Construction of Uniform LiF Coating Layers for Stable High-Voltage LiCoO2 Cathodes in Lithium-Ion Batteries
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. Synthesis of LCO
3.2. Preparation of LCO @LiF
3.3. Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xiao, J.; Shi, F.F.; Glossmann, T.; Burnett, C.; Liu, Z. From laboratory innovations to materials manufacturing for lithium-based batteries. Nat. Energy 2023, 8, 329–339. [Google Scholar] [CrossRef]
- Duffner, F.; Kronemeyer, N.; Tübke, J.; Leker, J.; Winter, M.; Schmuch, R. Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure. Nat. Energy 2021, 6, 123–134. [Google Scholar] [CrossRef]
- Christensen, G.; Younes, H.; Hong, H.; Widener, C.; Hrabe, R.H.; Wu, J.J. Nanofluids as Media for High Capacity Anodes of Lithium-Ion Battery—A Review. J. Nanofluids 2019, 8, 657–670. [Google Scholar] [CrossRef]
- Hong, H.; Salem, D.R.; Christensen, G.L.; Yang, R. High Capacity Electrodes. US9666861B2, 30 May 2017. [Google Scholar]
- Lyu, Y.; Wu, X.; Wang, K.; Feng, Z.; Cheng, T.; Liu, Y.; Wang, M.; Chen, R.; Xu, L.; Zhou, J.; et al. An Overview on the Advances of LiCoO2 Cathodes for Lithium-Ion Batteries. Adv. Energy Mater. 2021, 11, 2000982. [Google Scholar] [CrossRef]
- Huang, Y.Y.; Zhu, Y.C.; Fu, H.Y.; Ou, M.Y.; Hu, C.C.; Yu, S.J.; Hu, Z.W.; Chen, C.T.; Jiang, G.; Gu, H.K.; et al. Mg-Pillared LiCoO2: Towards Stable Cycling at 4.6 V. Angew. Chem. Int. Ed. 2021, 60, 4682–4688. [Google Scholar] [CrossRef]
- Zybert, M.; Ronduda, H.; Szczęsna, A.; Trzeciak, T.; Ostrowski, A.; Żero, E.; Wieczorek, W.; Raróg-Pilecka, W.; Marcinek, M. Different Strategies of Introduction of Lithium Ions into Nickel-manganese-cobalt Carbonate Resulting in LiNi0.6Mn0.2Co0.2O2 (NMC622) Cathode Material for Li-Ion Batteries. Solid State Ion. 2020, 348, 115273. [Google Scholar] [CrossRef]
- Zhang, J.C.; Liu, Z.D.; Zeng, C.H.; Luo, J.W.; Deng, Y.D.; Cui, X.Y.; Chen, Y.N. High-voltage LiCoO2 cathodes for high-energy-density lithium-ion battery. Rare Met. 2022, 41, 3946–3956. [Google Scholar] [CrossRef]
- Konar, R.; Maiti, S.; Shpigel, N.; Aurbach, D. Reviewing failure mechanisms and modification strategies in stabilizing high-voltage LiCoO2 cathodes beyond 4.55V. Energy Storage Mater. 2023, 63, 103001. [Google Scholar] [CrossRef]
- Ji, H.C.; Wang, J.X.; Ma, J.; Cheng, H.M.; Zhou, G.M. Fundamentals, status and challenges of direct recycling technologies for lithium ion batteries. Chem. Soc. Rev. 2023, 52, 8194–8244. [Google Scholar] [CrossRef]
- Tian, Z.C.; Yu, H.; Zhang, Z.; Xu, X.J. Performance Improvements of Cobalt Oxide Cathodes for Rechargeable Lithium Batteries. ChemBioEng Rev. 2018, 5, 111–118. [Google Scholar] [CrossRef]
- Kim, T.; Song, W.; Son, D.Y.; Ono, L.K.; Qi, Y.B. Lithium-ion batteries: Outlook on present, future, and hybridized technologies. J. Mater. Chem. A 2019, 7, 2942–2964. [Google Scholar] [CrossRef]
- Manthiram, A. An Outlook on Lithium Ion Battery Technology. ACS Cent. Sci. 2017, 3, 1063–1069. [Google Scholar] [CrossRef]
- Lin, C.; Li, J.Y.; Yin, Z.W.; Huang, W.Y.; Zhao, Q.H.; Weng, Q.S.; Liu, Q.; Sun, J.L.; Chen, G.H.; Pan, F. Structural Understanding for High-Voltage Stabilization of Lithium Cobalt Oxide. Adv. Mater. 2023, 36, 2307404. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, B.; Lu, Y.Y. Progress and perspective of high-voltage lithium cobalt oxide in lithium-ion batteries. J. Energy Chem. 2022, 74, 283–308. [Google Scholar] [CrossRef]
- Chu, B.B.; Guo, Y.J.; Shi, J.L.; Yin, Y.X.; Huang, T.; Su, H.; Yu, A.S.; Guo, Y.G.; Li, Y.Y. Cobalt in high-energy-density layered cathode materials for lithium ion batteries. J. Power Sources 2022, 544, 231873. [Google Scholar] [CrossRef]
- Wang, C.Y.; Weng, J.Z.; Wu, S.R.; Zhang, X.; Tong, Q.S.; Zhu, M.Q. A review—Exploring the performance degradation mechanisms of LiCoO2 cathodes at high voltage conditions and some optimizing strategies. Mater. Chem. Front. 2022, 6, 2319–2337. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Wang, E.R.; Zhang, X.; Yu, H.J. High-Voltage “Single-Crystal” Cathode Materials for Lithium-Ion Batteries. Energy Fuels 2021, 35, 1918–1932. [Google Scholar] [CrossRef]
- Wang, K.; Wan, J.J.; Xiang, Y.X.; Zhu, J.P.; Leng, Q.Y.; Wang, M.; Xu, L.M.; Yang, Y. Recent advances and historical developments of high voltage lithium cobalt oxide materials for rechargeable Li-ion batteries. J. Power Sources 2020, 460, 228062. [Google Scholar] [CrossRef]
- Liu, F.Q.; Gao, L.; Zhang, Z.P.; Zhang, L.L.; Deng, N.P.; Zhao, Y.X.; Kang, W.M. Interfacial Challenges, processing strategies, and composite applications for high voltage all-solid-state lithium batteries based on halide and sulfide solid-state electrolytes. Energy Storage Mater. 2024, 64, 103072. [Google Scholar] [CrossRef]
- Yan, Y.W.; Fang, Q.; Kuai, X.X.; Zhou, S.Y.; Chen, J.K.; Zhang, H.T.; Wu, X.H.; Zeng, G.F.; Wu, Z.X.; Zhang, B.D.; et al. One-Step Surface-to-Bulk Modification of High-Voltage and Long-Life LiCoO2 Cathode with Concentration Gradient Architecture. Adv. Mater. 2023, 36, 2308656. [Google Scholar] [CrossRef]
- Jiang, S.J.; Hao, S.P.; Tan, Z.L.; Yang, J.C.; Li, Y.J.; He, Z.J. Improving high-voltage electrochemical performance of LiCoO2 by Nd2O3 modification. Ceram. Int. 2023, 49, 35406–35413. [Google Scholar] [CrossRef]
- Yan, Y.W.; Zhou, S.Y.; Zheng, H.; Zhang, J.; Chen, G.; Zeng, B.; Zhang, Y.; Tang, Q.; Zheng, C.; Wang, C.; et al. Lattice-Matched Interfacial Modulation Based on Olivine Enamel-Like Front-Face Fabrication for High-Voltage LiCoO2. Adv. Funct. Mater. 2023, 34, 2310799. [Google Scholar] [CrossRef]
- Zhang, W.; Cheng, F.Y.; Chang, M.; Xu, Y.; Li, Y.Y.; Sun, S.X.; Wang, L.; Xu, L.M.; Li, Q.; Fang, C.; et al. Surface-interspersed nanoparticles induced cathode-electrolyte interphase enabling stable cycling of high-voltage LiCoO2. Nano Energy 2024, 119, 109031. [Google Scholar] [CrossRef]
- Li, Y.; Zan, M.W.; Chen, P.H.; Huang, Y.L.; Xu, X.L.; Zhang, C.Z.; Cai, Z.Y.; Yu, X.Q.; Li, H. Facile Solid-State Synthesis to In Situ Generate a Composite Coating Layer Composed of Spinel-Structural Compounds and Li3PO4 for Stable Cycling of LiCoO2 at 4.6 V. ACS Appl. Mater. Interfaces. 2023, 15, 51262–51273. [Google Scholar] [CrossRef]
- Wang, C.H.; Li, S.P.; Chen, W.Y.; Zhao, Y.N.; Xu, S.; Dou, H.; Zhang, X.G. The improvement of the high voltage performance of LiCoO2 by coating LiTaO3 via magnetron sputtering. CrystEngComm 2023, 25, 6496–6502. [Google Scholar] [CrossRef]
- Ronduda, H.; Zybert, M.; Szczęsna, A.; Trzeciak, T.; Ostrowski, A.; Wieciński, P.; Wieczorek, W.; Raróg-Pilecka, W.; Marcinek, M. Addition of Yttrium Oxide as an Effective Way to Enhance the Cycling Stability of LiCoO2 Cathode Material for Li-Ion Batteries. Solid State Ion. 2020, 355, 115426. [Google Scholar] [CrossRef]
- Lu, S.-Q.; Guo, S.-J.; Qi, M.-Y.; Li, J.-Y.; Cao, A.-M.; Wan, L.-J. Precise Surface Control of Cathode Materials for Stable Lithium-Ion Batteries. Chem. Commun. 2022, 58, 1454–1467. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.L.; Wang, C.H.; Lei, H.L.; Liu, S.T.; Liu, J.; Han, Y.; Zhang, J.L.; Li, W. Ce&F multifunctional modification improves the electrochemical performance of LiCoO2 at 4.60 V. J. Energy Chem. 2023, 85, 324–334. [Google Scholar] [CrossRef]
- Wang, K.J.; Liang, Z.T.; Weng, S.T.; Ding, Y.; Su, Y.; Wu, Y.Q.; Zhong, H.Y.; Fu, A.; Sun, Y.; Luo, M.Z.; et al. Surface Engineering Strategy Enables 4.5 V Sulfide-Based All-Solid-State Batteries with High Cathode Loading and Long Cycle Life. ACS Energy Lett. 2023, 8, 3450–3459. [Google Scholar] [CrossRef]
- Makvandi, A.; Lobe, S.; Wolff, M.; Peterlechner, M.; Gammer, C.; Jouybari, Y.H.; Uhlenbruck, S.; Wilde, G. Al-doped ZnO-coated LiCoO2 thin-film electrode: Understanding the impact of a coating layer on the degradation mechanism. J. Power Sources 2023, 580, 233451. [Google Scholar] [CrossRef]
- Gu, R.; Cheng, T.; Ma, Z.T.; Qian, R.C.; Lyu, Y.C.; Nie, A.M.; Guo, B.K. Enhanced cycling stability of high voltage LiCoO2 by surface phosphorylation. J. Alloys Compd. 2019, 803, 348–353. [Google Scholar] [CrossRef]
- Yang, X.H.; Shen, L.Y.; Wu, B.; Zuo, Z.C.; Mu, D.B.; Wu, B.R.; Zhou, H.H. Improvement of the cycling performance of LiCoO2 with assistance of cross-linked PAN for lithium ion batteries. J. Alloys Compd. 2015, 639, 458–464. [Google Scholar] [CrossRef]
- Zhou, A.J.; Dai, X.Y.; Lu, Y.T.; Wang, Q.J.; Fu, M.S.; Li, J.Z. Enhanced Interfacial Kinetics and High-Voltage/High-Rate Performance of LiCoO2 Cathode by Controlled Sputter-Coating with a Nanoscale Li4Ti5O12 Ionic Conductor. ACS Appl. Mater. Inter. 2016, 8, 34123–34131. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Liang, J.N.; Hu, J.T.; Wu, D.Z.; Li, Y.L.; Ouyang, X.P.; Zhang, Q.L.; Ren, X.Z.; Liu, J.H. An ultra-thin polymer electrolyte for 4.5 V high voltage LiCoO2 quasi-solid-state battery. Chem. Eng. J. 2023, 455, 140846. [Google Scholar] [CrossRef]
- Zhou, Y.; Lee, Y.H.; Sun, H.X.; Wallas, J.M.; George, S.M.; Xie, M. Coating Solution for High-Voltage Cathode: AlF3 Atomic Layer Deposition for Freestanding LiCoO2 Electrodes with High Energy Density and Excellent Flexibility. ACS Appl. Mater. Interfaces 2017, 9, 9614–9619. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Ji, Y.X.; Liang, D.; Chen, B.; Jiang, C.; Li, X.T. Anticorrosive nanosized LiF thin film coating for achieving long-cycling stability of LiCoO2 at high voltages. Ceram. Int. 2022, 48, 10288–10298. [Google Scholar] [CrossRef]
- Du, J.M.; Wang, W.Y.; Eng, A.Y.S.; Liu, X.X.; Wan, M.T.; Seh, Z.W.; Sun, Y.M. Metal/LiF/Li2O Nanocomposite for Battery Cathode Prelithiation: Trade-off between Capacity and Stability. Nano Lett. 2020, 20, 546–552. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Park, Y.J. Interface characterization of MgF2-coated LiCoO2 thin films. Solid State Ion. 2013, 230, 86–91. [Google Scholar] [CrossRef]
- Aboulaich, A.; Ouzaouit, K.; Faqir, H.; Kaddami, A.; Benzakour, I.; Akalay, I. Improving thermal and electrochemical performances of LiCoO2 cathode at high cut-off charge potentials by MF3 (M=Ce, Al) coating. Mater. Res. Bull. 2016, 73, 362–368. [Google Scholar] [CrossRef]
- Sun, Y.K.; Han, J.M.; Myung, S.T.; Lee, S.W.; Amine, K. Significant improvement of high voltage cycling behavior AlF3-coated LiCoO2 cathode. Electrochem. Commun. 2006, 8, 821–826. [Google Scholar] [CrossRef]
- Yang, Z.X.; Qiao, Q.D.; Yang, W.S. Improvement of structural and electrochemical properties of commercial LiCoO2 by coating with LaF3. Electrochim. Acta 2011, 56, 4791–4796. [Google Scholar] [CrossRef]
- Park, J.S.; Mane, A.U.; Elam, J.W.; Croy, J.R. Atomic Layer Deposition of Al-W-Fluoride on LiCoO2 Cathodes: Comparison of Particle- and Electrode-Level Coatings. ACS Omega 2017, 2, 3724–3729. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.F.; Dai, X.Y.; Chen, H.J.; Wu, F.Z.; Mai, Y.; Li, S.E.; Gu, Y.J.; Li, J.Z.; Zhou, A.J. Simultaneously Constructing a TiO2–LiF Composite Coating Enhancing the Cycling Stability of LiCoO2 at 4.6 V High Voltage. ACS Sustain. Chem. Eng. 2022, 10, 8151–8161. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, D.C.; Xu, X.J.; Wang, Z.S.; Liu, Z.B.; Shen, J.D.; Liu, J.; Zhu, M. Interface engineering for composite cathodes in sulfide-based all-solid-state lithium batteries. J. Energy Chem. 2021, 60, 32–60. [Google Scholar] [CrossRef]
- Lim, J.H.; Myung, Y.; Yang, M.; Lee, J.W. Facile Formation of a LiF-Carbon Layer as an Artificial Cathodic Electrolyte Interphase through Encapsulation of a Cathode with Carbon Monofluoride. ACS Appl. Mater. Interfaces 2021, 13, 31741–31748. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.C.; Wang, Z.F.; Dai, X.Y.; Chen, H.J.; Wu, F.Z.; Li, J.Z.; Mai, Y.; Li, S.E. Enhanced 4.7 V Electrochemical Performance of the LiCoO2 Cathode via a Fluoride and LiCo1-xAlxO2 Composite Coating. J. Phys. Chem. C 2022, 126, 16627–16635. [Google Scholar] [CrossRef]
- Shim, J.H.; Lee, J.; Han, S.Y.; Lee, S. Synergistic effects of coating and doping for lithium ion battery cathode materials: Synthesis and characterization of lithium titanate-coated LiCoO2 with Mg doping. Electrochim. Acta 2015, 186, 201–208. [Google Scholar] [CrossRef]
- Mijung, N.; Lee, Y.; Cho, J. Water Adsorption and Storage Characteristics of Optimized LiCoO2 and LiNi1∕3Co1∕3Mn1∕3O2 Composite Cathode Material for Li-Ion Cells. J. Electrochem. Soc. 2006, 153, A935. [Google Scholar] [CrossRef]
- Kwon, T.; Ohnishi, T.; Mitsuishi, K.; Ozawa, T.C.; Takada, K. Synthesis of LiCoO2 thin films by sol/gel process. J. Power Sources 2010, 195, 6262–6267. [Google Scholar] [CrossRef]
- Tao, X.S.; Sun, Y.G.; Xu, Y.S.; Liu, Y.; Luo, J.M.; Cao, A.M. Construction of Li3PO4 nanoshells for the improved electrochemical performance of a Ni-rich cathode material. Chem. Commun. 2022, 58, 2556–2559. [Google Scholar] [CrossRef]
- Khejonrak, A.; Chanlek, N.; Sukkha, U.; Triamnak, N.; Chirawatkul, P.; Kidkhunthod, P.; Suttapun, M.; Vittayakorn, N.; Manyum, P.; Rujirawat, S.; et al. Effect of Thermal Annealing on the Structure of LiCoO2 Powders Prepared by Co-Precipitation Method. Radiat. Phys. Chem. 2021, 189, 109766. [Google Scholar] [CrossRef]
- Khalafallah, D.; Huang, W.; Zhi, M.; Hong, Z. Synergistic Tuning of Nickel Cobalt Selenide@Nickel Telluride Core–Shell Heteroarchitectures for Boosting Overall Urea Electrooxidation and Electrochemical Supercapattery. Energy Environ. Mater. 2023, 7, e12528. [Google Scholar] [CrossRef]
- Xu, S.; Du, C.Y.; Xu, X.; Han, G.K.; Zuo, P.J.; Cheng, X.Q.; Ma, Y.L.; Yin, G.P. A Mild Surface Washing Method Using Protonated Polyaniline for Ni-rich LiNi0.8Co0.1Mn0.1O2 Material of Lithium Ion Batteries. Electrochim. Acta 2017, 248, 534–540. [Google Scholar] [CrossRef]
- Zhu, X.J.; Guo, Z.P.; Zhang, P.; Du, G.D.; Zeng, R.; Chen, Z.X.; Li, S.; Liu, H.K. Highly porous reticular tin–cobalt oxide composite thin film anodes for lithium ion batteries. J. Mater. Chem. 2009, 19, 8360. [Google Scholar] [CrossRef]
- Pawar, S.A.; Patil, D.S.; Shin, J.C. Hexagonal sheets of Co3O4 and Co3O4-Ag for high-performance electrochemical supercapacitors. J. Ind. Eng. Chem. 2017, 54, 162–173. [Google Scholar] [CrossRef]
- Zhang, S.D.; Qi, M.Y.; Guo, S.; Sun, Y.G.; Wu, T.T.; Zhang, H.S.; Lu, S.Q.; Meng, F.; Zhang, Q.; Gu, L.; et al. Surface engineering of LiCoO2 by a multifunctional nanoshell for stable 4.6V electrochemical performance. Energy Storage Mater. 2023, 57, 289–298. [Google Scholar] [CrossRef]
- Tao, X.S.; Wang, T.; Wang, Y.; Song, X.J.; Li, X.R.; Sha, J. Controllable construction of non-hydrophilic Cu-PmPD nanoshells on Ni-rich cathode materials in non-aqueous system for lithium-ion batteries. J. Alloys Compd. 2023, 944, 169264. [Google Scholar] [CrossRef]
- Tang, S.J.; Chen, G.W.; Ren, F.C.; Wang, H.C.; Yang, W.; Zheng, C.X.; Gong, Z.L.; Yang, Y. Modifying an ultrathin insulating layer to suppress lithium dendrite formation within garnet solid electrolytes. J. Mater. Chem. A 2021, 9, 3576–3583. [Google Scholar] [CrossRef]
- Duan, H.; Chen, W.; Fan, M.; Wang, W.; Yu, L.; Tan, S.; Chen, X.; Zhang, Q.; Xin, S.; Wan, L.; et al. Building an Air Stable and Lithium Deposition Regulable Garnet Interface from Moderate-Temperature Conversion Chemistry. Angew. Chem. 2020, 132, 12167–12173. [Google Scholar] [CrossRef]
- Li, Y.; Chen, X.; Dolocan, A.; Cui, Z.; Xin, S.; Xue, L.; Xu, H.; Park, K.; Goodenough, J.B. Garnet Electrolyte with an Ultralow Interfacial Resistance for Li-Metal Batteries. J. Am. Chem. Soc. 2018, 140, 6448–6455. [Google Scholar] [CrossRef]
- Song, B.; Li, W.; Oh, S.-M.; Manthiram, A. Long-Life Nickel-Rich Layered Oxide Cathodes with a Uniform Li 2 ZrO 3 Surface Coating for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2017, 9, 9718–9725. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, S.D.; Guo, S.J.; Lu, S.Q.; Xu, Y.S.; Li, J.Y.; Cao, A.M.; Wan, L.J. Stable 4.5 V LiCoO2 Cathode Material Enabled by Surface Manganese Oxides Nanoshell. Nano Res. 2023, 16, 2480–2485. [Google Scholar] [CrossRef]
- Zhou, A.; Xu, J.; Dai, X.; Yang, B.; Lu, Y.; Wang, L.; Fan, C.; Li, J. Improved High-Voltage and High-Temperature Electrochemical Performances of LiCoO2 Cathode by Electrode Sputter-Coating with Li3PO4. J. Power Sources 2016, 322, 10–16. [Google Scholar] [CrossRef]
- Shim, J.H.; Lee, S.; Park, S.S. Effects of MgO Coating on the Structural and Electrochemical Characteristics of LiCoO2 as Cathode Materials for Lithium Ion Battery. Chem. Mater. 2014, 26, 2537–2543. [Google Scholar] [CrossRef]
- Cho, J.; Kim, T.G.; Kim, C.; Lee, J.G.; Kim, Y.W.; Park, B. Comparison of Al2O3 and AlPO4-Coated LiCoO2 Cathode Materials for a Li-Ion Cell. J. Power Sources 2005, 146, 58–64. [Google Scholar] [CrossRef]
- Bai, Y.; Jiang, K.; Sun, S.; Wu, Q.; Lu, X.; Wan, N. Performance Improvement of LiCoO2 by MgF2 Surface Modification and Mechanism Exploration. Electrochimica Acta 2014, 134, 347–354. [Google Scholar] [CrossRef]
- Kim, J.; Kang, H.; Go, N.; Jeong, S.; Yim, T.; Jo, Y.N.; Lee, K.T.; Mun, J. Egg-Shell Structured LiCoO2 by Cu2+ Substitution to Li+ Sites via Facile Stirring in an Aqueous Copper(ii) Nitrate Solution. J. Mater. Chem. A 2017, 5, 24892–24900. [Google Scholar] [CrossRef]
- Yin, R.Z.; Kim, Y.S.; Shin, S.J.; Jung, I.; Kim, J.S.; Jeong, S.K. In Situ XRD Investigation and Thermal Properties of Mg Doped LiCoO2 for Lithium Ion Batteries. J. Electrochem. Soc. 2012, 159, A253–A258. [Google Scholar] [CrossRef]
- Zhang, J.N.; Li, Q.H.; Li, Q.; Yu, X.Q.; Li, H. Improved Electrochemical Performances of High Voltage LiCoO2 with Tungsten Doping. Chin. Phys. B 2018, 27, 088202. [Google Scholar] [CrossRef]
Atom | Site | x | y | z | Occupancy |
---|---|---|---|---|---|
LCO@LiF (wR = 2.147% GOF = 1.11) Space group: R-3m Lattice parameters: a = b = 2.81492 Å, c = 14.05559 Å, V = 96.452 Å3 | |||||
Li | 3a | 0.00000 | 0.00000 | 0.50000 | 1 |
Co | 3b | 0.00000 | 0.00000 | 0.00000 | 1 |
O | 6c | 0.00000 | 0.00000 | 0.26997 | 1 |
LCO (wR = 2.585% GOF = 1.22) Space group: R-3m Lattice parameters: a = b = 2.81608 Å, c = 14.06196 Å, V = 96.575 Å3 | |||||
Li | 3a | 0.00000 | 0.00000 | 0.50000 | 0.991 (11) |
Co | 3b | 0.00000 | 0.00000 | 0.00000 | 0.996 (9) |
O | 6c | 0.00000 | 0.00000 | 0.26000 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, Z.; Zhu, X.; Wang, S.; Shi, Y.; Zhang, H.; Xu, B.; Zhao, C.; Zhao, Y. Construction of Uniform LiF Coating Layers for Stable High-Voltage LiCoO2 Cathodes in Lithium-Ion Batteries. Molecules 2024, 29, 1414. https://doi.org/10.3390/molecules29061414
Xiao Z, Zhu X, Wang S, Shi Y, Zhang H, Xu B, Zhao C, Zhao Y. Construction of Uniform LiF Coating Layers for Stable High-Voltage LiCoO2 Cathodes in Lithium-Ion Batteries. Molecules. 2024; 29(6):1414. https://doi.org/10.3390/molecules29061414
Chicago/Turabian StyleXiao, Ziyang, Xiangbing Zhu, Shuguang Wang, Yanhong Shi, Huimin Zhang, Baobin Xu, Changfeng Zhao, and Yan Zhao. 2024. "Construction of Uniform LiF Coating Layers for Stable High-Voltage LiCoO2 Cathodes in Lithium-Ion Batteries" Molecules 29, no. 6: 1414. https://doi.org/10.3390/molecules29061414
APA StyleXiao, Z., Zhu, X., Wang, S., Shi, Y., Zhang, H., Xu, B., Zhao, C., & Zhao, Y. (2024). Construction of Uniform LiF Coating Layers for Stable High-Voltage LiCoO2 Cathodes in Lithium-Ion Batteries. Molecules, 29(6), 1414. https://doi.org/10.3390/molecules29061414