Interzeolite Transformation from FAU-to-EDI Type of Zeolite
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental
4. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jain, R.; Mallette, A.J.; Rimer, J.D. Controlling Nucleation Pathways in Zeolite Crystallization: Seeding Conceptual Methodologies for Advanced Materials Design. J. Am. Chem. Soc. 2021, 143, 21446–21460. [Google Scholar] [CrossRef] [PubMed]
- Sano, T.; Itakura, M.; Sadakane, M. High Potential of Interzeolite Conversion Method for Zeolite Synthesis. J. Jpn. Pet. Inst. 2013, 56, 183–197. [Google Scholar] [CrossRef]
- Nakazawa, N.; Ikeda, T.; Hiyoshi, N.; Yoshida, Y.; Han, Q.; Inagaki, S.; Kubota, Y. A Microporous Aluminosilicate with 12-, 12-, and 8-Ring Pores and Isolated 8-Ring Channels. J. Am. Chem. Soc. 2017, 139, 7989–7997. [Google Scholar] [CrossRef] [PubMed]
- Khodabandeh, S.; Lee, G.; Davis, M.E. CIT-4: The first synthetic analogue of brewsterite. Microporous Mater. 1997, 11, 87–95. [Google Scholar] [CrossRef]
- Inoue, T.; Itakura, M.; Jon, H.; Oumi, Y.; Takahashi, A.; Fujitani, T.; Sano, T. Synthesis of LEV zeolite by interzeolite conversion method and its catalytic performance in ethanol to olefins reaction. Microporous Mesoporous Mater. 2009, 122, 149–154. [Google Scholar] [CrossRef]
- Devos, J.; Bols, M.L.; Plessers, D.; Goethem, C.V.; Seo, J.W.; Hwang, S.-J.; Sels, B.F.; Dusselier, M. Synthesis–Structure–Activity Relations in Fe-CHA for C–H Activation: Control of Al Distribution by Interzeolite Conversion. Chem. Mater. 2020, 32, 273–285. [Google Scholar] [CrossRef]
- Sonoda, T.; Maruo, T.; Yamasaki, Y.; Tsunoji, N.; Takamitsu, Y.; Sadakane, M.; Sano, T. Synthesis of high-silica AEI zeolites with enhanced thermal stability by hydrothermal conversion of FAU zeolites, and their activity in the selective catalytic reduction of NOx with NH3. J. Mater. Chem. A 2015, 3, 857–865. [Google Scholar] [CrossRef]
- Mendoza-Castro, M.J.; Qie, Z.; Fan, X.; Linares, N.; García-Martínez, J. Tunable hybrid zeolites prepared by partial interconversion. Nat. Commun. 2023, 14, 1256. [Google Scholar] [CrossRef] [PubMed]
- Miyagawa, S.; Miyake, K.; Hirota, Y.; Nishiyama, N.; Miyamoto, M.; Oumi, Y.; Tanaka, S. Solvent/OSDA-free interzeolite transformation of FAU into CHA zeolite with quantitative yield. Microporous Mesoporous Mater. 2019, 278, 219–224. [Google Scholar] [CrossRef]
- Mielby, J.; Møller, K.H.; Iltsiou, D.; Goodarzi, F.; Enemark-Rasmussen, K.; Kegnæs, S. A shortcut to high-quality gmelinite through steam-assisted interzeolite transformation. Microporous Mesoporous Mater. 2022, 330, 111606. [Google Scholar] [CrossRef]
- Li, Q.; Bing, L.; Li, F.; Liu, J.; Han, D.; Wang, F.; Wang, G. Rapid and facile synthesis of hierarchical nanocrystalline SSZ-13 via the interzeolite transformation of ZSM-5. New J. Chem. 2020, 44, 5501–5507. [Google Scholar] [CrossRef]
- Geng, H.; Li, G.; Liu, D.; Liu, C. Rapid and efficient synthesis of CHA-type zeolite by interzeolite conversion of LTA-type zeolite in the presence of N, N, N-trimethyladamantammonium hydroxide. J. Solid State Chem. 2018, 265, 193–199. [Google Scholar] [CrossRef]
- Mendoza-Castro, M.J.; De Oliveira-Jardim, E.; Ramírez-Marquez, N.-T.; Trujillo, C.-A.; Linares, N.; García-Martínez, J. Hierarchical Catalysts Prepared by Interzeolite Transformation. J. Am. Chem. Soc. 2022, 144, 5163–5171. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Yuan, Y.; Han, Q.; Dong, L.; Chen, L.; Zhang, X.; Xu, L. High yield synthesis of nanoscale high-silica ZSM-5 zeolites via interzeolite transformation with a new strategy. Catal. Sci. Technol. 2020, 10, 7904–7913. [Google Scholar] [CrossRef]
- Martín, N.; Moliner, M.; Corma, A. High yield synthesis of high-silica chabazite by combining the role of zeolite precursors and tetraethylammonium: SCR of NOx. Chem. Commun. 2015, 51, 9965–9968. [Google Scholar] [CrossRef] [PubMed]
- Zones, S.I. Conversion of faujasites to high-silica chabazite SSZ-13 in the presence of N,N,N-trimethyl-1-adamantammonium iodide. J. Chem. Soc. Faraday Trans. 1991, 87, 3709–3716. [Google Scholar] [CrossRef]
- Møller, K.H.; Debost, M.; Lakiss, L.; Kegnæs, S.; Mintova, S. Interzeolite conversion of a micronsized FAU to a nanosized CHA zeolite free of organic structure directing agent with a high CO2 capacity. RSC Adv. 2020, 10, 42953–42959. [Google Scholar] [CrossRef]
- Tanigawa, T.; Tsunoji, N.; Sadakane, M.; Sano, T. High-quality synthesis of a nanosized CHA zeolite by a combination of a starting FAU zeolite and aluminum sources. Dalton Trans. 2020, 49, 9972–9982. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Wei, P.; Li, J.; Wang, Y.; Xu, S.; Yang, Z.; Liu, X.; Xu, L.; Li, X.; Zhu, X. Inter-zeolite transformation from *MRE to EUO: A new synthesis route for EUO zeolite. Catal. Today 2022, 405–406, 321–328. [Google Scholar] [CrossRef]
- Oleksiak, M.D.; Ghorbanpour, A.; Conato, M.T.; McGrail, B.P.; Grabow, L.C.; Motkuri, R.K.; Rimer, J.D. Synthesis Strategies for Ultrastable Zeolite GIS Polymorphs as Sorbents for Selective Separations. Chem. Eur. J. 2016, 22, 16078–16088. [Google Scholar] [CrossRef]
- Chiyoda, O.; Davis, M.E. Hydrothermal conversion of Y-zeolite using alkaline-earth cations. Microporous Mesoporous Mater. 1999, 32, 257–264. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, D.; Chu, W.; Yang, C.; Wang, Y.; Zhu, X.; Xin, W.; Liu, Z.; Wang, H.; Liu, S.; et al. N-methyl-2-pyrrolidone-induced conversion of USY into hollow Beta zeolite and its application in the alkylation of benzene with isobutylene. Microporous Mesoporous Mater. 2020, 294, 109944. [Google Scholar] [CrossRef]
- Goel, S.; Zones, S.I.; Iglesia, E. Encapsulation of Metal Clusters within MFI via Interzeolite Transformations and Direct Hydrothermal Syntheses and Catalytic Consequences of Their Confinement. J. Am. Chem. Soc. 2014, 136, 15280–15290. [Google Scholar] [CrossRef]
- Goel, S.; Zones, S.I.; Iglesia, E. Synthesis of Zeolites via Interzeolite Transformations without Organic Structure-Directing Agents. Chem. Mater. 2015, 27, 2056–2066. [Google Scholar] [CrossRef]
- Van Tendeloo, L.; Gobechiya, E.; Breynaert, E.; Martens, J.A.; Kirschhock, C.E.A. Alkaline cations directing the transformation of FAU zeolites into five different framework types. Chem. Commun. 2013, 49, 11737–11739. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Deimund, M.A.; Bhawe, Y.; Davis, M.E. Organic-Free Synthesis of CHA-Type Zeolite Catalysts for the Methanol-to-Olefins Reaction. ACS Catal. 2015, 5, 4456–4465. [Google Scholar] [CrossRef]
- Qin, W.; Jain, R.; Robles Hernández, F.C.; Rimer, J.D. Organic-Free Interzeolite Transformation in the Absence of Common Building Units. Chem. Eur. J. 2019, 25, 5893–5898. [Google Scholar] [CrossRef]
- dos Santos, M.B.; Vianna, K.C.; Pastore, H.O.; Andrade, H.M.C.; Mascarenhas, A.J.S. Studies on the synthesis of ZSM-5 by interzeolite transformation from zeolite Y without using organic structure directing agents. Microporous Mesoporous Mater. 2020, 306, 110413. [Google Scholar] [CrossRef]
- Xie, D. Synthesis of GME Framework Type Zeolites. US. Patent 9,643,853, 19 May 2017. [Google Scholar]
- Itakura, M.; Goto, I.; Takahashi, A.; Fujitani, T.; Ide, Y.; Sadakane, M.; Sano, T. Synthesis of high-silica CHA type zeolite by interzeolite conversion of FAU type zeolite in the presence of seed crystals. Microporous Mesoporous Mater. 2011, 144, 91–96. [Google Scholar] [CrossRef]
- Takata, T.; Tsunoji, N.; Takamitsu, Y.; Sadakane, M.; Sano, T. Nanosized CHA zeolites with high thermal and hydrothermal stability derived from the hydrothermal conversion of FAU zeolite. Microporous Mesoporous Mater. 2016, 225, 524–533. [Google Scholar] [CrossRef]
- Jon, H.; Nakahata, K.; Lu, B.; Oumi, Y.; Sano, T. Hydrothermal conversion of FAU into ∗BEA zeolites. Microporous Mesoporous Mater. 2006, 96, 72–78. [Google Scholar] [CrossRef]
- Sasaki, H.; Jon, H.; Itakura, M.; Inoue, T.; Ikeda, T.; Oumi, Y.; Sano, T. Hydrothermal conversion of FAU zeolite into aluminous MTN zeolite. J. Porous Mater. 2009, 16, 465–471. [Google Scholar] [CrossRef]
- Itakura, M.; Oumi, Y.; Sadakane, M.; Sano, T. Synthesis of high-silica offretite by the interzeolite conversion method. Mater. Res. Bull. 2010, 45, 646–650. [Google Scholar] [CrossRef]
- Jon, H.; Takahashi, S.; Sasaki, H.; Oumi, Y.; Sano, T. Hydrothermal conversion of FAU zeolite into RUT zeolite in TMAOH system. Microporous Mesoporous Mater. 2008, 113, 56–63. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Wang, X.; Chen, H.; Li, H.; Sun, C.; Sun, L.; Fan, C.; Wang, C. An efficient route for synthesis of ERI zeolite through conversion of FAU zeolite in the presence of N,N-dimethylpiperidinium hydroxide. Microporous Mesoporous Mater. 2019, 279, 407–415. [Google Scholar] [CrossRef]
- Yoshioka, T.; Liu, Z.; Iyoki, K.; Chokkalingam, A.; Yonezawa, Y.; Hotta, Y.; Ohnishi, R.; Matsuo, T.; Yanaba, Y.; Ohara, K.; et al. Ultrafast and continuous-flow synthesis of AFX zeolite via interzeolite conversion of FAU zeolite. React. Chem. Eng. 2021, 6, 74–81. [Google Scholar] [CrossRef]
- Maruo, T.; Yamanaka, N.; Tsunoji, N.; Sadakane, M.; Sano, T. Facile Synthesis of AEI Zeolites by Hydrothermal Conversion of FAU Zeolites in the Presence of Tetraethylphosphonium Cations. Chem. Lett. 2013, 43, 302–304. [Google Scholar] [CrossRef]
- Matsuda, K.; Funase, N.; Tsuchiya, K.; Tsunoji, N.; Sadakane, M.; Sano, T. Facile synthesis of highly crystalline EMT zeolite by hydrothermal conversion of FAU zeolite in the presence of 1,1′-(1,4-butanediyl)bis(1-azonia-4-azabicyclo [2,2]octane) dihydroxide. Microporous Mesoporous Mater. 2019, 274, 299–303. [Google Scholar] [CrossRef]
- Shi, Y.; Xing, E.; Gao, X.; Liu, D.; Xie, W.; Zhang, F.; Mu, X.; Shu, X. Topology reconstruction from FAU to MWW structure. Microporous Mesoporous Mater. 2014, 200, 269–278. [Google Scholar] [CrossRef]
- Kweon, S.; An, H.; Son, Y.M.; Park, M.B.; Min, H.-K. Hydrothermal interconversion of FAU-type zeolite in the presence of sodium and tetramethylammonium ions. Microporous Mesoporous Mater. 2021, 317, 111019. [Google Scholar] [CrossRef]
- Inagaki, S.; Tsuboi, Y.; Nishita, Y.; Syahylah, T.; Wakihara, T.; Kubota, Y. Rapid Synthesis of an Aluminum-Rich MSE-Type Zeolite by the Hydrothermal Conversion of an FAU-Type Zeolite. Chem. Eur. J. 2013, 19, 7780–7786. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, Q.; Meng, X.; Xiao, F.-S. Insights into the Organotemplate-Free Synthesis of Zeolite Catalysts. Engineering 2017, 3, 567–574. [Google Scholar] [CrossRef]
- Barrer, R.M.; Baynham, J.W. 562. The hydrothermal chemistry of the silicates. Part VII. Synthetic potassium aluminosilicates. J. Chem. Soc. 1956, 2882–2891. [Google Scholar] [CrossRef]
- Robson, H.; Lillerud, K.P. (Eds.) Chapter 40—EDI Barrer K-F Si(50), Al(50). In Verified Syntheses of Zeolitic Materials; Elsevier Science: Amsterdam, The Netherlands, 2001; pp. 140–141. [Google Scholar]
- Robson, H.; Lillerud, K.P. (Eds.) Chapter 41—EDI Linde Type F Si(50), Al(50). In Verified Syntheses of Zeolitic Materials; Elsevier Science: Amsterdam, The Netherlands, 2001; pp. 142–144. [Google Scholar]
- Christensen, A.; Fjellvaag, H. ChemInform Abstract: Crystal Structure Determination of Zeolite N from Synchrotron X-ray Powder Diffraction Data. Cheminform 2010, 29. [Google Scholar] [CrossRef]
- Taylor, W.H.; Jackson, R. The Structure of Edingtonite. Z. Für Krist.—Cryst. Mater. 1933, 86, 53–64. [Google Scholar] [CrossRef]
- Mackinnon, I.D.R.; Barr, K.; Miller, E.; Hunter, S.; Pinel, T. Nutrient removal from wastewaters using high performance materials. Water Sci. Technol. 2003, 47, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Thornton, A.; Pearce, P.; Parsons, S.A. Ammonium removal from digested sludge liquors using ion exchange. Water Res. 2007, 41, 433–439. [Google Scholar] [CrossRef]
- Thornton, A.; Pearce, P.; Parsons, S.A. Ammonium removal from solution using ion exchange on to MesoLite, an equilibrium study. J. Hazard. Mater. 2007, 147, 883–889. [Google Scholar] [CrossRef] [PubMed]
- Probst, J.; Outram, J.G.; Couperthwaite, S.J.; Millar, G.J.; Kaparaju, P. Sustainable ammonium recovery from wastewater: Improved synthesis and performance of zeolite N made from kaolin. Microporous Mesoporous Mater. 2021, 316, 110918. [Google Scholar] [CrossRef]
- Zwingmann, N.; Singh, B.; Mackinnon, I.D.R.; Gilkes, R.J. Zeolite from alkali modified kaolin increases NH4+ retention by sandy soil: Column experiments. Appl. Clay Sci. 2009, 46, 7–12. [Google Scholar] [CrossRef]
- Mackinnon, I.D.R.; Millar, G.J.; Stolz, W. Hydrothermal syntheses of zeolite N from kaolin. Appl. Clay Sci. 2012, 58, 1–7. [Google Scholar] [CrossRef]
- Barrer, R.M.; Munday, B.M. Cation exchange in the synthetic zeolite K-F. J. Chem. Soc. A Inorg. Phys. Theor. 1971, 2914–2921. [Google Scholar] [CrossRef]
- Wong, S.-F.; Awala, H.; Vincente, A.; Retoux, R.; Ling, T.C.; Mintova, S.; Mukti, R.R.; Ng, E.-P. K-F zeolite nanocrystals synthesized from organic-template-free precursor mixture. Microporous Mesoporous Mater. 2017, 249, 105–110. [Google Scholar] [CrossRef]
- Chawla, A.; Mallette, A.J.; Jain, R.; Le, N.; Robles Hernández, F.C.; Rimer, J.D. Crystallization of potassium-zeolites in organic-free media. Microporous Mesoporous Mater. 2022, 341, 112026. [Google Scholar] [CrossRef]
- Matsumoto, T.; Miyazaki, T.; Goto, Y. Synthesis and characterization of Li-type EDI zeolite. J. Eur. Ceram. Soc. 2006, 26, 455–458. [Google Scholar] [CrossRef]
- Barrer, R.M.; Beaumont, R.; Collela, C. Chemistry of soil minerals. Part XIV. Action of some basic solutions on metakaolinite and kaolinite. J. Chem. Soc. Dalton Trans. 1974, 934–941. [Google Scholar] [CrossRef]
- Colella, C.; de Gennaro, M.; Iorio, V. Crystallization of zeolitic aluminosilicates in bicationic systems including lithium. In Studies in Surface Science and Catalysis; Elsevier: Amsterdam, The Netherlands, 1986; Volume 28, pp. 263–270. [Google Scholar]
- Barrer, R.M.; Sieber, W. Hydrothermal chemistry of silicates. Part 21. Zeolites from reaction of lithium and caesium ions with tetramethylammonium aluminosilicate solutions. J. Chem. Soc. Dalton Trans. 1977, 1020–1026. [Google Scholar] [CrossRef]
- Tosheva, L.; Garbev, K.; Miller, G.J.; Mihailova, B. Toward the Synthesis of New Zeolite Structures in the Presence of Cesium: Zeolite MMU-1. Cryst. Growth Des. 2023, 23, 3834–3844. [Google Scholar] [CrossRef]
- Sathupunya, M.; Gulari, E.; Wongkasemjit, S. Microwave preparation of Li-zeolite directly from alumatrane and silatrane. Mater. Chem. Phys. 2004, 83, 89–95. [Google Scholar] [CrossRef]
- Kecht, J.; Mintova, S.; Bein, T. Nanosized EDI-type molecular sieve. Microporous Mesoporous Mater. 2008, 116, 258–266. [Google Scholar] [CrossRef]
- Bruter, D.V.; Pavlov, V.S.; Ivanova, I.I. Interzeolite Transformations as a Method for Zeolite Catalyst Synthesis. Pet. Chem. 2021, 61, 251–275. [Google Scholar] [CrossRef]
- Cruciani, G. Zeolites upon heating: Factors governing their thermal stability and structural changes. J. Phys. Chem. Solids 2006, 67, 1973–1994. [Google Scholar] [CrossRef]
- Leardini, L.; Quartieri, S.; Vezzalini, G.; Arletti, R. Thermal behaviour of siliceous faujasite: Further structural interpretation of negative thermal expansion. Microporous Mesoporous Mater. 2015, 202, 226–233. [Google Scholar] [CrossRef]
- Ferdov, S.; Marques, J.; Tavares, C.J.; Lin, Z.; Mori, S.; Tsunoji, N. UV-light assisted synthesis of high silica faujasite-type zeolite. Microporous Mesoporous Mater. 2022, 336, 111858. [Google Scholar] [CrossRef]
- Wang, J.; Liu, P.; Boronat, M.; Ferri, P.; Xu, Z.; Liu, P.; Shen, B.; Wang, Z.; Yu, J. Organic-Free Synthesis of Zeolite Y with High Si/Al Ratios: Combined Strategy of In Situ Hydroxyl Radical Assistance and Post-Synthesis Treatment. Angew. Chem.—Int. Ed. 2020, 59, 17225–17228. [Google Scholar] [CrossRef] [PubMed]
- Baerlocher, C.; McCusker, L.B.; Olson, D.H. EDI—P4¯m2. In Atlas of Zeolite Framework Types, 6th ed.; Baerlocher, C., McCusker, L.B., Olson, D.H., Eds.; Elsevier Science B.V.: Amsterdam, The Netherlands, 2007; pp. 120–121. [Google Scholar]
No. | Si & Al Source | Conc. (M) | KOH/FAU (wt.) | H2O/FAU (wt.) | Time | T °C | Product | Si/Al |
---|---|---|---|---|---|---|---|---|
1 | FAU | 20.43 | 8.94 | 7.8 | 27 h | 60 | EDI | 1.1 |
2 | FAU | 20.43 | 8.94 | 7.8 | 6 h | 60 | EDI | 1.2 |
3 | FAU | 20.43 | 8.94 | 7.8 | 35 d | RT | EDI | 1.1 |
4 | FAU | 20.43 | 8.94 | 7.8 | 24 h | RT | am. | 1.6 |
5 | FAU | 20.43 | 8.94 | 7.8 | 2 h | 60 | am. | 1.4 |
6 | FAU | 20.43 | 8.94 | 7.8 | 4 h | 60 | am. + ? | 1.4 |
7 | FAU | 20.43 | 8.94 | 7.8 | 12 d | RT | EDI | 1.2 |
8 | FAU | 20.43 | 8.94 | 7.8 | 32 d | RT | EDI | 1.1 |
9 | FAU | 20.43 | 8.94 | 7.8 | 11 d | RT | EDI | 1.3 |
10 | FAU | 5.11 | 2.24 | 7.8 | 12 d | RT | FAU | N/A |
11 | FAU | 30.65 | 13.5 | 7.8 | 12 d | RT | am. | N/A |
12 | FAU | 10.22 | 4.47 | 7.8 | 6 h | 60 | am. | N/A |
13 | FAU | 5.11 | 2.24 | 7.8 | 6 h | 60 | FAU | 2.1 |
14 | FAU | 10.22 | 4.47 | 7.8 | 4 h | 60 | am. | N/A |
15 | FAU | 26 | 11.38 | 7.8 | 6 h | 60 | am. + ? | N/A |
16 | FAU | 5.11 | 2.24 | 7.8 | 9 d | RT | FAU | N/A |
17 | SiO2 & NaAlO2 | Gel synthesis | 22 h | 60 | EDI | 1.1 | ||
18 | SiO2 & NaAlO2 | Gel synthesis | 32 d | RT | EDI | 1.2 |
Sample No. | K/Al + Si | V (Å3) S.G. I222 | V (Å3) S.G. P-42m |
---|---|---|---|
1 | 0.5 | 1277.9 (1) | 1276.1 (2) |
2 | 0.4 | 1281.8 (8) | 1281.8 (5) |
3 | 0.7 | 1277.3 (4) | 1274.4 (1) |
7 | 0.6 | 1276.6 (1) | 1277.8 (8) |
8 | 0.4 | 1276.8 (1) | 1277.6 (2) |
9 | 0.4 | 1241.5 (1) | 1276.1 (1) |
17 | 0.9 | 1283.0 (4) | 1280.9 (1) |
18 | 0.6 | 1276.5 (1) | 1274.2 (2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferdov, S. Interzeolite Transformation from FAU-to-EDI Type of Zeolite. Molecules 2024, 29, 1744. https://doi.org/10.3390/molecules29081744
Ferdov S. Interzeolite Transformation from FAU-to-EDI Type of Zeolite. Molecules. 2024; 29(8):1744. https://doi.org/10.3390/molecules29081744
Chicago/Turabian StyleFerdov, Stanislav. 2024. "Interzeolite Transformation from FAU-to-EDI Type of Zeolite" Molecules 29, no. 8: 1744. https://doi.org/10.3390/molecules29081744
APA StyleFerdov, S. (2024). Interzeolite Transformation from FAU-to-EDI Type of Zeolite. Molecules, 29(8), 1744. https://doi.org/10.3390/molecules29081744