Herbal Polyphenols as Selenium Reducers in the Green Synthesis of Selenium Nanoparticles: Antibacterial and Antioxidant Capabilities of the Obtained SeNPs
Abstract
:1. Introduction
2. Results
2.1. Polyphenolic Composition and Antioxidant Properties of Herbal Infusions
2.2. MIC Analyses
2.3. Antibiofilm Effect of Selenium Nanoparticles
3. Discussion
3.1. Characterization of Herbal Extracts
3.2. Synthesis and Characterization of Obtained SeNPs
3.3. Antioxidant Properties of Obtained SeNPs
3.4. Antibacterial Properties of Obtained SeNPs
3.5. Antibacterial and Antioxidant Activities of SeNPs versus Their Physical Parameters
4. Materials and Methods
4.1. Reagents
4.2. Herbal Samples
4.3. Chromatographic Analysis of Polyphenolic Compounds in Studied Infusions
4.4. Green and Chemical Syntheses and Characterization of Obtained SeNPs
4.5. Antioxidant Activity Measurements
4.5.1. Hydroxyl Radical Scavenging
4.5.2. Total Phenolic Content—Folin–Ciocalteu Assay
4.5.3. The Reducing Capacity of the Samples—CUPRAC Assay
4.5.4. DPPH Radical Scavenging Assay
4.5.5. Antioxidative Index (AOX)
4.6. Antibacterial and Antibiofilm Activity Measurements
4.6.1. Strains of Microorganisms Used in the Work
4.6.2. Analysis of the Sensitivity of E. coli and S. aureus to SeNPs
4.6.3. Study of the Effect of SeNPs on the Formation of Biofilms by E. coli and S. aureus
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Soares, S.; Sousa, J.; Pais, A.; Vitorino, C. Nanomedicine: Principles, Properties, and Regulatory Issues. Front. Chem. 2018, 6, 360. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, A.; Bastu, A.; Bhattacharya, S. Selenium nanoparticles are less toxic than inorganic and organic selenium in mice in vivo. Nucleus 2019, 62, 259–268. [Google Scholar] [CrossRef]
- Filipovic, N.; Usjak, D.; Milenkovic, M.T.; Zheng, K.; Liverani, L.; Boccaccini, A.R.; Stevanovic, M.M. Comparative study of the antimicrobial activity of selenium nanoparticles with different surface chemistry and structure. Front. Bioeng. Biotechnol. 2021, 8, 1591. [Google Scholar] [CrossRef]
- Sentkowska, A.; Pyrzyńska, K. The influence of synthesis conditions on the antioxidant activity of selenium nanoparticles. Molecules 2022, 27, 2486. [Google Scholar] [CrossRef] [PubMed]
- Sentkowska, A. The potential of traditionally used medicinal plants for the synthesis of selenium nanoparticles. Nat. Prod. Res. 2022, 25, 2055–2059. [Google Scholar] [CrossRef] [PubMed]
- Alagesan, V.; Venugopal, S. Green synthesis of selenium nanoparticles using leaves extract of Withania somnifera and its biological applications and photocatalytic activities. BioNanoScience 2019, 9, 105–116. [Google Scholar] [CrossRef]
- Menon, S.; Shrudhi Devi, K.S.; Agarval, H.; Shanmugam, V.K. Efficacy of biogenic selenium nanoparticles from an extract of ginger towards evaluation on anti-microbial and anti-oxidant activities. Colloids Interface Sci. Commun. 2019, 29, 1–8. [Google Scholar] [CrossRef]
- Korde, P.; Ghotekar, S.; Pagar, T.; Pansambal, S.; Oza, R.; Mane, D. Plant extract assisted eco-benevolent synthesis of selenium nanoparticles- a review on plant parts involved, characterization and their recent applications. J. Chem. Rev. 2020, 2, 157–168. [Google Scholar]
- Li, S.; Lo, C.Y.; Pan, M.H.; Lai, C.S.; Ho, C.T. Black tea: Chemical analysis and stability. Food Funct. 2013, 4, 10–18. [Google Scholar] [CrossRef]
- Miraj, S.; Rafieian-Kopaei; Kiani, S. Melissa officinalis L: A review study with an antioxidant prospective. J. Evid. Comp. Alter. Med. 2017, 22, 385–394. [Google Scholar]
- Edwardson, J.R. Hops—Their botany, history, production and utilization. Econ. Bot. 1952, 6, 160–175. [Google Scholar] [CrossRef]
- Muzykiewicz, A.; Nowak, A.; Zielonka-Brzezicka, J.; Florkowska, K.; Duchnik, W.; Klimowicz, A. Comparison of antioxidant activity of extracts of hop leaves harvested in different years. Herba Pol. 2019, 65, 1–9. [Google Scholar] [CrossRef]
- Grabek-Lejko, D.; Wojtowicz, K. Comparison of antibacterial and antioxidant properties of fruits and leaves of blackberry (Rubus plicatus) and raspberry (Rubus idaeus). J. Microbiol. Biotech. Food Sci. 2021, 3, 514–518. [Google Scholar]
- Ghorbani, A.; Mahdi, E. Pharmacological properties of salvia officinalis and its ccmponents. J. Trad. Compl. Med. 2017, 7, 433–440. [Google Scholar]
- Martini, S.; d’Addario, C.; Colacevich, A.; Focardi, S.; Borghini, F.; Santucci, A.; Figura, N.; Rossi, C. Antimicrobial activity against helicobacter pylori strains and antioxidant properties of blackberry Leaves (Rubus ulmifolius) and isolated compounds. Int. J. Antimicr. Agents 2009, 3, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.H.; Chris-Wang, C.R. Evidence on the size-dependent absorption spectral evolution of selenium nanoparticles. Mater. Chem. Phys. 2005, 92, 591–594. [Google Scholar] [CrossRef]
- Inweregbu, K.; Jayshree, D.; Pittard, A. Nosocomial infections. Contin. Educ. Anaesth. Crit. Care Pain 2005, 5, 14–17. [Google Scholar] [CrossRef]
- Coenye, T.; Nelis, H.J. In Vitro and In Vivo model systems to study microbial biofilm formation. J. Microbiol. Methods 2010, 83, 89–105. [Google Scholar] [CrossRef]
- Stewart, P.S.; Costerton, J.W. Antibiotic resistance of bacteria in biofilms. Lancet 2001, 358, 135–138. [Google Scholar] [CrossRef] [PubMed]
- Donlan, R.M.; Costerton, J.W. Biofilms: Survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 2002, 15, 167–193. [Google Scholar] [CrossRef]
- Hammond, A.A.; Miller, K.G.; Kruczek, C.J.; Dertien, J.; Colmer-Hamood, J.A.; Griswold, J.A.; Horswill, A.R.; Hamood, A.N. An in vitro biofilm model to examine the effect of antibiotic ointments on biofilms produced by burn wound bacterial isolates. Burns 2011, 37, 312–321. [Google Scholar] [CrossRef] [PubMed]
- Marslin, G.; Siram, K.; Maqbool, Q.; Selvakesavan, R.K.; Kruszka, D.; Kachlicki, P.; Franklin, G. Secondary metabolites in the green synthesis of metallic nanoparticles. Materials 2018, 11, 940. [Google Scholar] [CrossRef] [PubMed]
- Barros, L.; Dueñas, M.; Dias, M.I.; Sousa, M.J.; Santos-Buelga, C.; Ferreira, I.C.F. Phenolic profiles of cultivated, in vitro cultured, and commercial samples of Melissa officinalis L. infusions. Food Chem. 2013, 136, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Sentkowska, A.; Biesaga, M.; Pyrzyńska, K. Polyphenolic composition and antioxidative properties of lemon Balm (Melissa officinalis L.) extract affected by different brewing processes. Int. J. Food Prop. 2015, 18, 2009–2014. [Google Scholar] [CrossRef]
- Pękal, A.; Dróżdż, P.; Biesaga, M.; Pyrzynska, K. Evaluation of the antioxidant properties of fruit and flavoured black teas. Eur. J. Nutr. 2011, 50, 681–688. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Yue, L.; Jiang, Q.; Liu, X.; Xia, W. Synthesis of varisized chitosan-selenium nanocomposites through heating treatment and evaluation of their antioxidant properties. Inter. J. Biol. Macromol. 2018, 114, 751–758. [Google Scholar] [CrossRef]
- Zhang, J.; Taylor, E.W.; Wan, X.; Peng, D. Impact of heat treatment on size, structure, and bioactivity of elemental selenium nanoparticles. Int. J. Nanomed. 2012, 7, 815–825. [Google Scholar] [CrossRef]
- Peng, D.; Zhang, J.; Liu, Q.; Taylor, E.W. Size effect of elemental selenium nanoparticles (Nano-Se) at supranutritional levels on selenium accumulation and glutathione S-transferase activity. J. Inorg. Biochem. 2007, 101, 1457–1463. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Chen, Y.; Sun, H.; Liu, X.; Leng, X. Physicochemical and functional properties of chitosan-stabilized selenium nanoparticles under different processing treatments. Food Chem. 2020, 331, 127378. [Google Scholar] [CrossRef]
- Ndwandwe, B.K.; Malinga, S.P.; Kayitesi, E.; Dlamini, B.C. Solvothermal synthesis of selenium nanoparticles with polygonal-like nanostructure and antibacterial potential. Mater. Lett. 2021, 304, 130619. [Google Scholar] [CrossRef]
- Liang, X.; Zhang, S.; Gadd, G.M.; McGrath, J.; Rooney, D.W.; Zhao, Q. Fungal-derived selenium nanoparticles and their potential applications in electroless silver coatings for preventing pin-tract infections. Regen. Biomater. 2022, 9, rbac013. [Google Scholar] [CrossRef]
- Serov, D.A.; Khabatova, V.V.; Vodeneev, V.; Li, R.; Gudkov, S.V. A Review of the antibacterial, fungicidal and antiviral properties of selenium nanoparticles. Materials 2023, 16, 5363. [Google Scholar] [CrossRef]
- Ceyhan, N.; Keskin, D.; Ugur, A. Antimicrobial activities of different extracts of eight plant species from four different family against some pathogenic microoorganisms. J. Food Agric. Environ 2012, 10, 193–197. [Google Scholar]
- Gayibova, S.; Ivanišová, E.; Árvay, J.; Hŕstková, M.; Slávik, M.; Petrová, J.; Kačániová, M.; Aripov, T. In Vitro screening of antioxidant and antimicrobial activities of medicinal plants growing in Slovakia. J. Microbiol. Biotechnol. Food Sci. 2019, 8, 1281–1289. [Google Scholar] [CrossRef]
- Kramer, B.; Thielmann, J.; Hickisch, A.; Muranyi, P.; Wunderlich, J.; Hauser, C. Antimicrobial activity of hop extracts against foodborne pathogens for meat applications. J. Appl. Microbiol. 2015, 118, 648–657. [Google Scholar] [CrossRef] [PubMed]
- Rył, B.; Sporek, M.; Krzyśko-Łupicka, T. The bactericidal effect of extracts from Humulus lupulus L. Marynka Variety on selected bacteria. Ecol. Chem. Eng. 2020, 27, 9. [Google Scholar]
- Gómez-Sequeda, N.; Cáceres, M.; Stashenko, E.E.; Hidalgo, W.; Ortiz, C. Antimicrobial and Antibiofilm Activities of Essential Oils against Escherichia coli O157: H7 and methicillin-resistant Staphylococcus aureus (MRSA). Antibiotics 2020, 9, 730. [Google Scholar] [CrossRef] [PubMed]
- Strugala, P.; Dudra, A.; Kucharska, A.Z.; Sokół-Łętowska, A.; Wojnicz, D.; Cisowska, A.; Walkowski, S.; Sroka, Z.; Gabrielska, J.; Hendrich, A.B. Biological activity of the methanol and water extracts of the fruits of anthocyanin-rich plants grown in south-west Poland. Nat. Prod. Commun. 2015, 10, 467–474. [Google Scholar] [CrossRef]
- Mühling, M.; Bradford, A.; Readman, J.W.; Somerfield, P.J.; Handy, R.D. An investigation into the effects of silver nanoparticles on antibiotic resistance of naturally occurring bacteria in an estuarine sediment. Mar. Environ. Res. 2009, 68, 278–283. [Google Scholar] [CrossRef]
- Han, H.-W.; Patel, K.D.; Kwak, J.-H.; Jun, S.-K.; Jang, T.-S.; Lee, S.-H.; Knowles, J.C.; Kim, H.-W.; Lee, H.-H.; Lee, J.-H. Selenium nanoparticles as candidates for antibacterial substitutes and supplements against multidrug-resistant bacteria. Biomolecules 2021, 11, 1028. [Google Scholar] [CrossRef]
- Lesnichaya, M.; Perfileva, A.; Nozhkina, O.; Gazizova, A.; Graskova, I. Synthesis, toxicity evaluation and determination of possible mechanisms of antimicrobial effect of arabinogalactane-capped selenium nanoparticles. J. Trace Elem. Med. Biol. 2022, 69, 126904. [Google Scholar] [CrossRef]
- Lesnichaya, M.V.; Malysheva, S.F.; Belogorlova, N.A.; Graskova, I.A.; Gazizova, A.V.; Perfilyeva, A.I.; Nozhkina, O.A.; Sukhov, B.G. Synthesis and antimicrobial activity of arabinogalactan-stabilized selenium nanoparticles from sodium bis (2-phenylethyl) diselenophosphinate. Russ. Chem. Bull. 2019, 68, 2245–2251. [Google Scholar] [CrossRef]
- Shangpliang, O.R.; Kshiar, B.; Wanniang, K.; Marpna, I.D.; Lipon, T.M.; Laloo, B.M.; Myrboh, B.J. Selenium dioxide as an alternative reagent for the direct α-selenoamidation of aryl methyl ketones. Org. Chem. 2018, 83, 5829–5835. [Google Scholar] [CrossRef] [PubMed]
- Smirnoff, N.; Cumbes, Q.J. Hydroxyl radical activity of compatible solutes. Phytochemistry 1987, 28, 1057–1060. [Google Scholar] [CrossRef]
- Apak, R.; Guclu, K.; Ozyurek, M.; Karademir, S.E.; Ercag, E. The cupric reducing antioxidant capacity and polyphenolic content of some herbal teas. Int. J. Food Sci. Nutr. 2006, 57, 292–304. [Google Scholar] [CrossRef] [PubMed]
- Seeram, N.P.; Aviram, M.; Zhang, Y.; Henning, S.M.; Feng, L.; Dreher, M.; Heber, D. Comparison of antioxidant potency of commonly consumed polyphenol-rich beverages in the United States. J. Agric. Food Chem. 2008, 56, 1415–1422. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 10th ed.; CLSI standard M07; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2015. [Google Scholar]
- Smith, K.; Perez, A.; Ramage, G.; Lappin, D.; Gemmell, C.G.; Lang, S. Biofilm formation by scottish clinical isolates of Staphylococcus aureus. J. Med. Microbiol. 2008, 57, 1018–1023. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.; Gao, M.; Yun, Y.; Malmsten, M.; Rotello, V.M.; Zboril, R.; Akhavan, O.; Kraskouski, A.; Amalraj, J.; Cai, X.; et al. Antibacterial Nanomaterials: Mechanisms, Impacts on Antimicrobial Resistance and Design Principles. Angew. Chem. Int. Ed. 2023, 135, e202217345. [Google Scholar] [CrossRef]
- Khurana, A.; Tekula, S.; Saifi, M.A.; Venkatesh, P.; Godugu, C. Therapeutic applications of selenium nanoparticles. Biomed. Pharmatherap. 2019, 111, 802–812. [Google Scholar] [CrossRef]
Plant Material Used for SeNP Synthesis | |||||
---|---|---|---|---|---|
Blackberry | Hop | Lemon Balm | Raspberry | Sage | |
Flavonoids * | |||||
Kaempferol | <LOD | 0.705 ± 0.023 a | 0.507 ± 0.020 b | <LOD | 0.748± 0.030 a |
Epicatechin | 9.62 ± 0.324 a | 7.54 ± 0.295 b | 3.00 ± 0.101 c | 17.7 ± 0.730 d | 5.08 ± 0.220 e |
Catechin | 3.91 ± 0.183 a | 1.22 ± 0.045 b | 0.11 ± 0.003 c | 2.02 ± 0.092 d | 0.10 ± 0.002 c |
EGCG | 0.197 ± 0.007 a | <LOD | <LOD | <LOD | 0.180 ± 0.040 b |
Quercetin | 0.064 ± 0.003 a | 0.608 ± 0.025 b | 0.078 ± 0.002 c | 0.077 ± 0.003 c | 0.052 ± 0.002 d |
Naringenin | <LOD | 2.47 ± 0.100 a | <LOD | 0.237 ± 0.011 b | 0.312 ± 0.014 c |
Hesperetin | <LOD | 8.18 ± 0.305 a | <LOD | <LOD | <LOD |
Myricetin | <LOD | <LOD | 0.087 ± 0.003 a | <LOD | 0.161 ± 0.006 b |
Apigenin | 0.09 ± 0.003 a | <LOD | 0.138 ± 0.004 b | <LOD | 1.05 ± 0.041 c |
Naringin | <LOD | <LOD | <LOD | <LOD | 0.717± 0.024 a |
Luteolin | 0.15 ± 0.006 a | <LOD | <LOD | 0.06 ± 0.002 b | 2.01 ± 0.093 c |
Rutin | 1.45 ± 0.064 a | <LOD | <LOD | 2.49 ± 0.102 b | 0.347 ± 0.012 c |
Polyphenolic acid * | |||||
Chlorogenic acid | 7.58 ± 0.325 a | 2.93 ± 0.110 b | 0.217 ± 0.09 c | 3.71 ± 0.142 d | 0.458 ± 0.018 e |
pHBA | 1.07 ± 0.045 a | 1.64 ± 0.076 b | 1.45 ± 0.032 c | 1.86 ± 0.057 d | 0.749 ± 0.08 e |
Caffeic acid | 0.568 ± 0.021 a | 0.197 ± 0.007 b | 5.60 ± 0.19 c | 0.395 ± 0.013 d | 6.43 ± 0.304 e |
Ferulic acid | 0.874 ± 0.039 a | 1.20 ± 0.041 b | <LOD | 0.619 ± 0.023 c | 2.24 ± 0.100 d |
Protocatechuic acid | 0.605 ± 0.027 a | 2.22 ± 0.100 b | <LOD | <LOD | 1.09 ± 0.042 c |
p-coumaric acid | 0.195 ± 0.007 a | <LOD | <LOD | 0.131 ± 0.003 b | 0.614 ± 0.0271 c |
Gallic acid | 0.253 ± 0.010 a | <LOD | <LOD | 0.120 ± 0.003 b | 0.07 ± 0.002 c |
FC [mgGa/L] | CUPRAC [mmolTr/L] | DPPH [mmolTr/L] | OH [%] | AOX | |
---|---|---|---|---|---|
Blackberry | |||||
Extract (1/1) | 41.3 ± 1.83 a | 1.401 ± 0.05 a | 0.871 ± 0.02 a | 88.0 ± 3.21 | 97.0 ± 3.26 |
SeNPs11 | 32.4 ± 1.50 b | 1.368 ± 0.04 b | 0.748 ± 0.01 b | 99.0 ± 4.07 a | 98.5 ± 4.22 a |
SeNPs11H | 24.1 ± 1.05 c | 1.359 ± 0.04 b | 0.741 ± 0.02 c | 61.2 ± 2.95 b | 98.2 ± 4.01 a |
Extract (1/2) | 81.2 ± 3.82 d | 1.414 ± 0.03 c | 0.881 ± 0.03 d | 89.0 ± 3.84 c | 95.3 ± 4.11 b |
SeNPs12 | 60.3 ± 2.85 e | 1.405 ± 0.04 a | 0.753 ± 0.03 e | 93.7 ± 3.95 d | 96.9 ± 4.09 c |
SeNPs12H | 52.2 ± 2.33 f | 1.417 ± 0.02 c | 0.751 ± 0.02 e | 89.9 ± 4.02 c | 95.7 ± 3.66 b |
Extract (1/3) | 133.2 ± 5.23 g | 1.452 ± 0.03 d | 0.860 ± 0.03 f | 89.1 ± 3.75 c | 98.2 ± 3.96 a |
SeNPs13 | 103.8 ± 4.23 h | 1.394 ± 0.03 e | 0.748 ± 0.03 b | 84.7 ± 2.98 e | 99.4 ± 4.04 d |
SeNPs13H | 93.5 ± 4.21 i | 1.388 ± 0.02 e | 0.757 ± 0.02 g | 70.5 ± 3.32 f | 99.0 ± 4.32 d |
Hop | |||||
Extract (1/1) | 9.06 ± 0.37 a | 1.22 ± 0.05 a | 0.455 ± 0.02 a | 53.3 ± 2.07 a | 97.0 ± 4.02 a |
SeNPs11 | 11.2 ± 0.48 b | 0.957 ± 0.03 b | 0.289 ± 0.01 b | 99.0 ± 4.11 b | 97.7 ± 3.75 a |
SeNPs11H | 10.9 ± 0.45 b | 1.08 ± 0.02 c | 0.296 ± 0.02 c | 92.1 ± 3.25 c | 98.3 ± 3.98 b |
Extract (1/2) | 17.0 ± 0.67 c | 1.40 ± 0.04 d | 0.685 ± 0.03 d | 70.0 ± 2.73 d | 98.2 ± 3.33 b |
SeNPs12 | 17.2 ± 0.73 c | 1.36 ± 0.03 e | 0.621 ± 0.02 e | 80.1 ± 3.35 e | 99.4 ± 4.00 c |
SeNPs12H | 17.8 ± 0.65 c | 1.39 ± 0.05 e | 0.666 ± 0.02 f | 77.6 ± 2.87 f | 96.6 ± 3.22 d |
Extract (1/3) | 26.2 ± 1.22 d | 1.47 ± 0.06 f | 0.837 ± 0.03 g | 84.9 ± 3.82 g | 97.4 ± 3.73 a |
SeNPs13 | 17.3 ± 0.74 c | 1.41 ± 0.03 d | 0.749 ± 0.03 h | 77.8 ± 3.70 f | 99.0 ± 3.54 c |
SeNPs13H | 22.8 ± 1.03 e | 1.42 ± 0.04 d | 0.747 ± 0.02 h | 75.7 ± 2.92 h | 96.7 ± 2.91 d |
Lemon balm | |||||
Extract (1/1) | 119.9 ± 4.56 a | 1.42 ± 0.06 a | 0.872 ± 0.04 a | 96.1 ± 3.78 a | 97.3 ± 3.47 a |
SeNPs11 | 98.5 ± 3.47 b | 0.840 ± 0.03 b | 0.810 ± 0.03 b | 98.0 ± 2.36 b | 99.6 ± 3.29 b |
SeNPs11H | 98.9 ± 2.36 b | 0.958 ± 0.04 c | 0.824 ± 0.03 c | 99.0 ± 3.33 c | 96.6 ± 2.41 c |
Extract (1/2) | 196.9 ± 8.27 c | 1.44 ± 0.05 a | 0.845 ± 0.04 d | 99.6 ± 4.05 c | 98.0 ± 3.20 d |
SeNPs12 | 212.9 ± 8.51 d | 1.32 ± 0.04 d | 0.791 ± 0.02 e | 99.5 ± 3.95 c | 99.2 ± 4.08 b |
SeNPs12H | 215.6 ± 9.02 d | 1.41 ± 0.03 a | 0.824 ± 0.03 c | 99.0 ± 2.98 c | 98.2 ± 3.21 d |
Extract (1/3) | 215.8 ± 7.30 d | 0.999 ± 0.02 | 0.839 ± 0.03 f | 97.0 ± 2.33 d | 98.7 ± 4.11 d |
SeNPs13 | 100.9 ± 4.08 b | 1.43 ± 0.02 a | 0.790 ± 0.02 e | 83.1 ± 3.07 e | 99.1 ± 3.79 b |
SeNPs13H | 185.7 ± 3.33 e | 1.41 ± 0.03 a | 0.765 ± 0.02 g | 92.5 ± 4.04 f | 99.1 ± 3.84 b |
Raspberry | |||||
Extract (1/1) | 26.8 ± 1.12 a | 1.300 ± 0.05 a | 0.871 ± 0.04 a | 26.2 ± 1.10 a | 97.3 ± 3.60 a |
SeNPs11 | 15.4 ± 0.63 b | 1.390 ± 0.06 b | 0.392 ± 0.01 b | 89.2 ± 3.23 b | 98.3 ± 4.15 b |
SeNPs11H | 14.4 ± 0.51 c | 1.337 ± 0.03 c | 0.492 ± 0.02 c | 86.9 ± 4.20 c | 96.0 ± 3.89 c |
Extract (1/2) | 58.5 ± 2.37 d | 1.067 ± 0.02 d | 0.867 ± 0.03 a | 30.1 ± 0.957 d | 98.0 ± 4.08 b |
SeNPs12 | 36.9 ± 1.60 d | 1.372 ± 0.04 e | 0.854 ± 0.04 d | 98.2 ± 4.32 e | 94.9 ± 3.54 d |
SeNPs12H | 37.6 ± 1.73 d | 1.366 ± 0.03 f | 0.773 ± 0.02 e | 81.6 ± 3.70 f | 99.3 ± 4.24 e |
Extract (1/3) | 84.2 ± 3.20 e | 1.313 ± 0.05 g | 0.854 ± 0.02 d | 32.4 ± 1.52 d | 98.7 ± 3.89 b |
SeNPs13 | 72.0 ± 2.37 f | 1.064 ± 0.02 h | 0.798 ± 0.02 f | 99.0 ± 4.33 e | 98.5 ± 3.47 b |
SeNPs13H | 72.1 ± 2.75 f | 1.384 ± 0.04 b | 0.746 ± 0.01 g | 30.7 ± 0.992 d | 99.0 ± 4.18 e |
Sage | |||||
Extract (1/1) | 32.1 ± 1.22 a | 1.414 ± 0.05 a | 0.859 ± 0.03 a | 30.4 ± 1.03 a | 97.6 ± 3.87 a |
SeNPs11 | 19.2 ± 0.831 b | 1.284 ± 0.05 b | 0.845 ± 0.04 b | 90.3 ± 3.98 b | 99.5 ± 3.87 b |
SeNPs11H | 18.7 ± 0.673 b | 1.361 ± 0.04 c | 0.725 ± 0.02 c | 91.7 ± 4.07 b | 97.4 ± 2.53 a |
Extract (1/2) | 67.7 ± 2.31 c | 1.394 ± 0.03 d | 0.731 ± 0.03 c | 34.2 ± 1.63 c | 97.9 ± 3.75 a |
SeNPs12 | 46.9 ± 1.83 d | 1.388 ± 0.03 e | 0.740 ± 0.03 d | 99.2 ± 3.87 d | 98.7 ± 4.08 c |
SeNPs12H | 53.6 ± 2.31 e | 1.400 ± 0.05 d | 0.745 ± 0.02 d | 99.0 ± 3.32 d | 95.3 ± 3.77 d |
Extract (1/3) | 94.4 ± 3.81 f | 1.426 ± 0.06 f | 0.827 ± 0.04 e | 24.1 ± 1.01 e | 98.2 ± 4.05 c |
SeNPs13 | 93.3 ± 4.08 f | 1.070 ± 0.04 g | 0.770 ± 0.03 f | 99.0 ± 3.76 d | 98.8 ± 4.20 c |
SeNPs13H | 76.6 ± 2.93 g | 1.400 ± 0.05 d | 0.750 ± 0.02 g | 99.0 ± 2.98 d | 97.6 ± 3.88 a |
MIC (%) | MIC (%) | ||||
---|---|---|---|---|---|
Escherichia coli | Staphylococcus aureus | Escherichia coli | Staphylococcus aureus | ||
Blackberry | Lemon balm | ||||
Extract (1/1) | 100 | 25 | Extract (1/1) | NoI | NoI |
SeNPs11 | 25 | 12.5 | SeNPs11 | 100 | 50 |
SeNPs11H | 25 | 12.5 | SeNPs11H | 100 | 50 |
Extract (1/2) | 100 | 12.5 | Extract (1/2) | NoI | NoI |
SeNPs12 | 50 | 3 | SeNPs12 | 100 | 100 |
SeNPs12H | 50 | 3 | SeNPs12H | 100 | 100 |
Extract (1/3) | 50 | 12.5 | Extract (1/3) | NoI | NoI |
SeNPs13 | 25 | 6 | SeNPs13 | NoI | 100 |
SeNPs13H | 25 | 6 | SeNPs13H | NoI | 100 |
Hop | Raspberry | ||||
Extract (1/1) | NoI | NoI | Extract (1/1) | 50 | 50 |
SeNPs11 | 50 | 12.5 | SeNPs11 | 25 | 25 |
SeNPs11H | 50 | 12.5 | SeNPs11H | 50 | 50 |
Extract (1/2) | NoI | NoI | Extract (1/2) | 100 | 50 |
SeNPs12 | 100 | 6 | SeNPs12 | 12.5 | 12.5 |
SeNPs12H | 100 | 6 | SeNPs12H | 12.5 | 25 |
Extract (1/3) | NoI | NoI | Extract (1/3) | 100 | 100 |
SeNPs13 | NoI | 6 | SeNPs13 | 12.5 | 12.5 |
SeNPs13H | NoI | 6 | SeNPs13H | 12.5 | 6 |
Sage | Chemically synthesized SeNPs | ||||
Extract (1/1) | 100 | 50 | SeNPs AA | 100 | 6 |
SeNPs11 | 25 | 25 | SeNPs AApvA | 100 | 6 |
SeNPs11H | 50 | 25 | SeNPs GA | 25 | 1.6 |
Extract (1/2) | 50 | 50 | SeNPs GApvA | 25 | 1.6 |
SeNPs12 | 12.5 | 12.5 | |||
SeNPs12H | 12.5 | 12.5 | |||
Extract (1/3) | 50 | 50 | |||
SeNPs13 | 12.5 | 6 | |||
SeNPs13H | 12.5 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sentkowska, A.; Konarska, J.; Szmytke, J.; Grudniak, A. Herbal Polyphenols as Selenium Reducers in the Green Synthesis of Selenium Nanoparticles: Antibacterial and Antioxidant Capabilities of the Obtained SeNPs. Molecules 2024, 29, 1686. https://doi.org/10.3390/molecules29081686
Sentkowska A, Konarska J, Szmytke J, Grudniak A. Herbal Polyphenols as Selenium Reducers in the Green Synthesis of Selenium Nanoparticles: Antibacterial and Antioxidant Capabilities of the Obtained SeNPs. Molecules. 2024; 29(8):1686. https://doi.org/10.3390/molecules29081686
Chicago/Turabian StyleSentkowska, Aleksandra, Julia Konarska, Jakub Szmytke, and Anna Grudniak. 2024. "Herbal Polyphenols as Selenium Reducers in the Green Synthesis of Selenium Nanoparticles: Antibacterial and Antioxidant Capabilities of the Obtained SeNPs" Molecules 29, no. 8: 1686. https://doi.org/10.3390/molecules29081686
APA StyleSentkowska, A., Konarska, J., Szmytke, J., & Grudniak, A. (2024). Herbal Polyphenols as Selenium Reducers in the Green Synthesis of Selenium Nanoparticles: Antibacterial and Antioxidant Capabilities of the Obtained SeNPs. Molecules, 29(8), 1686. https://doi.org/10.3390/molecules29081686