Carbon Dioxide Pressure and Catalyst Quantity Dependencies in Artificial Photosynthesis of Hydrocarbon Chains on Nanostructured Co/CoO Surfaces
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Summary
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yan, T.; Liu, H.; Jin, Z. g-C3N4/α-Fe2O3 Supported Zero-Dimensional Co3S4 Nanoparticles Form S-Scheme Heterojunction Photocatalyst for Efficient Hydrogen Production. Energy Fuels 2021, 35, 856–867. [Google Scholar] [CrossRef]
- Li, D.; Liu, H.; Feng, L. A Review on Advanced FeNi-Based Catalysts for Water Splitting Reaction. Energy Fuels 2020, 34, 13491–13522. [Google Scholar] [CrossRef]
- Palmer, C.; Bunyan, E.; Gelinas, J.; Gordon, M.J.; Metiu, H.; McFarland, E.W. CO2-free Hydrogen Production by Catalytic Pyrolysis of Hydrocarbon Feedstocks in Molten Ni-Bi. Energy Fuels 2020, 34, 16073–16080. [Google Scholar] [CrossRef]
- Ali, M.; Pervaiz, E.; Sohail, U. Rational Design of the CdS/Fe-MOF Hybrid for Enhanced Hydrogen Evolution Reaction Catalysis. Energy Fuels 2023, 37, 7919–7926. [Google Scholar] [CrossRef]
- Dutta, S. Review on Solar Hydrogen: Its Prospects and Limitations. Energy Fuels 2021, 35, 11613–11639. [Google Scholar] [CrossRef]
- Zhao, T.; Ye, Z.; Zeng, M.; Li, W.; Luo, W.; Xiao, Q.; Xu, J. Molten Salt Synthesis of Mg-Doped Ta3N5 Nanoparticles with Optimized Surface Properties for Enhanced Photocatalytic Hydrogen Evolution. Energy Fuels 2023, 37, 18194–18203. [Google Scholar] [CrossRef]
- Liu, Z.; Wei, Y.; Xie, L.; Chen, H.; Wang, J.; Yang, K.; Zou, L.; Deng, T.; Lu, K. Decorating CdS with cobaltous hydroxide and graphene dual cocatalyst for photocatalytic hydrogen production coupled selective benzyl alcohol oxidation. Mol. Catal. 2024, 553, 113738. [Google Scholar] [CrossRef]
- Wei, Y.; Hao, J.; Zhang, J.; Huang, W.; Ouyang, S.; Yang, K.; Lu, K. Integrating Co(OH)2 nanosheet arrays on graphene for efficient noble-metal-free EY-sensitized photocatalytic H2 evolution. Dalton Trans. 2023, 52, 13923–13929. [Google Scholar] [CrossRef]
- Rebber, M.; Sannemüller, H.; Jaruszewski, M.; Pfannkuche, D.; Urakawa, A.; Koziej, D. Light and Mass Transport Computations Guide the Fabrication of 3D-Structured TiO2 and Au/TiO2 Aerogel Photocatalysts for Efficient Hydrogen Production in the Gas Phase. Chem. Mater. 2023, 35, 3849–3858. [Google Scholar] [CrossRef]
- Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 1979, 277, 637–638. [Google Scholar] [CrossRef]
- Zhu, Q.; Wang, C.; Ren, H.; Zeng, M.; Kan, Z.; Wang, Z.; Shen, M. Conversion of water and carbon dioxide into methanol with solar energy on Au/Co nanostructured surfaces. Mater. Res. Express 2020, 7, 035014. [Google Scholar] [CrossRef]
- Ganji, P.; Chowdari, R.K.; Likozar, B. Photocatalytic Reduction of Carbon Dioxide to Methanol: Carbonaceous Materials, Kinetics, Industrial Feasibility, and Future Directions. Energy Fuels 2023, 37, 7577–7602. [Google Scholar] [CrossRef] [PubMed]
- Walenta, C.A.; Courtois, C.; Kollmannsberger, S.L.; Eder, M.; Tschurl, M.; Heiz, U. Surface Species in Photocatalytic Methanol Reforming on Pt/TiO2(110): Learning from Surface Science Experiments for Catalytically Relevant Conditions. ACS Catal. 2020, 10, 4080–4091. [Google Scholar] [CrossRef]
- Shinde, G.Y.; Mote, A.S.; Gawande, M.B. Recent Advances of Photocatalytic Hydrogenation of CO2 to Methanol. Catalysts 2022, 12, 94. [Google Scholar] [CrossRef]
- Chen, X.; Guo, R.; Hong, L.; Yuan, Y.; Pan, W. Research Progress on CO2 Photocatalytic Reduction with Full Solar Spectral Responses. Energy Fuels 2021, 35, 19920–19942. [Google Scholar] [CrossRef]
- Adachi, K.; Ohta, K.; Mizuno, T. Photocatalytic reduction of carbon dioxide to hydrocarbon using copper-loaded titanium dioxide. Sol. Energy 1994, 53, 187–190. [Google Scholar] [CrossRef]
- Varghese, O.K.; Paulose, M.; LaTempa, T.J.; Grimes, G.A. High-rate solar photocatalytic conversion of CO2 and water vapor to Hydrocarbon fuels. Nano Lett. 2009, 9, 731–737. [Google Scholar] [CrossRef]
- Tan, S.S.; Zou, L.; Hu, E. Photosynthesis of hydrogen and methane as key components for clean energy system. Sci. Technol. Adv. Mater. 2007, 8, 89–92. [Google Scholar] [CrossRef]
- Wang, C.; Shen, M.; Huo, H.; Ren, H.; Yan, F.; Johnson, M. Nature-like photosynthesis of water and carbon dioxide with femtosecond laser induced self-assembled metal nanostructures. Int. J. Mod. Phys. B 2009, 23, 5849–5857. [Google Scholar] [CrossRef]
- Wang, C.; Shen, M.; Huo, H.; Ren, H.; Johnson, M. Using metal nanostructures to form hydrocarbons from carbon dioxide, water and sunlight. AIP Adv. 2011, 1, 042124. [Google Scholar] [CrossRef]
- Maeng, J.Y.; Yang, J.H.; Jang, H.J.; Joo, M.H.; Kim, Y.J.; Rhee, C.K.; Sohn, Y. Electrocatalytic syngas and photocatalytic long-chain hydrocarbon productions by CO2 reduction over ZnO and Zn-based electrodes. Appl. Surf. Sci. 2023, 609, 155349. [Google Scholar] [CrossRef]
- Wang, C.; Ren, H.; Zeng, M.; Zhu, Q.; Zhang, Q.; Kan, Z.; Wang, Z.; Shen, M.; Acharige, M.J.T.; Ruths, M. Low-cost visible-light photosynthesis of water and adsorbed carbon dioxide into long-chain hydrocarbons. Chem. Phys. Lett. 2020, 739, 136985. [Google Scholar] [CrossRef]
- Zeng, M.; Kan, Z.; Wang, Z.; Shen, M. Carbon isotope effects in the artificial photosynthesis reactions catalyzed by nanostructured Co/CoO. Chem. Phys. Lett. 2020, 754, 137731. [Google Scholar] [CrossRef]
- Ren, H.; Kan, Z.; Wang, Z.; Shen, M. Temperature Dependence of the Artificial Photosynthesis Reactions Catalyzed by Nanostructured Co/CoO. ACS Omega 2020, 5, 33083–33089. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Xing, X.; Yang, G.; Tong, T.; Wang, Z.M.; Bao, J. Understanding the generation of long-chain hydrocarbons from CO2 and water using cobalt nanostructures and light. J. Catal. 2020, 390, 206–212. [Google Scholar] [CrossRef]
- Liu, H.; Gao, X.; Shi, D.; He, D.; Meng, Q.; Qi, P.; Zhang, Q. Recent Progress on Photothermal Heterogeneous Catalysts for CO2 Conversion Reactions. Energy Technol. 2022, 10, 2100804. [Google Scholar] [CrossRef]
- Chen, C.; Kan, Z.; Wang, Z.; Huo, H.; Shen, M. Electroplating Cobalt Films on Silicon Nanostructures for Sensing Molecules. Molecules 2022, 27, 8440. [Google Scholar] [CrossRef] [PubMed]
- Nikparsaa, P.; Mirzaeia, A.; Atashib, H. Effect of reaction conditions and Kinetic study on the Fischer-Tropsch synthesis over fused Co-Ni/Al2O3 catalyst. J. Fuel Chem. Technol. 2014, 42, 710–718. [Google Scholar] [CrossRef]
- Arsalanfar, M.; Mirzaei, A.; Atashi, H.; Bozorgzadeh, H.; Vahid, S.; Zare, A. An investigation of the kinetics and mechanism of Fischer–Tropsch synthesis on Fe–Co–Mn supported catalyst. Fuel Process. Technol. 2012, 96, 150–159. [Google Scholar] [CrossRef]
- Yates, I.C.; Satterfield, C.N. Intrinsic kinetics of the Fischer-Tropsch synthesis on a cobalt catalyst. Energy Fuels 1991, 5, 168–173. [Google Scholar] [CrossRef]
- Subiranas, A.M. Combining Fischer-Tropsch Synthesis (FTS) and Hydrocarbon Reactions in One Reactor. Ph.D. Dissertation, Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany, 2008. Available online: https://publikationen.bibliothek.kit.edu/1000010082 (accessed on 6 March 2023).
- Zennaro, R.; Tagliabue, M.; Bartholomew, C.H. Kinetics of Fischer–Tropsch synthesis on titania-supported cobalt. Catal. Today 2000, 58, 309–319. [Google Scholar] [CrossRef]
- Acharige, M.J.T. Abiotic Photosynthetic Production of Alkanes Using Nanostructured Co, Ni and Fe Catalysts with CO2 and Water in the Presence of Visible Light and Catalytic Production of H2 with Nanostructured Co Particles. Ph.D. Dissertation, University of Massachusetts Lowell, Lowell, MA, USA, 2016. Available online: https://www.proquest.com/docview/1864628684?pq-origsite=gscholar&fromopenview=true&sourcetype=Dissertations%20&%20Theses (accessed on 6 March 2023).
- Petrucci, R.; Madura, J.; Herring, F.; Bissonnette, C. Chapter 20: Chemical Kinetics, in General Chemistry: Principles and Modern Applications, 11th ed.; Pearson: London, UK, 19 February 2016. [Google Scholar]
- Laidler, K.J. The development of the Arrhenius equation. J. Chem. Educ. 1984, 61, 494. [Google Scholar] [CrossRef]
- Skopp, J. Derivation of the Freundlich Adsorption Isotherm from Kinetics. J. Chem. Educ. 2009, 86, 1341. [Google Scholar] [CrossRef]
- Appel, J. Freundlich’s adsorption isotherm. Surf. Sci. 1973, 39, 237–244. [Google Scholar] [CrossRef]
- Wang, J.; Guo, X. Adsorption isotherm models: Classification, physical meaning, application and solving method. Chemosphere 2020, 258, 127279. [Google Scholar] [CrossRef] [PubMed]
- Vapor Pressure Calculation by Antoine Equation (Hexane). Available online: http://ddbonline.ddbst.com/AntoineCalculation/AntoineCalculationCGI.exe?component=Hexane (accessed on 6 March 2023).
- Macknick, A.B.; Prausnitz, J.M. Vapor pressures of high-molecular-weight hydrocarbons. J. Chem. Eng. Data 1979, 24, 175–178. [Google Scholar] [CrossRef]
- Bartle, K.D.; Myers, P. History of gas chromatography. Trends Anal. Chem. 2002, 21, 547–557. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kan, Z.; Wang, Z.; Ren, H.; Shen, M. Carbon Dioxide Pressure and Catalyst Quantity Dependencies in Artificial Photosynthesis of Hydrocarbon Chains on Nanostructured Co/CoO Surfaces. Molecules 2024, 29, 1481. https://doi.org/10.3390/molecules29071481
Kan Z, Wang Z, Ren H, Shen M. Carbon Dioxide Pressure and Catalyst Quantity Dependencies in Artificial Photosynthesis of Hydrocarbon Chains on Nanostructured Co/CoO Surfaces. Molecules. 2024; 29(7):1481. https://doi.org/10.3390/molecules29071481
Chicago/Turabian StyleKan, Zhe, Zibo Wang, Haizhou Ren, and Mengyan Shen. 2024. "Carbon Dioxide Pressure and Catalyst Quantity Dependencies in Artificial Photosynthesis of Hydrocarbon Chains on Nanostructured Co/CoO Surfaces" Molecules 29, no. 7: 1481. https://doi.org/10.3390/molecules29071481
APA StyleKan, Z., Wang, Z., Ren, H., & Shen, M. (2024). Carbon Dioxide Pressure and Catalyst Quantity Dependencies in Artificial Photosynthesis of Hydrocarbon Chains on Nanostructured Co/CoO Surfaces. Molecules, 29(7), 1481. https://doi.org/10.3390/molecules29071481