Controversial Issues Related to Dye Adsorption on Clay Minerals: A Critical Review
Abstract
:1. Introduction
- The simplest studies are reports that inform that a certain sample of clay or clay mineral, either in its original natural form or appropriately modified, can adsorb a certain organic dye. They usually do not provide a scientific interpretation nor have an ambition for a deeper analysis of the problem. Many such studies are related to some local practical problems, e.g., environmental pollution and the treatment of industrial wastes, and the physical interpretation of the results is considered irrelevant. The characterization of the adsorbents in these reports is often non-existent or inadequate, making a deeper understanding or interpretation of the data impossible.
- The second group of reports can be described as scientific studies that attempt to provide a deeper interpretation of the adsorption results, but in terms of scientific knowledge, they do not offer more than the previous group of studies. The main problem is often the lack of data on the composition and characterization of the adsorbents used. Adsorption has rarely been studied on purified and perfectly characterized monomineral samples without the influence of impurities that are optimally isolated from clay standards, which is well described in the literature. In most studies, admixtures and impurities may have had a significant effect on adsorption, leading to inadequate interpretations of adsorption data. Searching and selecting relevant and valuable papers from thousands of previously published reports is like looking for a needle in a haystack. For these reasons, a thorough analysis of the current literature is almost impossible unless all factors that contribute significantly to adsorption properties are evaluated, and all necessary information about the materials is available. Even if perfectly pure mineral samples are used, the problem of interpretation is not necessarily solved. A clay mineral of any type does not represent a substance with a precisely defined composition, structure, and properties, but rather a group of similar substances, yet often with very different properties within the group.
2. Theoretical Basics
3. Adsorption vs. Ion Exchange Reaction
4. Adsorption Mechanism of Organic Dyes on Clay Particles
4.1. Basic Concepts
4.2. Initial Adsorption
4.3. Slower Processes following the Initial Adsorption
4.4. Rapid and Slow Diffusion as Parts of the Complex Process
5. Dye Adsorption and Destabilization of Colloidal Dispersions
6. Dye Adsorption on Clay Particle Agglomerates
7. Critical Assessment of the Adsorption Models
8. Importance of Adsorption Processes from the View of Environmental Issues
9. Brief Examples of Adsorption in Hybrid and Complex Systems
9.1. Organoclays
9.2. Grafted Clays
9.3. Modification with Polymers
9.4. Magnetic Materials
9.5. Multicomponent Materials and Complex Systems
10. Conclusions
Funding
Conflicts of Interest
References
- Brooks, C.S. Mechanism of methylene blue dye adsorption on siliceous minerals. Kolloid Z. Z. Für Polym. 1964, 199, 31–36. [Google Scholar] [CrossRef]
- Ngulube, T.; Gumbo, J.R.; Masindi, V.; Maity, A. An update on synthetic dyes adsorption onto clay based minerals: A state-of-art review. J. Environ. Manag. 2017, 191, 35–57. [Google Scholar] [CrossRef]
- Mu, B.; Wang, A. Adsorption of dyes onto palygorskite and its composites: A review. J. Environ. Chem. Eng. 2016, 4, 1274–1294. [Google Scholar] [CrossRef]
- Han, H.; Rafiq, M.K.; Zhou, T.; Xu, R.; Mašek, O.; Li, X. A critical review of clay-based composites with enhanced adsorption performance for metal and organic pollutants. J. Hazard. Mater. 2019, 369, 780–796. [Google Scholar] [CrossRef] [PubMed]
- Kausar, A.; Iqbal, M.; Javed, A.; Aftab, K.; Nazli, Z.I.H.; Bhatti, H.N.; Nouren, S. Dyes adsorption using clay and modified clay: A review. J. Mol. Liq. 2018, 256, 395–407. [Google Scholar] [CrossRef]
- Depci, T.; Çelik, M.S. Dye Adsorption on Expanding Three-Layer Clays. In Green Chemistry for Dyes Removal from Waste Water: Research Trends and Applications; Wiley: Hoboken, NJ, USA, 2015; pp. 331–358. [Google Scholar]
- Gupta, V.K.; Suhas. Application of low-cost adsorbents for dye removal—A review. J. Environ. Manag. 2009, 90, 2313–2342. [Google Scholar] [CrossRef]
- Hassan, M.M.; Carr, C.M. A critical review on recent advancements of the removal of reactive dyes from dyehouse effluent by ion-exchange adsorbents. Chemosphere 2018, 209, 201–219. [Google Scholar] [CrossRef]
- Leodopoulos, C.; Doulia, D.; Gimouhopoulos, K. Adsorption of cationic dyes onto bentonite. Sep. Purif. Rev. 2014, 44, 74–107. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, L. Adsorption of dyes from aqueous solutions or suspensions with clay nano-adsorbents. Sep. Purif. Technol. 2007, 58, 32–39. [Google Scholar] [CrossRef]
- López-Rodríguez, D.; Micó-Vicent, B.; Jordán-Núñez, J.; Bonet-Aracil, M.; Bou-Belda, E. Uses of nanoclays and adsorbents for dye recovery: A textile industry review. Appl. Sci. 2021, 11, 11422. [Google Scholar] [CrossRef]
- Manna, S.; Das, P.; Basak, P.; Sharma, A.K.; Singh, V.K.; Patel, R.K.; Pandey, J.K.; Ashokkumar, V.; Pugazhendhi, A. Separation of pollutants from aqueous solution using nanoclay and its nanocomposites: A review. Chemosphere 2021, 280, 130961. [Google Scholar] [CrossRef] [PubMed]
- Mittal, J. Recent progress in the synthesis of Layered Double Hydroxides and their application for the adsorptive removal of dyes: A review. J. Environ. Manag. 2021, 295, 113017. [Google Scholar] [CrossRef] [PubMed]
- Patanjali, P.; Chopra, I.; Patanjali, N.; Singh, R. A compendious review on clay modification techniques for wastewater remediation. Indian J. Agric. Sci. 2020, 90, 2262–2274. [Google Scholar] [CrossRef]
- Zhu, R.; Chen, Q.; Zhou, Q.; Xi, Y.; Zhu, J.; He, H. Adsorbents based on montmorillonite for contaminant removal from water: A review. Appl. Clay Sci. 2016, 123, 239–258. [Google Scholar] [CrossRef]
- Al Kausor, M.; Sen Gupta, S.; Bhattacharyya, K.G.; Chakrabortty, D. Montmorillonite and modified montmorillonite as adsorbents for removal of water soluble organic dyes: A review on current status of the art. Inorg. Chem. Commun. 2022, 143, 109686. [Google Scholar] [CrossRef]
- Awad, A.M.; Shaikh, S.M.R.; Jalab, R.; Gulied, M.H.; Nasser, M.S.; Benamor, A.; Adham, S. Adsorption of organic pollutants by natural and modified clays: A comprehensive review. Sep. Purif. Technol. 2019, 228, 115719. [Google Scholar] [CrossRef]
- Dhar, A.K.; Himu, H.A.; Bhattacharjee, M.; Mostufa, M.G.; Parvin, F. Insights on applications of bentonite clays for the removal of dyes and heavy metals from wastewater: A review. Environ. Sci. Pollut. Res. 2023, 30, 5440–5474. [Google Scholar] [CrossRef] [PubMed]
- Ewis, D.; Ba-Abbad, M.M.; Benamor, A.; El-Naas, M.H. Adsorption of organic water pollutants by clays and clay minerals composites: A comprehensive review. Appl. Clay Sci. 2022, 229, 106686. [Google Scholar] [CrossRef]
- Mok, C.F.; Ching, Y.C.; Muhamad, F.; Abu Osman, N.A.; Hai, N.D.; Hassan, C.R.C. Adsorption of Dyes Using Poly(vinyl alcohol) (PVA) and PVA-Based Polymer Composite Adsorbents: A Review. J. Polym. Environ. 2020, 28, 775–793. [Google Scholar] [CrossRef]
- Zhang, T.T.; Wang, W.; Zhao, Y.L.; Bai, H.Y.; Wen, T.; Kang, S.C.; Song, G.S.; Song, S.X.; Komarneni, S. Removal of heavy metals and dyes by clay-based adsorbents: From natural clays to 1D and 2D nano-composites. Chem. Eng. J. 2021, 420, 127574. [Google Scholar] [CrossRef]
- Kahr, G.; Madsen, F.T. Determination of the cation exchange capacity and the surface area of bentonite, illite and kaolinite by methylene blue adsorption. Appl. Clay Sci. 1995, 9, 327–336. [Google Scholar] [CrossRef]
- Ghosh, D.; Bhattacharyya, K.G. Adsorption of methylene blue on kaolinite. Appl. Clay Sci. 2002, 20, 295–300. [Google Scholar] [CrossRef]
- Madejova, J.; Keckes, J.; Paalkova, H.; Komadel, P. Identification of components in smectite/kaolinite mixtures. Clay Miner. 2002, 37, 377–388. [Google Scholar] [CrossRef]
- Ma, C.; Bi, E. Active binding sites for ofloxacin resulted from adsorptive fractionation of humic acid on kaolinite. J. Environ. Manag. 2023, 325, 116473. [Google Scholar] [CrossRef] [PubMed]
- Loukili, H.; Mabrouki, J.; Anouzla, A.; Kouzi, Y.; Younssi, S.A.; Digua, K.; Abrouki, Y. Pre-treated moroccan natural clays: Application to the wastewater treatment of textile industry. Desalin. Water Treat. 2021, 240, 124–136. [Google Scholar] [CrossRef]
- Harter, R.D.; Baker, D.E. Applications and Misapplications of the Langmuir Equation to Soil Adsorption Phenomena. Soil Sci. Soc. Am. J. 1977, 41, 1077–1080. [Google Scholar] [CrossRef]
- Veith, J.A.; Sposito, G. On the Use of the Langmuir Equation in the Interpretation of “Adsorption” Phenomena. Soil Sci. Soc. Am. J. 1977, 41, 697–702. [Google Scholar] [CrossRef]
- El Haouti, R.; Ouachtak, H.; El Guerdaoui, A.; Amedlous, A.; Amaterz, E.; Haounati, R.; Addi, A.A.; Akbal, F.; El Alem, N.; Taha, M.L. Cationic dyes adsorption by Na-Montmorillonite Nano Clay: Experimental study combined with a theoretical investigation using DFT-based descriptors and molecular dynamics simulations. J. Mol. Liq. 2019, 290, 111139. [Google Scholar] [CrossRef]
- Tran, H.N.; You, S.J.; Hosseini-Bandegharaei, A.; Chao, H.P. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review. Water Res. 2017, 120, 88–116. [Google Scholar] [CrossRef]
- Lu, L.; Na, C. Gibbsian interpretation of Langmuir, Freundlich and Temkin isotherms for adsorption in solution. Philos. Mag. Lett. 2022, 102, 239–253. [Google Scholar] [CrossRef]
- Skopp, J. Derivation of the Freundlich Adsorption Isotherm from Kinetics. J. Chem. Educ. 2009, 86, 1341. [Google Scholar] [CrossRef]
- Foo, K.Y.; Hameed, B.H. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 2010, 156, 2–10. [Google Scholar] [CrossRef]
- Barbero, G.; Evangelista, L.R.; Lelidis, I. Effective adsorption energy and generalization of the Frumkin-Fowler-Guggenheim isotherm. J. Mol. Liq. 2021, 327, 114795. [Google Scholar] [CrossRef]
- Chu, K.H.; Tan, B.C. Is the Frumkin (Fowler–Guggenheim) adsorption isotherm a two- or three-parameter equation? Colloids Interface Sci. Commun. 2021, 45, 100519. [Google Scholar] [CrossRef]
- Yuzhakov, V.I. Aggregation of dye molecules and its effect on spectral luminescent properties of solutions. Usp. Khim. 1992, 61, 1114–1141. [Google Scholar] [CrossRef]
- Bujdák, J. The effects of layered nanoparticles and their properties on the molecular aggregation of organic dyes. J. Photochem. Photobiol. C 2018, 35, 108–133. [Google Scholar] [CrossRef]
- Ji, C.; Lai, L.; Li, P.; Wu, Z.; Cheng, W.; Yin, M. Organic dye assemblies with aggregation-induced photophysical changes and their bio-applications. Aggregate 2021, 2, e39. [Google Scholar] [CrossRef]
- Murakami, K. Thermodynamic and kinetic aspects of self-association of dyes in aqueous solution. Dyes Pigments 2002, 53, 31–43. [Google Scholar] [CrossRef]
- López Arbeloa, F.; Herrán Martinez, J.M.; López Arbeloa, T.; López Arbeloa, I. The hydrophobic effect on the adsorption of rhodamines in aqueous suspensions of smectites. the rhodamine 3B/Laponite B system. Langmuir 1998, 14, 4566–4573. [Google Scholar] [CrossRef]
- Garfinkel-Shweky, D.; Yariv, S. Metachromasy in clay-dye systems: The adsorption of acridine orange by Na-saponite. Clay Miner. 1997, 32, 653–663. [Google Scholar] [CrossRef]
- Neumann, M.G.; Gessner, F.; Schmitt, C.C.; Sartori, R. Influence of the layer charge and clay particle size on the interactions between the cationic dye methylene blue and clays in an aqueous suspension. J. Colloid Interface Sci. 2002, 255, 254–259. [Google Scholar] [CrossRef] [PubMed]
- Martínez, V.M.; Arbeloa, F.L.; Prieto, J.B.; Arbeloa, I.L. Characterization of rhodamine 6G aggregates intercalated in solid thin films of laponite clay. 2 fluorescence spectroscopy. J. Phys. Chem. B 2005, 109, 7443–7450. [Google Scholar] [CrossRef] [PubMed]
- Lambert, J.F. Organic pollutant adsorption on clay minerals. Dev. Clay Sci. 2018, 9, 195–253. [Google Scholar] [CrossRef]
- Bujdák, J.; Czimerová, A.; Iyi, N. Structure of cationic dyes assemblies intercalated in the films of montmorillonite. Thin Solid Films 2008, 517, 793–799. [Google Scholar] [CrossRef]
- Ho, T.-L. Hard soft acids bases (HSAB) principle and organic chemistry. Chem. Rev. 1975, 75, 1–20. [Google Scholar] [CrossRef]
- Ortego, J.D.; Kowalska, M.; Cocke, D.L. Interactions of montmorillonite with organic compounds-adsorptive and catalytic properties. Chemosphere 1991, 22, 769–798. [Google Scholar] [CrossRef]
- Bergmann, K.; O’Konski, C.T. A spectroscopic study of methylene blue monomer, dimer, and complexes with montmorillonite. J. Phys. Chem. 1963, 67, 2169–2177. [Google Scholar] [CrossRef]
- Bujdák, J.; Komadel, P. Interaction of methylene blue with reduced charge montmorillonite. J. Phys. Chem. B 1997, 101, 9065–9068. [Google Scholar] [CrossRef]
- Klika, Z.; Pustková, P.; Praus, P.; Kovář, P.; Pospíšil, M.; Malý, P.; Grygar, T.; Kulhánková, L.; Čapková, P. Fluorescence of reduced charge montmorillonite complexes with methylene blue: Experiments and molecular modeling. J. Colloid Interface Sci. 2009, 339, 416–423. [Google Scholar] [CrossRef]
- Bujdák, J. Effect of the layer charge of clay minerals on optical properties of organic dyes. A review. Appl. Clay Sci. 2006, 34, 58–73. [Google Scholar] [CrossRef]
- Bujdák, J. Hybrid systems based on organic dyes and clay minerals: Fundamentals and potential applications. Clay Miner. 2015, 50, 549–571. [Google Scholar] [CrossRef]
- Rytwo, G.; Nir, S.; Margulies, L. Interactions of monovalent organic cations with montmorillonite—Adsorption studies and model-calculations. Soil Sci. Soc. Am. J. 1995, 59, 554–564. [Google Scholar] [CrossRef]
- Bujdák, J. Layer-by-Layer Assemblies Composed of Polycationic Electrolyte, Organic Dyes, and Layered Silicates. J. Phys. Chem. C 2014, 118, 7152–7162. [Google Scholar] [CrossRef]
- Hsu, Y.C.; Chiang, C.C.; Yu, M.F. Adsorption behavior of basic dyes on activated clay. Sep. Sci. Technol. 1997, 32, 2513–2534. [Google Scholar] [CrossRef]
- Gemeay, A.H. Adsorption characteristics and the kinetics of the cation exchange of rhodamine-6G with Na+-montmorillonite. J. Colloid Interface Sci. 2002, 251, 235–241. [Google Scholar] [CrossRef]
- Schoonheydt, R.A.; Johnston, C.T. The surface properties of clay minerals. In Layered Mineral Structures and their Application in Advanced Technologies; Brigatti, M.F., Mottana, A., Eds.; Mineralogical Society of Great Britain and Ireland: Twickenham, UK, 2011; Volume 11, p. 335. [Google Scholar]
- Baranyaiová, T.; Bujdák, J. Reaction kinetics of molecular aggregation of rhodamine 123 in colloids with synthetic saponite nanoparticles. Appl. Clay Sci. 2016, 134, 103–109. [Google Scholar] [CrossRef]
- Arbeloa, F.L.; Chaudhuri, R.; Lopez, T.A.; Arbeloa, I.L. Aggregation of rhodamine 3B adsorbed in Wyoming montmorillonite aqueous suspensions. J. Colloid Interface Sci. 2002, 246, 281–287. [Google Scholar] [CrossRef]
- Chaudhuri, R.; Arbeloa, F.L.; Arbeloa, I.L. Spectroscopic characterization of the adsorption of rhodamine 3B in hectorite. Langmuir 2000, 16, 1285–1291. [Google Scholar] [CrossRef]
- Neumann, M.G.; Gessner, F.; Cione, A.P.P.; Sartori, R.A.; Cavalheiro, C.C.S. Interaction between dyes and clays in aqueous suspension. Quim. Nova 2000, 23, 818–824. [Google Scholar] [CrossRef]
- Neumann, M.G.; Schmitt, C.C.; Gessner, F. Time-dependent spectrophotometric study of the interaction of basic dyes with clays II: Thionine on natural and synthetic montmorillonites and hectorites. J. Colloid Interface Sci. 1996, 177, 495–501. [Google Scholar] [CrossRef]
- Endo, T.; Nakada, N.; Sato, T.; Shimada, M. The fluorescence properties of coumarine dye intercalated in a swelling clay. J. Phys. Chem. Solids 1989, 50, 133–137. [Google Scholar] [CrossRef]
- Chernia, Z.; Gill, D. Flattening of TMPyP adsorbed on laponite. Evidence in observed and calculated UV-vis spectra. Langmuir 1999, 15, 1625–1633. [Google Scholar] [CrossRef]
- Miyamoto, N.; Kawai, R.; Kuroda, K.; Ogawa, M. Adsorption and aggregation of a cationic cyanine dye on layered clay minerals. Appl. Clay Sci. 2000, 16, 161–170. [Google Scholar] [CrossRef]
- Giovannini, G.; Rossi, R.M.; Boesel, L.F. Changes in Optical Properties upon Dye–Clay Interaction: Experimental Evaluation and Applications. Nanomaterials 2021, 11, 197. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Oh, J.-M.; Ogawa, M. Photofunctions of Dye-Clay Hybrids: Recent Developments. In Dyes and Photoactive Molecules in Microporous Systems; Martínez-Martínez, V., López Arbeloa, F., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 251–320. [Google Scholar]
- Takagi, S.; Eguchi, M.; Tryk, D.A.; Inoue, H. Porphyrin photochemistry in inorganic/organic hybrid materials: Clays, layered semiconductors, nanotubes, and mesoporous materials. J. Photochem. Photobiol. C 2006, 7, 104–126. [Google Scholar] [CrossRef]
- Tokieda, D.; Tsukamoto, T.; Ishida, Y.; Ichihara, H.; Shimada, T.; Takagi, S. Unique fluorescence behavior of dyes on the clay minerals surface: Surface Fixation Induced Emission (S-FIE). J. Photochem. Photobiol. A 2017, 339, 67–79. [Google Scholar] [CrossRef]
- Tapia Estévez, M.J.; López Arbeloa, F.; López Arbeloa, T.; López Arbeloa, I. Absorption and fluorescence properties of rhodamine 6G adsorbed on aqueous suspensions of Wyoming montmorillonite. Langmuir 1993, 9, 3629–3634. [Google Scholar] [CrossRef]
- Bujdak, J.; Baranyaiova, T.S.; Bohac, P.; Meszaros, R. Adsorption of Dye Molecules and Its Potential for the Development of Photoactive Hybrid Materials Based on Layered Silicates. J. Phys. Chem. B 2023, 127, 1063–1073. [Google Scholar] [CrossRef]
- Šuteková, M.; Bujdák, J. The “blue bottle” experiment in the colloidal dispersions of smectites. Dyes Pigments 2021, 186, 109010. [Google Scholar] [CrossRef]
- Šimonová Baranyaiová, T.; Mészáros, R.; Sebechlebská, T.; Bujdák, J. Non-Arrhenius kinetics and slowed-diffusion mechanism of molecular aggregation of a rhodamine dye on colloidal particles. Phys. Chem. Chem. Phys. 2021, 23, 17177–17185. [Google Scholar] [CrossRef]
- Lackovičová, M.; Baranyaiová, T.; Bujdák, J. The chemical stabilization of methylene blue in colloidal dispersions of smectites. Appl. Clay Sci. 2019, 181, 105222. [Google Scholar] [CrossRef]
- Yang, Y.; Yu, W.; He, S.; Yu, S.; Chen, Y.; Lu, L.; Shu, Z.; Cui, H.; Zhang, Y.; Jin, H. Rapid adsorption of cationic dye-methylene blue on the modified montmorillonite/graphene oxide composites. Appl. Clay Sci. 2019, 168, 304–311. [Google Scholar] [CrossRef]
- Taylor, H.S. The activation energy of adsorption processes. J. Am. Chem. Soc. 1931, 53, 578–597. [Google Scholar] [CrossRef]
- Alaqarbeh, M. Adsorption Phenomena: Definition, Mechanisms, and Adsorption Types: Short Review. RHAZES Green Appl. Chem. 2021, 13, 43–51. [Google Scholar] [CrossRef]
- Ishida, T.; Kawase, M.; Yagi, K.; Yamakawa, J.; Fukada, K. Effects of the counterion on dielectric spectroscopy of a montmorillonite suspension over the frequency range 10(5)-10(10) Hz. J. Colloid Interface Sci. 2003, 268, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Missana, T.; Alonso, U.; Fernández, A.M.; García-Gutiérrez, M. Analysis of the stability behaviour of colloids obtained from different smectite clays. Appl. Geochem. 2018, 92, 180–187. [Google Scholar] [CrossRef]
- Czímerová, A.; Jankovič, L.; Bujdák, J. Spectral properties of rhodamine 6G in smectite dispersions: Effect of the monovalent cations. J. Colloid Interface Sci. 2011, 357, 322–330. [Google Scholar] [CrossRef]
- Czímerová, A.; Jankovič, L.; Bujdák, J. Effect of the exchangeable cations on the spectral properties of methylene blue in clay dispersions. J. Colloid Interface Sci. 2004, 274, 126–132. [Google Scholar] [CrossRef]
- Smith, D.E. Molecular computer simulations of the swelling properties and interlayer structure of cesium montmorillonite. Langmuir 1998, 14, 5959–5967. [Google Scholar] [CrossRef]
- Vao-soongnern, V.; Pipatpanukul, C.; Horpibulsuk, S. A combined X-ray absorption spectroscopy and molecular dynamic simulation to study the local structure potassium ion in hydrated montmorillonite. J. Mater. Sci. 2015, 50, 7126–7136. [Google Scholar] [CrossRef]
- Jiang, X.; Zhou, J.M.; Zhu, M.X.; He, W.X.; Yu, G.F. Charge characteristics on the clay surface with interacting electric double layers. Soil Sci. 2001, 166, 249–254. [Google Scholar] [CrossRef]
- Boutton, C.; Kauranen, M.; Persoons, A.; Keung, M.P.; Jacobs, K.Y.; Schoonheydt, R.A. Enhanced second-order optical nonlinearity of dye molecules adsorbed onto laponite particles. Clays Clay Miner. 1997, 45, 483–485. [Google Scholar] [CrossRef]
- Cione, A.P.P.; Schmitt, C.C.; Neumann, M.G.; Gessner, F. The effect of added salt on the aggregation of clay particles. J. Colloid Interface Sci. 2000, 226, 205–209. [Google Scholar] [CrossRef]
- Ghanadzadeh, A.; Zanjanchi, M.A.; Tirbandpay, R. The role of host environment on the aggregative properties of some ionic dye materials. J. Mol. Struct. 2002, 616, 167–174. [Google Scholar] [CrossRef]
- Lofaj, M.; Bujdák, J. Detection of smectites in ppm and sub-ppm concentrations using dye molecule sensors. Phys. Chem. Miner. 2012, 39, 227–237. [Google Scholar] [CrossRef]
- Pignatello, J.J. The Measurement and Interpretation of Sorption and Desorption Rates for Organic Compounds in Soil Media. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 1999; Volume 69, pp. 1–73. [Google Scholar]
- Lenzi, E.K.; Yednak, C.A.R.; Evangelista, L.R. Non-Markovian diffusion and the adsorption-desorption process. Phys. Rev. E 2010, 81, 011116. [Google Scholar] [CrossRef] [PubMed]
- Skaug, M.J.; Lacasta, A.M.; Ramirez-Piscina, L.; Sancho, J.M.; Lindenberg, K.; Schwartz, D.K. Single-molecule diffusion in a periodic potential at a solid-liquid interface. Soft Matter 2014, 10, 753–759. [Google Scholar] [CrossRef] [PubMed]
- Simonin, J.P.; Bouté, J. Intraparticle diffusion-adsorption model to describe liquid/solid adsorption kinetics. Rev. Mex. Ing. Quim. 2016, 15, 161–173. [Google Scholar]
- Wang, D.; Schwartz, D.K. Non-Brownian Interfacial Diffusion: Flying, Hopping, and Crawling. J. Phys. Chem. C 2020, 124, 19880–19891. [Google Scholar] [CrossRef]
- Krishna, R. A unified approach to the modelling of intraparticle diffusion in adsorption processes. Sep. Purif. Technol. 1993, 7, 91–104. [Google Scholar] [CrossRef]
- Wu, F.-C.; Tseng, R.-L.; Juang, R.-S. Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics. Chem. Eng. J. 2009, 153, 1–8. [Google Scholar] [CrossRef]
- Silva, L.M.S.; Muñoz-Peña, M.J.; Domínguez-Vargas, J.R.; González, T.; Cuerda-Correa, E.M. Kinetic and equilibrium adsorption parameters estimation based on a heterogeneous intraparticle diffusion model. Surf. Interfaces 2021, 22, 100791. [Google Scholar] [CrossRef]
- Baranyaiová, T.; Bujdák, J. Effects of dye surface concentration on the molecular aggregation of xanthene dye in colloidal dispersions of montmorillonite. Clays Clay Miner. 2018, 66, 114–126. [Google Scholar] [CrossRef]
- Cherstvy, A.G.; Safdari, H.; Metzler, R. Anomalous diffusion, nonergodicity, and ageing for exponentially and logarithmically time-dependent diffusivity: Striking differences for massive versus massless particles. J. Phys. D Appl. Phys. 2021, 54, 195401. [Google Scholar] [CrossRef]
- Grebenkov, D.S.; Sposini, V.; Metzler, R.; Oshanin, G.; Seno, F. Exact first-passage time distributions for three random diffusivity models. J. Phys. A Math. Theor. 2021, 54, 04LT01. [Google Scholar] [CrossRef]
- Metzler, R. Brownian motion and beyond: First-passage, power spectrum, non-Gaussianity, and anomalous diffusion. J. Stat. Mech. Theory Exp. 2019, 2019, 114003. [Google Scholar] [CrossRef]
- Brauer, P.; Karger, J. Kinetic Monte Carlo simulation of adsorption, diffusion and reaction in single-file networks at steady state conditions. In Proceedings of the 16th European Simulation Multiconference (ESM 2002), Darmstadt, Germany, 3–5 June 2002; pp. 618–622. [Google Scholar]
- Ledesma-Duran, A.; Hernandez, S.I.; Santamaria-Holek, I. Effect of Surface Diffusion on Adsorption-Desorption and Catalytic Kinetics in Irregular Pores. II. Macro-Kinetics. J. Phys. Chem. C 2017, 121, 14557–14565. [Google Scholar] [CrossRef]
- Sie, S.T. Intraparticle diffusion and reaction kinetics as factors in catalyst particle design. Chem. Eng. J. Biochem. Eng. J. 1993, 53, 1–11. [Google Scholar] [CrossRef]
- Chmelik, C.; Kärger, J. In situ study on molecular diffusion phenomena in nanoporous catalytic solids. Chem. Soc. Rev. 2010, 39, 4864–4884. [Google Scholar] [CrossRef]
- Arbeloa, F.L.; Arbeloa, T.L.; Arbeloa, I.L. Spectroscopy of rhodamine 6G adsorbed on sepiolite aqueous suspensions. J. Colloid Interface Sci. 1997, 187, 105–112. [Google Scholar] [CrossRef]
- Bujdák, J.; Martínez, V.; Arbeloa, F.L.; Iyi, N. Spectral properties of rhodamine 3B adsorbed on the surface of montmorillonites with variable layer charge. Langmuir 2007, 23, 1851–1859. [Google Scholar] [CrossRef] [PubMed]
- Bujdák, J.; Iyi, N.; Fujita, T. The aggregation of methylene blue in montmorillonite dispersions. Clay Miner. 2002, 37, 121–133. [Google Scholar] [CrossRef]
- Bujdák, J.; Janek, M.; Madejová, J.; Komadel, P. Methylene blue interactions with reduced-charge smectites. Clays Clay Miner. 2001, 49, 244–254. [Google Scholar] [CrossRef]
- Peinemann, N.; Helmy, A.K. Cation exchange capacities of safranin, toluidine and alizarin complexes with montmorillonite. Soil Sci. 1999, 164, 650–654. [Google Scholar] [CrossRef]
- van Duffel, B.; Verbiest, T.; Van Elshocht, S.; Persoons, A.; De Schryver, F.C.; Schoonheydt, R.A. Fuzzy assembly and second harmonic generation of clay/polymer/dye monolayer films. Langmuir 2001, 17, 1243–1249. [Google Scholar] [CrossRef]
- Bhattacharjee, D.; Hussain, S.A.; Chakraborty, S.; Schoonheydt, R.A. Effect of nano-clay platelets on the J-aggregation of thiacyanine dye organized in Langmuir–Blodgett films: A spectroscopic investigation. Spectrochim. Acta -A Mol. Biomol. Spectrosc. 2010, 77, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Kureková, V.B.; Belušáková, S.; Boháč, P.; Bujdák, J. Resonance energy transfer in the systems of smectite modified with a fluorescent cationic polymer and a photosensitizer. Appl. Clay Sci. 2019, 183, 105326. [Google Scholar] [CrossRef]
- Nir, S.; Rytwo, G.; Yermiyahu, U.; Margulies, L. A model for cation adsorption to clays and membranes. Colloid Polym. Sci. 1994, 272, 619–632. [Google Scholar] [CrossRef]
- Mishael, Y.G.; Rytwo, G.; Nir, S.; Crespin, M.; Annabi-Bergaya, F.; Van Damme, H. Interactions of monovalent organic cations with pillared clays. J. Colloid Interface Sci. 1999, 209, 123–128. [Google Scholar] [CrossRef]
- Penner, D.; Lagaly, G. Influence of organic and inorganic salts on the coagulation of montmorillonite dispersions. Clays Clay Miner. 2000, 48, 246–255. [Google Scholar] [CrossRef]
- Eren, E.; Afsin, B. Investigation of a basic dye adsorption from aqueous solution onto raw and pre-treated sepiolite surfaces. Dyes Pigments 2007, 73, 162–167. [Google Scholar] [CrossRef]
- Lagaly, G.; Ogawa, M.; Dekany, I. Clay mineral-organic interactions. In Handbook of Clay Science, 2nd ed.; Bergaya, F., Lagaly, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 435–505. [Google Scholar]
- Felbeck, T.; Behnke, T.; Hoffmann, K.; Grabolle, M.; Lezhnina, M.M.; Kynast, U.H.; Resch-Genger, U. Nile-Red-Nanoclay Hybrids: Red Emissive Optical Probes for Use in Aqueous Dispersion. Langmuir 2013, 29, 11489–11497. [Google Scholar] [CrossRef] [PubMed]
- Felbeck, T.; Mundinger, S.; Lezhnina, M.M.; Staniford, M.; Resch-Genger, U.; Kynast, U.H. Multifold Fluorescence Enhancement in Nanoscopic Fluorophore-Clay Hybrids in Transparent Aqueous Media. Chem. Eur. J. 2015, 21, 7582–7587. [Google Scholar] [CrossRef] [PubMed]
- Ley, C.; Brendlé, J.; Miranda, M.; Allonas, X. Spectroscopic Studies of the Interactions between a Cationic Cyanine Dye and a Synthetic Phyllosilicate: From Photophysics to Hybrid Materials. Langmuir 2017, 33, 6812–6818. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.W.; Kim, J.H.; Moon, D.H.; Shin, H.J. Adsorption and precipitation of anionic dye Reactive Red 120 from aqueous solution by aminopropyl functionalized magnesium phyllosilicate. Korean J. Chem. Eng. 2019, 36, 101–108. [Google Scholar] [CrossRef]
- Norrfors, K.K.; Bouby, M.; Heck, S.; Finck, N.; Marsac, R.; Schäfer, T.; Geckeis, H.; Wold, S. Montmorillonite colloids: I. Characterization and stability of dispersions with different size fractions. Appl. Clay Sci. 2015, 114, 179–189. [Google Scholar] [CrossRef]
- Dhont, J.K.G. An Introduction to Dynamics of Colloids; Elsevier Science: Amsterdam, The Netherlands, 1996. [Google Scholar]
- Lagaly, G.; Dékány, I. Chapter 8—Colloid Clay Science. In Developments in Clay Science; Bergaya, F., Lagaly, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; Volume 5, pp. 243–345. [Google Scholar]
- Boháč, P.; Bujdák, J. Tuning the photophysical properties of cyanine dyes with clay minerals. Clays Clay Miner. 2018, 66, 127–137. [Google Scholar] [CrossRef]
- Boháč, P.; Czímerová, A.; Bujdák, J. Enhanced luminescence of 3,3′-diethyl-2,2′-thiacyanine cations adsorbed on saponite particles. Appl. Clay Sci. 2016, 127, 64–69. [Google Scholar] [CrossRef]
- Belušáková, S.; Martínez-Martínez, V.; Arbeloa, I.L.; Bujdák, J. Resonance Energy Transfer between Dye Molecules in Colloids of a Layered Silicate. The Effect of Dye Surface Concentration. J. Phys. Chem. C 2017, 121, 8300–8309. [Google Scholar] [CrossRef]
- Stöter, M.; Rosenfeldt, S.; Breu, J. Tunable Exfoliation of Synthetic Clays. Annu. Rev. Mater. Res. 2015, 45, 129–151. [Google Scholar] [CrossRef]
- Matejdes, M.; Stöter, M.; Czerwieniec, R.; Leitl, M.; Rosenfeldt, S.; Schumacher, T.; Albert, J.; Lippitz, M.; Yersin, H.; Breu, J. Sandwich-Like Encapsulation of a Highly Luminescent Copper(I) Complex. Adv. Opt. Mater. 2021, 9, 2100516. [Google Scholar] [CrossRef]
- Schnupfhagn, C.; Schumacher, T.; Markus, P.; Papastavrou, G.; Aftenieva, O.; König, T.A.F.; Dudko, V.; Matejdes, M.; Breu, J.; Lippitz, M. Disentangling the Orientations of Spectrally Overlapping Transition Dipoles in Dense Dye Layers. Nano Lett. 2022, 22, 7499–7505. [Google Scholar] [CrossRef] [PubMed]
- Stöter, M.; Biersack, B.; Reimer, N.; Herling, M.; Stock, N.; Schobert, R.; Breu, J. Ordered Heterostructures of Two Strictly Alternating Types of Nanoreactors. Chem. Mater. 2014, 26, 5412–5419. [Google Scholar] [CrossRef]
- Möller, M.W.; Hirsemann, D.; Haarmann, F.; Senker, J.; Breu, J. Facile Scalable Synthesis of Rectorites. Chem. Mater. 2010, 22, 186–196. [Google Scholar] [CrossRef]
- Wang, W.; Lu, T.; Chen, Y.; Tian, G.; Sharma, V.K.; Zhu, Y.; Zong, L.; Wang, A. Mesoporous silicate/carbon composites derived from dye-loaded palygorskite clay waste for efficient removal of organic contaminants. Sci. Total Environ. 2019, 696, 133955. [Google Scholar] [CrossRef] [PubMed]
- Hajjaji, M.; Alami, A.; El Bouadili, A. Removal of methylene blue from aqueous solution by fibrous clay minerals. J. Hazard. Mater. 2006, 135, 188–192. [Google Scholar] [CrossRef] [PubMed]
- Detellier, C. Functional Kaolinite. Chem. Rec. 2018, 18, 868–877. [Google Scholar] [CrossRef] [PubMed]
- Siegnin, R.; Dedzo, G.K.; Ngameni, E. Sulfonation of the interlayer surface of kaolinite. Appl. Clay Sci. 2022, 226, 106570. [Google Scholar] [CrossRef]
- Epstein, M.; Yariv, S. Visible-spectroscopy study of the adsorption of alizarinate by Al-montmorillonite in aqueous suspensions and in solid state. J. Colloid Interface Sci. 2003, 263, 377–385. [Google Scholar] [CrossRef]
- Sas, S.; Danko, M.; Lang, K.; Bujdák, J. Photoactive hybrid material based on kaolinite intercalated with a reactive fluorescent silane. Appl. Clay Sci. 2015, 108, 208–214. [Google Scholar] [CrossRef]
- Shichi, T.; Takagi, K. Clay minerals as photochemical reaction fields. J. Photochem. Photobiol. C 2000, 1, 113–130. [Google Scholar] [CrossRef]
- Khaorapapong, N.; Ogawa, M. Solid-state intercalation of 8-Hydroxyquinoline into Li(I)-, Zn(II)- and Mn(II)-montmorillonites. Appl. Clay Sci. 2007, 35, 31–38. [Google Scholar] [CrossRef]
- Khaorapapong, N.; Ogawa, M. Solid-state intercalation of organic and inorganic substances in smectites. Clay Sci. 2011, 15, 147–159. [Google Scholar]
- Tan, K.L.; Hameed, B.H. Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions. J. Taiwan Inst. Chem. Eng. 2017, 74, 25–48. [Google Scholar] [CrossRef]
- Qiu, H.; Lv, L.; Pan, B.C.; Zhang, Q.J.; Zhang, W.M.; Zhang, Q.X. Critical review in adsorption kinetic models. J. Zhejiang Univ. Sci. B 2009, 10, 716–724. [Google Scholar] [CrossRef]
- Simonin, J.P. On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem. Eng. J. 2016, 300, 254–263. [Google Scholar] [CrossRef]
- Bujdák, J. Adsorption kinetics models in clay systems. The critical analysis of pseudo-second order mechanism. Appl. Clay Sci. 2020, 191, 105630. [Google Scholar] [CrossRef]
- Gonzalez-Lopez, M.E.; Laureano-Anzaldo, C.M.; Perez-Fonseca, A.A.; Arellano, M.; Robledo-Ortiz, J.R. A Critical Overview of Adsorption Models Linearization: Methodological and Statistical Inconsistencies. Sep. Purif. Rev. 2022, 51, 358–372. [Google Scholar] [CrossRef]
- Moussout, H.; Ahlafi, H.; Aazza, M.; Maghat, H. Critical of linear and nonlinear equations of pseudo-first order and pseudo-second order kinetic models. Karbala Int. J. Mod. Sci. 2018, 4, 244–254. [Google Scholar] [CrossRef]
- Revellame, E.D.; Fortela, D.L.; Sharp, W.; Hernandez, R.; Zappi, M.E. Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: A review. Clean. Eng. Technol. 2020, 1, 100032. [Google Scholar] [CrossRef]
- Guo, X.; Wang, J. Comparison of linearization methods for modeling the Langmuir adsorption isotherm. J. Mol. Liq. 2019, 296, 111850. [Google Scholar] [CrossRef]
- El-Khaiary, M.I.; Malash, G.F.; Ho, Y.-S. On the use of linearized pseudo-second-order kinetic equations for modeling adsorption systems. Desalination 2010, 257, 93–101. [Google Scholar] [CrossRef]
- Cherkasov, N. Liquid-phase adsorption: Common problems and how we could do better. J. Mol. Liq. 2020, 301, 112378. [Google Scholar] [CrossRef]
- Michaelis, L.; Granick, S. Metachromasy of basic dyestuffs. J. Am. Chem. Soc. 1945, 67, 1212–1219. [Google Scholar] [CrossRef]
- Yariv, S.; Lurie, D. Metachromasy in Clay Minerals. Part I. Sorption of Methylene-Blue by Montmorillonite. Isr. J. Chem. 1971, 9, 537–552. [Google Scholar] [CrossRef]
- Hepler, L.G.; Yariv, S.; Dobrogowska, C. Calorimetric investigation of adsorption of an aqueous metachromic dye (crystal-violet) on montmorillonite. Thermochim. Acta 1987, 121, 373–379. [Google Scholar] [CrossRef]
- Sunwar, C.B.; Bose, H. Effect of clay minerals on the visible spectra of thiazine dyes. J. Colloid Interface Sci. 1990, 136, 54–60. [Google Scholar] [CrossRef]
- Kugel, R.W. Metachromasy—The interaction between dyes and polyelectrolytes in aqueous solution. Adv. Chem. Ser. 1993, 236, 507–533. [Google Scholar]
- Boháč, P.; Budzák, Š.; Planetová, V.; Klement, R.; Bujdák, J. Adsorption-Induced Fluorescence of Pseudoisocyanine Monomers in Systems with Layered Silicates. J. Phys. Chem. C 2022, 126, 17255–17265. [Google Scholar] [CrossRef]
- Barlog, M.; Pálková, H.; Bujdák, J. Luminescence of a laser dye in organically-modified layered silicate pigments. Dyes Pigmetns 2021, 191, 109380. [Google Scholar] [CrossRef]
- Ong, S.T.; Keng, P.S.; Lee, S.L.; Hung, Y.T. Low cost adsorbents for sustainable dye containing-wastewater treatment. Asian J. Chem. 2014, 26, 1873–1881. [Google Scholar] [CrossRef]
- Sudha, S.; Giri Dev, V.R. Low cost adsorbents—An overview. Synth. Fibres 2007, 36, 5–9. [Google Scholar]
- Rafatullah, M.; Sulaiman, O.; Hashim, R.; Ahmad, A. Adsorption of methylene blue on low-cost adsorbents: A review. J. Hazard. Mater. 2010, 177, 70–80. [Google Scholar] [CrossRef] [PubMed]
- Alexander, J.A.; Ahmad Zaini, M.A.; Surajudeen, A.; Aliyu, E.N.U.; Omeiza, A.U. Surface modification of low-cost bentonite adsorbents—A review. Part. Sci. Technol. 2019, 37, 534–545. [Google Scholar] [CrossRef]
- Goyal, G.; Dwivedi, A.K. Decolourization and deodourization of soyabean oil: A review. J. Ind. Pollut. Control 2013, 29, 103–110. [Google Scholar]
- Sharma, P.; Kaur, H.; Sharma, M.; Sahore, V. A review on applicability of naturally available adsorbents for the removal of hazardous dyes from aqueous waste. Environ. Monit. Assess. 2011, 183, 151–195. [Google Scholar] [CrossRef]
- Wan Ngah, W.S.; Teong, L.C.; Hanafiah, M.A.K.M. Adsorption of dyes and heavy metal ions by chitosan composites: A review. Carbohydr. Polym. 2011, 83, 1446–1456. [Google Scholar] [CrossRef]
- Kyzas, G.Z.; Bikiaris, D.N. Recent modifications of chitosan for adsorption applications: A critical and systematic review. Marine Drugs 2015, 13, 312–337. [Google Scholar] [CrossRef]
- Anastopoulos, I.; Mittal, A.; Usman, M.; Mittal, J.; Yu, G.; Núñez-Delgado, A.; Kornaros, M. A review on halloysite-based adsorbents to remove pollutants in water and wastewater. J. Mol. Liq. 2018, 269, 855–868. [Google Scholar] [CrossRef]
- Mostafa, A.G.; Abd El-Hamid, A.I.; Akl, M.A. Surfactant-supported organoclay for removal of anionic food dyes in batch and column modes: Adsorption characteristics and mechanism study. Appl. Water Sci. 2023, 13, 163. [Google Scholar] [CrossRef]
- Saavedra-Labastida, E.; Díaz-Nava, M.C.; Illescas, J.; Muro, C. Comparison of the Removal of an Anionic Dye from Aqueous Solutions by Adsorption with Organically Modified Clays and their Composites. Water Air Soil Pollut. 2019, 230, 88. [Google Scholar] [CrossRef]
- Zhang, Q.; Jing, R.; Zhao, S.; Wu, M.; Liu, X.; Shao, Y.; Lv, F.; Liu, A.; Meng, Z. Adsorption of cationic and anionic dyes on montmorillonite in single and mixed wastewater. J. Porous Mater. 2019, 26, 1861–1867. [Google Scholar] [CrossRef]
- Kenne Dedzo, G.; Rigolet, S.; Josien, L.; Ngameni, E.; Dzene, L. Functionalization of synthetic saponite: Identification of grafting sites and application for anions sequestration. Appl. Surf. Sci. 2021, 567, 150911. [Google Scholar] [CrossRef]
- Raduly, F.M.; Rădițoiu, V.; Fierăscu, R.C.; Rădițoiu, A.; Nicolae, C.A.; Purcar, V. Influence of Organic-Modified Inorganic Matrices on the Optical Properties of Palygorskite–Curcumin-Type Hybrid Materials. Crystals 2022, 12, 1005. [Google Scholar]
- Arlêu Teixeira, R.; Lima, E.; Benetti, A.; Naushad, M.; Thue, P.S.; Mello, B.; Simões dos Reis, G.; Rabiee, N.; Franco, D.; Seliem, M. Employ a Clay@TMSPDETA hybrid material as an adsorbent to remove textile dyes from wastewater effluents. Environ. Sci. Pollut. Res. 2023, 30, 86010–86024. [Google Scholar] [CrossRef]
- Saeed, M.; Munir, M.; Nafees, M.; Shah, S.S.A.; Ullah, H.; Waseem, A. Synthesis, characterization and applications of silylation based grafted bentonites for the removal of Sudan dyes: Isothermal, kinetic and thermodynamic studies. Microporous Mesoporous Mater. 2020, 291, 109697. [Google Scholar] [CrossRef]
- Queiroga, L.N.F.; Pereira, M.B.B.; Silva, L.S.; Silva Filho, E.C.; Santos, I.M.G.; Fonseca, M.G.; Georgelin, T.; Jaber, M. Microwave bentonite silylation for dye removal: Influence of the solvent. Appl. Clay Sci. 2019, 168, 478–487. [Google Scholar] [CrossRef]
- Guillermin, D.; Debroise, T.; Trigueiro, P.; de Viguerie, L.; Rigaud, B.; Morlet-Savary, F.; Balme, S.; Janot, J.M.; Tielens, F.; Michot, L.; et al. New pigments based on carminic acid and smectites: A molecular investigation. Dyes Pigments 2019, 160, 971–982. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, C.; Yang, L.; Cui, J.; Hao, Q.; Sun, D. Handy purifier based on bacterial cellulose and Ca-montmorillonite composites for efficient removal of dyes and antibiotics. Carbohydr. Polym. 2019, 222, 115017. [Google Scholar] [CrossRef]
- Kouda, I.; Ben Seddik, N.; Laaziz, A.; Hadri, M.; Draoui, K.; Elmidaoui, A. Efficient removal of cationic dye from wastewater using novel low-cost adsorbent, cellulose-clay composite: Insights from isotherm, kinetic, thermodynamic, and molecular dynamics simulation studies. J. Mol. Struct. 2023, 1291, 135865. [Google Scholar] [CrossRef]
- Dutta, B.; Ray, S.K. Synthesis of copolymer nanocomposite by in situ intercalative polymerization for batch and fixed bed adsorption. Polym. Eng. Sci. 2023, 63, 2578–2595. [Google Scholar] [CrossRef]
- Sundaram, E.J.S.; Dharmalingam, P. Synthesis and characterization of PMMA polymer/clay nanocomposites for removal of dyes. Asian J. Chem. 2019, 31, 2589–2595. [Google Scholar] [CrossRef]
- Hosseini, S.A.; Vossoughi, M.; Mahmoodi, N.M.; Sadrzadeh, M. Clay-based electrospun nanofibrous membranes for colored wastewater treatment. Appl. Clay Sci. 2019, 168, 77–86. [Google Scholar] [CrossRef]
- Amina, S.; Boumediene, B.; Adel, M.; Boukoussa, B.; Abbes, M.; Chaibi, W.; Nacer, A.; Khadidja, K.; Ismail, I.; Iqbal, J.; et al. Kinetics and Thermodynamic Studies for Removal of Trypan Blue and Methylene Blue from Water Using Nano Clay Filled Composite of HTAB and PEG and its Antibacterial Activity. J. Polym. Environ. 2023. [Google Scholar] [CrossRef]
- Zhang, Y.; Liang, L.; Chen, Y.; Chen, X.M.; Liu, Y. Construction and efficient dye adsorption of supramolecular hydrogels by cyclodextrin pseudorotaxane and clay. Soft Matter 2019, 15, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, L.M.; Ollier, R.P.; Alvarez, V.A. Sorption behavior of polyvinyl alcohol/bentonite hydrogels for dyes removal. J. Polym. Res. 2019, 26, 142. [Google Scholar] [CrossRef]
- Safarzadeh, H.; Peighambardoust, S.J.; Peighambardoust, S.H. Application of a novel sodium alginate-graft-poly(methacrylic acid-co-acrylamide)/montmorillonite nanocomposite hydrogel for removal of malachite green from wastewater. J. Polym. Res. 2023, 30, 157. [Google Scholar] [CrossRef]
- Santoso, S.P.; Kurniawan, A.; Soetaredjo, F.E.; Cheng, K.C.; Putro, J.N.; Ismadji, S.; Ju, Y.H. Eco-friendly cellulose–bentonite porous composite hydrogels for adsorptive removal of azo dye and soilless culture. Cellulose 2019, 26, 3339–3358. [Google Scholar] [CrossRef]
- Pan, Y.; Xie, H.; Liu, H.; Cai, P.; Xiao, H. Novel cellulose/montmorillonite mesoporous composite beads for dye removal in single and binary systems. Bioresour. Technol. 2019, 286, 121366. [Google Scholar] [CrossRef]
- Leshaf, A.; Ziani Cherif, H.; Benmansour, K. Adsorption of Acidol Red 2BE-NW Dye from Aqueous Solutions on Carboxymethyl Cellulose/Organo-Bentonite Composite: Characterization, Kinetic and Thermodynamic Studies. J. Polym. Environ. 2019, 27, 1054–1064. [Google Scholar] [CrossRef]
- Qiu, C.; Li, Y.; Liu, H.; Wang, X.; Hu, S.; Qi, H. A novel crosslinking strategy on functional cellulose-based aerogel for effective and selective removal of dye. Chem. Eng. J. 2023, 463, 142404. [Google Scholar] [CrossRef]
- Sabzi, M.; Shafagh, N.; Mohammadi, M. Assembly of gelatin biopolymer to fibrous sepiolite clay for efficient dye removal from wastewater. J. Appl. Polym. Sci. 2019, 136, 48266. [Google Scholar] [CrossRef]
- De Marco, C.; Mauler, R.S.; Daitx, T.S.; Krindges, I.; Cemin, A.; Bonetto, L.R.; Crespo, J.S.; Guégan, R.; Carli, L.N.; Giovanela, M. Removal of malachite green dye from aqueous solutions by a magnetic adsorbent. Sep. Sci. Technol. 2019, 55, 1089–1101. [Google Scholar] [CrossRef]
- Belachew, N.; Bekele, G. Synergy of Magnetite Intercalated Bentonite for Enhanced Adsorption of Congo Red Dye. Silicon 2019, 12, 603–612. [Google Scholar] [CrossRef]
- Açışlı, Ö. Preparation of Fe3O4/organo-montmorillonite nanocomposite and its use as an adsorbent for removal of an anionic dye. Desalin. Water Treat. 2019, 139, 369–378. [Google Scholar] [CrossRef]
- Ahmed, H.; Shwan, D.; Agha, N.; Radha, F. Magnetic oxide nano-porous adsorbents: A highly efficient approach for acid Fuchsin removal from medical laboratory effluents via adsorption process. React. Kinet. Mech. Catal. 2023, 136, 2203–2222. [Google Scholar] [CrossRef]
- Beigi, P.; Ganjali, F.; Hassanzadeh-Afruzi, F.; Salehi, M.M.; Maleki, A. Enhancement of adsorption efficiency of crystal violet and chlorpyrifos onto pectin hydrogel@Fe3O4-bentonite as a versatile nanoadsorbent. Sci. Rep. 2023, 13, 10764. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, N.H.; Shameli, K.; Abdullah, E.C.; Abdullah, L.C. Solid matrices for fabrication of magnetic iron oxide nanocomposites: Synthesis, properties, and application for the adsorption of heavy metal ions and dyes. Compos. B Eng. 2019, 162, 538–568. [Google Scholar] [CrossRef]
- Osman, A.I.; El-Monaem, E.M.A.; Elgarahy, A.M.; Aniagor, C.O.; Hosny, M.; Farghali, M.; Rashad, E.; Ejimofor, M.I.; López-Maldonado, E.A.; Ihara, I.; et al. Methods to prepare biosorbents and magnetic sorbents for water treatment: A review. Environ. Chem. Lett. 2023, 21, 2337–2398. [Google Scholar] [CrossRef]
- Huang, P.; Xia, D.; Kazlauciunas, A.; Thornton, P.; Lin, L.; Menzel, R. Dye-Mediated Interactions in Chitosan-Based Polyelectrolyte/Organoclay Hybrids for Enhanced Adsorption of Industrial Dyes. ACS Appl. Mater. Interfaces 2019, 11, 11961–11969. [Google Scholar] [CrossRef]
- De Queiroga, L.N.F.; França, D.B.; Rodrigues, F.; Santos, I.M.G.; Fonseca, M.G.; Jaber, M. Functionalized bentonites for dye adsorption: Depollution and production of new pigments. J. Environ. Chem. Eng. 2019, 7, 103333. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, X.; Yan, Y.; Chen, D.; Huang, L.; Zhang, J.; Ke, Y.; Tan, S. The utilization of a three-dimensional reduced graphene oxide and montmorillonite composite aerogel as a multifunctional agent for wastewater treatment. RSC Adv. 2018, 8, 4239–4248. [Google Scholar] [CrossRef]
- Jiang, D.B.; Jing, C.; Yuan, Y.; Feng, L.; Liu, X.; Dong, F.; Dong, B.; Zhang, Y.X. 2D-2D growth of NiFe LDH nanoflakes on montmorillonite for cationic and anionic dye adsorption performance. J. Colloid Interface Sci. 2019, 540, 398–409. [Google Scholar] [CrossRef] [PubMed]
- Okada, T.; Taguchi, N.; Shimomura, S. Spherical silica particles coated with lamellar nanocomposites based on a hydrophobic functionalized phyllosilicate. Colloids Surf. A Physicochem. Eng. Asp. 2023, 676, 132135. [Google Scholar] [CrossRef]
- Far, H.S.; Najafi, M.; Hasanzadeh, M.; Rahimi, R. A 3D-printed hierarchical porous architecture of MOF@clay composite for rapid and highly efficient dye scavenging. New J. Chem. 2022, 46, 23351–23360. [Google Scholar] [CrossRef]
- Chakraborty, A.; Acharya, H. ZnAl–LDH/MOF-5 heterostructure nanocomposite for photocatalytic degradation of organic dyes under sunlight irradiation. New J. Chem. 2023, 47, 1498–1507. [Google Scholar] [CrossRef]
- Far, H.S.; Hasanzadeh, M.; Najafi, M.; Rabbani, M. Highly porous organoclay-supported bimetal-organic framework (CoNi-MOF/OC) composite with efficient and selective adsorption of organic dyes. Environ. Sci. Pollut. Res. Int. 2023, 30, 43714–43725. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, A.; Asghar, S.; Roudgar-Amoli, M.; Shariatinia, Z. Water remediation using activated montmorillonite/metal-organic framework nanocomposites: Response surface methodology, kinetic, and thermodynamic studies. Process Saf. Environ. Prot. 2023, 177, 507–529. [Google Scholar] [CrossRef]
- Jimtaisong, A.; Sarakonsri, T. Chitosan intercalated bentonite as natural adsorbent matrix for water-soluble sappanwood dye. Int. J. Biol. Macromol. 2019, 129, 737–743. [Google Scholar] [CrossRef]
- Hazarika, D.; Karak, N. Nanocomposite of waterborne hyperbranched polyester and clay@carbon dot as a robust photocatalyst for environmental remediation. Appl. Surf. Sci. 2019, 498, 143832. [Google Scholar] [CrossRef]
- Bahrudin, N.N.; Nawi, M.A. Effects of montmorillonite on the enhancement of physicochemical, optical and photocatalytic properties of TiO2/chitosan bilayer photocatalyst. Korean J. Chem. Eng. 2019, 36, 478–488. [Google Scholar] [CrossRef]
- Zhang, C.; Yu, Y.; Wei, H.; Li, K. In situ growth of cube-like AgCl on montmorillonite as an efficient photocatalyst for dye (Acid Red 18) degradation. Appl. Surf. Sci. 2018, 456, 577–585. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bujdák, J. Controversial Issues Related to Dye Adsorption on Clay Minerals: A Critical Review. Molecules 2023, 28, 6951. https://doi.org/10.3390/molecules28196951
Bujdák J. Controversial Issues Related to Dye Adsorption on Clay Minerals: A Critical Review. Molecules. 2023; 28(19):6951. https://doi.org/10.3390/molecules28196951
Chicago/Turabian StyleBujdák, Juraj. 2023. "Controversial Issues Related to Dye Adsorption on Clay Minerals: A Critical Review" Molecules 28, no. 19: 6951. https://doi.org/10.3390/molecules28196951
APA StyleBujdák, J. (2023). Controversial Issues Related to Dye Adsorption on Clay Minerals: A Critical Review. Molecules, 28(19), 6951. https://doi.org/10.3390/molecules28196951