Research on Green Adsorbents
1. Introduction
2. An Overview of Published Articles
3. Conclusions
Conflicts of Interest
List of Contributions
- Bujdák, J. Controversial Issues Related to Dye Adsorption on Clay Minerals: A Critical Review. Molecules 2023, 28, 6951. https://doi.org/10.3390/molecules28196951.
- Paientko, V.; Oranska, O.I.; Gun’ko, V.M.; Skwarek, E. Selected Textural and Electrochemical Properties of Nanocomposite Fillers Based on the Mixture of Rose Clay/Hydroxyapatite/Nanosilica for Cosmetic Applications. Molecules 2023, 28, 4820. https://doi.org/10.3390/molecules28124820.
- Charmas, B.; Zięzio, M.; Jedynak, K. Assessment of the Porous Structure and Surface Chemistry of Activated Biocarbons Used for Methylene Blue Adsorption. Molecules 2023, 28, 4922. https://doi.org/10.3390/molecules28134922.
- Szymaszek-Wawryca, A.; Díaz, U.; Samojeden, B.; Motak, M. Synthesis, Characterization, and NH3-SCR Catalytic Performance of Fe-Modified MCM-36 Intercalated with Various Pillars. Molecules 2023, 28, 4960. https://doi.org/10.3390/molecules28134960.
- Nguyen, M.H.; Zbair, M.; Dutournié, P.; Limousy, L.; Bennici, S. Corn Cobs’ Biochar as Green Host of Salt Hydrates for Enhancing the Water Sorption Kinetics in Thermochemical Heat Storage Systems. Molecules 2023, 28, 5381. https://doi.org/10.3390/molecules28145381.
- Sokołowski, A.; Jędruchniewicz, K.; Kobyłecki, R.; Zarzycki, R.; Różyło, K.; Wang, H.; Czech, B. Plant-Waste-Derived Sorbents for Nitazoxanide Adsorption. Molecules 2023, 28, 5919. https://doi.org/10.3390/molecules28155919.
- Hubicki, Z.; Zinkowska, K.; Wójcik, G. A New Impregnated Adsorbent for Noble Metal Ion Sorption. Molecules 2023, 28, 6040. https://doi.org/10.3390/molecules28166040.
- Ślosarczyk, A.; Klapiszewska, I.; Jędrzejczak, P.; Jędrzejczak, W.; Klapiszewski, Ł. Synthesis and Characterization of Eco-Efficient Alkali-Activated Composites with Self-Cleaning Properties for Sustainable Construction. Molecules 2023, 28, 6066. https://doi.org/10.3390/molecules28166066.
- Benghaffour, A.; Azzouz, A.; Dewez, D. Ecotoxicity of Diazinon and Atrazine Mixtures after Ozonation Catalyzed by Na+ and Fe2+ Exchanged Montmorillonites on Lemna minor. Molecules 2023, 28, 6108. https://doi.org/10.3390/molecules28166108.
- Paluch, D.; Bazan-Wozniak, A.; Nosal-Wiercińska, A.; Pietrzak, R. Removal of Methylene Blue and Methyl Red from Aqueous Solutions Using Activated Carbons Obtained by Chemical Activation of Caraway Seed. Molecules 2023, 28, 6306. https://doi.org/10.3390/molecules28176306.
- Zhao, A.; Tang, Q.; Chen, Y.; Qiu, C.; Huang, X. Magnetic Adsorbent Fe3O4/ZnO/LC for the Removal of Tetracycline and Congo Red from Aqueous Solution. Molecules 2023, 28, 6499. https://doi.org/10.3390/molecules28186499.
- Ptaszyńska, K.; Malaika, A.; Kozigrodzka, K.; Kozłowski, M. A Green Approach to Obtaining Glycerol Carbonate by Urea Glycerolysis Using Carbon-Supported Metal Oxide Catalysts. Molecules 2023, 28, 6534. https://doi.org/10.3390/molecules28186534.
- Wolski, R.; Bazan-Wozniak, A.; Pietrzak, R. Adsorption of Methyl Red and Methylene Blue on Carbon Bioadsorbents Obtained from Biogas Plant Waste Materials. Molecules 2023, 28, 6712. https://doi.org/10.3390/molecules28186712.
- Wawrzkiewicz, M.; Frynas, S.; Podkościelna, B. Synthesis and Characterization of Phosphorus-Containing Sorbent for Basic Dye Removal. Molecules 2023, 28, 6731. https://doi.org/10.3390/molecules28186731.
- Wiśniewska, M.; Sadłowska, A.; Herda, K.; Urban, T.; Nowicki, P. Production of Mineral-Carbon Composites and Activated Carbons as a Method of Used Gear Oil, Ashes, and Low-Quality Brown Coals Management. Molecules 2023, 28, 6919. https://doi.org/10.3390/molecules28196919.
References
- Younas, F.; Mustafa, A.; Farooqi, Z.U.R.; Wang, X.; Younas, S.; Mohy-Ud-Din, W.; Ashir Hameed, M.; Mohsin Abrar, M.; Maitlo, A.A.; Noreen, S.; et al. Current and Emerging Adsorbent Technologies for Wastewater Treatment: Trends, Limitations, and Environmental Implications. Water 2021, 13, 215. [Google Scholar] [CrossRef]
- Chai, W.S.; Cheun, J.Y.; Kumar, P.S.; Mubashir, M.; Majeed, Z.; Banat, F.; Show, P.L. A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application. J. Clean. Prod. 2021, 296, 126589. [Google Scholar] [CrossRef]
- Rajendran, S.; Priya, A.K.; Kumar, P.S.; Hoang, T.K.; Sekar, K.; Chong, K.Y.; Show, P.L. A critical and recent developments on adsorption technique for removal of heavy metals from wastewater—A review. Chemosphere 2022, 303, 135146. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Zhang, L.; Gao, Q.; Wu, L.; Zhang, E. A study on physicochemical properties and adsorption performance of modified porous maize starch. Mater. Res. Express 2018, 5, 125303. [Google Scholar] [CrossRef]
- Zhao, S.; Li, Y.; Wang, M.; Chen, B.; Zhang, Y.; Sun, Y.; Jin, Y. The defects, physicochemical properties, and surface charge of MIL-88A (Al) crystal were regulated for highly efficient removal of anionic dyes: Preparation, characterization, and adsorption mechanism. Langmuir 2023, 39, 10611. [Google Scholar] [CrossRef]
- Saleh, T.A. Protocols for synthesis of nanomaterials, polymers, and green materials as adsorbents for water treatment technologies. Environ. Technol. Innov. 2021, 24, 101821. [Google Scholar] [CrossRef]
- Mudhoo, A.; Gautam, R.K.; Ncibi, M.C.; Zhao, F.; Garg, V.K.; Sillanpää, M. Green synthesis, activation and functionalization of adsorbents for dye sequestration. Environ. Chem. Lett. 2019, 17, 157–193. [Google Scholar] [CrossRef]
- Chauhan, P.R.; Baiju, V.; Sha, A.A.; Tyagi, S.K. Adsorption of ethanol onto novel and indigenous green adsorbents: Synthesis, characterization, and applications. J. Clean. Prod. 2024, 442, 140978. [Google Scholar] [CrossRef]
- Amari, A.; Gannouni, H.; Khan, M.I.; Almesfer, M.K.; Elkhaleefa, A.M.; Gannouni, A. Effect of structure and chemical activation on the adsorption properties of green clay minerals for the removal of cationic dye. Appl. Sci. 2018, 8, 2302. [Google Scholar] [CrossRef]
- Neeti, K.; Singh, R.; Ahmad, S. The role of green nanomaterials as effective adsorbents and applications in wastewater treatment. Mater. Today Proc. 2023, 77, 269–276. [Google Scholar] [CrossRef]
- Arabkhani, P.; Asfaram, A. The potential application of bio-based ceramic/organic xerogel derived from the plant sources: A new green adsorbent for removal of antibiotics from pharmaceutical wastewater. J. Hazard. Mater. 2022, 429, 128289. [Google Scholar] [CrossRef] [PubMed]
- Arabkhani, P.; Asfaram, A.; Aghaei-Jazeh, M.; Ateia, M. Plant-mediated green synthesis of nanocomposite-based multifunctional adsorbent with antibacterial activity and high removal efficiency of micropollutants from contaminated waters. J. Water Process Eng. 2022, 49, 103025. [Google Scholar] [CrossRef]
- Munjur, H.M.; Hasan, M.N.; Awual, M.R.; Islam, M.M.; Shenashen, M.A.; Iqbal, J. Biodegradable natural carbohydrate polymeric sustainable adsorbents for efficient toxic dye removal from wastewater. J. Mol. Liq. 2020, 319, 114356. [Google Scholar] [CrossRef]
- Dharmapriya, T.N.; Li, D.; Chung, Y.C.; Huang, P.J. Green synthesis of reusable adsorbents for the removal of heavy metal ions. ACS Omega 2021, 6, 30478–30487. [Google Scholar] [CrossRef] [PubMed]
- Ali, R.M.; Hamad, H.A.; Hussein, M.M.; Malash, G.F. Potential of using green adsorbent of heavy metal removal from aqueous solutions: Adsorption kinetics, isotherm, thermodynamic, mechanism and economic analysis. Ecol. Eng. 2016, 91, 317–332. [Google Scholar] [CrossRef]
- Ambika, S.; Kumar, M.; Pisharody, L.; Malhotra, M.; Kumar, G.; Sreedharan, V.; Bhatnagar, A. Modified biochar as a green adsorbent for removal of hexavalent chromium from various environmental matrices: Mechanisms, methods, and prospects. Chem. Eng. J. 2022, 439, 135716. [Google Scholar] [CrossRef]
- Guo, L.Y.; Lu, H.Q.; Rackemann, D.; Shi, C.; Li, W.; Li, K.; Doherty, W.O. Quaternary ammonium-functionalized magnetic chitosan microspheres as an effective green adsorbent to remove high-molecular-weight invert sugar alkaline degradation products (HISADPs). Chem. Eng. J. 2021, 416, 129084. [Google Scholar] [CrossRef]
- Khamis Soliman, N.; Moustafa, A.F.; Aboud, A.A.; Halim, K.S.A. Effective utilization of Moringa seeds waste as a new green environmental adsorbent for removal of industrial toxic dyes. J. Mater. Res. Technol. 2019, 8, 1798–1808. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiśniewska, M.; Nowicki, P. Research on Green Adsorbents. Molecules 2024, 29, 1855. https://doi.org/10.3390/molecules29081855
Wiśniewska M, Nowicki P. Research on Green Adsorbents. Molecules. 2024; 29(8):1855. https://doi.org/10.3390/molecules29081855
Chicago/Turabian StyleWiśniewska, Małgorzata, and Piotr Nowicki. 2024. "Research on Green Adsorbents" Molecules 29, no. 8: 1855. https://doi.org/10.3390/molecules29081855
APA StyleWiśniewska, M., & Nowicki, P. (2024). Research on Green Adsorbents. Molecules, 29(8), 1855. https://doi.org/10.3390/molecules29081855