 ± 0.4 a | 0.3 ± 0.0 c | 2.1 ± 0.2 b | ||
α-Curcumene | 1482 | 0.1 ± 0.0 d | 1.7 ± 0.1 a | 0.3 ± 0.0 c | 0.5 ± 0.1 b | 0.1 ± 0.0 d |
Capillene | 1496 | 22.8 ± 0.9 b | 9.6 ± 0.3 d | 18.1 ± 0.5 c | 31.8 ± 0.7 a | 24.6 ± 0.5 b |
β-Cadinene | 1524 | 0.0 ± 0.0 c | 0.4 ± 0.1 a | 0.0 ± 0.0 c | 0.2 ± 0.1 b | 0.1 ± 0.0 b |
Nerolidol | 1565 | 0.4 ± 0.1 a | 0.0 ± 0.0 c | 0.1 ± 0.0 b | ||
Spathulenol | 1576 | 0.1 ± 0.0 c | 3.1 ± 0.2 a | 0.1 ± 0.0 c | 0.4 ± 0.1 b | 0.2 ± 0.0 bc |
Caryophyllene oxide | 1582 | 0.6 ± 0.0 a | 0.5 ± 0.1 ab | 0.3 ± 0.1 bc | 0.2 ± 0.0 c | 0.2 ± 0.1 c |
β-Eudesmol | 1654 | 0.1 ± 0.0 b | 0.6 ± 0.1 a | 0.1 ± 0.0 b |
Test Substance | MIC (MBC) (µg/mL) | |||
---|---|---|---|---|
Gram Positive | Gram Negative | |||
B. subtilis | S. aureus | E. coli | P. aeruginosa PAO1 | |
Asco-1 | 625 (2500) | 625 (5000) | 156 (312) | 1250 (>5000) |
Asco-2 | 625 (625) | 625 (1250) | 156 (312) | 1250 (>5000) |
Asco-3 | 625 (1250) | 625 (1250) | 156 (312) | 1250 (5000) |
Asco-4 | 625 (625) | 625 (2500) | 312 (1250) | 1250 (5000) |
Asco-5 | 312 (625) | 312 (1250) | 156 (312) | 1250 (5000) |
Ciprofloxacin | 9.7 (312.5) | 9.7 (312.5) | 4.9 (312.5) | 19.5 (1250) |
Essential Oil | Exposure Time (h) | * LC50 (95% Fiducial Limit) (µg/mL) | Slope ± SE | Chi-Square (df) |
---|---|---|---|---|
Asco-1 | 24 | 127.2 (59.09–253.32) c | 2.01 ± 0.58 | 0.75 (5) |
Asco-2 | 79.3 (45.16–142.79) bc | 3.62 ± 1.21 | 1.38 (5) | |
Asco-3 | 275.8 (137.96–602.72) d | 1.96 ± 0.56 | 1.06 (5) | |
Asco-4 | 89.1 (50.81–156.60) bc | 3.58 ± 1.15 | 0.24 (5) | |
Asco-5 | 55.5 (34.26–105.75) b | 6.18 ± 2.51 | 1.2 (5) | |
Chlorpyrifos | 6.9 (3.08–12.69) a | 3.04 ± 1.09 | 0.61 (5) | |
Asco-1 | 48 | 89.4 (41.98–169.88) c | 2.329 ± 0.71 | 1.02 (5) |
Asco-2 | 60.7 (27.50–112.49) bc | 2.78 ± 0.95 | 1.59 (5) | |
Asco-3 | 209.1 (112.64–404.78) d | 2.40 ± 0.67 | 1.76 (5) | |
Asco-4 | 85.6 (49.85–150.52) c | 3.85 ± 1.27 | 0.41 (5) | |
Asco-5 | 43.5 (23.59–80.75) b | 5.63 ± 2.35 | 0.23 (5) | |
Chlorpyrifos | 4.7 (0.64–8.52) a | 2.81 ± 1.19 | 0.72 (5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parveen, A.; Abbas, M.G.; Keefover-Ring, K.; Binyameen, M.; Mozūraitis, R.; Azeem, M. Chemical Composition of Essential Oils from Natural Populations of Artemisia scoparia Collected at Different Altitudes: Antibacterial, Mosquito Repellent, and Larvicidal Effects. Molecules 2024, 29, 1359. https://doi.org/10.3390/molecules29061359
Parveen A, Abbas MG, Keefover-Ring K, Binyameen M, Mozūraitis R, Azeem M. Chemical Composition of Essential Oils from Natural Populations of Artemisia scoparia Collected at Different Altitudes: Antibacterial, Mosquito Repellent, and Larvicidal Effects. Molecules. 2024; 29(6):1359. https://doi.org/10.3390/molecules29061359
Chicago/Turabian StyleParveen, Amna, Muhammad Ghazanfar Abbas, Ken Keefover-Ring, Muhammad Binyameen, Raimondas Mozūraitis, and Muhammad Azeem. 2024. "Chemical Composition of Essential Oils from Natural Populations of Artemisia scoparia Collected at Different Altitudes: Antibacterial, Mosquito Repellent, and Larvicidal Effects" Molecules 29, no. 6: 1359. https://doi.org/10.3390/molecules29061359