Application of Magnetic Materials Combined with Echo® Mass Spectrometry System in Analysis of Illegal Drugs in Sewage
Abstract
:1. Introduction
2. Results
2.1. Magnetic Solid-Phase Extraction Technique and Characterization of Magnetic Materials
2.2. Method Validation
3. Materials and Methods
3.1. Material and Reagents
3.2. Test Instruments and Analytical Methods
3.3. Synthesis of Magnetic Adsorbents
3.4. Wastewater Pretreatment Method
3.5. Method Validation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zuccato, E.; Chiabrando, C.; Castiglioni, S.; Calamari, D.; Bagnati, R.; Schiarea, S.; Fanelli, R. Cocaine in surface waters: A new evidence-based tool to monitor community drug abuse. Environ. Health 2005, 4, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Castiglioni, S.; Bijlsma, L.; Covaci, A.; Emke, E.; Hernández, F.; Reid, M.; Ort, C.; Thomas, K.V.; van Nuijs, A.L.N.; de Voogt, P.; et al. Evaluation of uncertainties associated with the determination of community drug use through the measurement of sewage drug biomarkers. Environ. Sci. Technol. 2013, 47, 1452–1460. [Google Scholar] [CrossRef] [PubMed]
- Daughton, C.G. Real—Time estimation of small—Area populations with human biomarkers in sewage. Sci. Total Environ. 2012, 414, 6–21. [Google Scholar] [CrossRef] [PubMed]
- Burgard, D.A.; Fuller, R.; Becker, B.; Ferrell, R.; Dinglasan-Panlilio, M.J. Potential trends in Attention Deficit Hyperactivity Disorder (ADHD) drug use on a college campus: Wastewateranalysis of amphetamine and ritalinic acid. Sci. Total Environ. 2013, 450–451, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Castiglioni, S.; Borsotti, A.; Senta, I.; Zuccato, E. Wastewater analysis to monitor spatial and temporal patterns of use of two syntheticr ecreational drugs, Ketamine and Mephedrone, in Italy. Environ. Sci. Technol. 2015, 49, 5563–5570. [Google Scholar] [CrossRef] [PubMed]
- Daughton, C.G. Emerging pollutants, and communicating the science of environmental chemistry and mass spectrometry: Pharmaceuticals in the environment. J. Am. Soc. Mass Spectrom. 2001, 12, 1067–1076. [Google Scholar] [CrossRef] [PubMed]
- Zuccato, E.; Chiabrando, C.; Castiglioni, S.; Bagnati, R.; Fanelli, R.L. Estimating community drug abuse by wastewater analysis. Environ. Health Perspect. 2008, 116, 1027–1032. [Google Scholar] [CrossRef] [PubMed]
- van Nuijs, A.L.; Mougel, J.F.; Tarcomnicu, I.; Bervoets, L.; Blust, R.; Philippe, G.J.; Neels, H.; Covaci, V. Sewage epidemiology: A real-time approach to estimate the consumption of illicit drugs in Brussels, Belgium. Environ. Int. 2011, 37, 612–621. [Google Scholar] [CrossRef] [PubMed]
- Postigo, C.; Lopez, D.E.; Alda, M.J.; Barceló, D. Analysis of drugs of abuse and their human metabolites in water by LC-MS2: A non-intrusive tool for drug abuse estimation at the community level. TrAC Trends Anal. Chem. 2008, 27, 1053–1069. [Google Scholar] [CrossRef]
- Du, P.; Zhou, Z.L.; Huang, H.M.; Han, S.; Xu, Z.Q.; Bai, Y.; Li, X. Estimating population exposure to phthalate esters in major Chinese cities through wastewater-based epidemiology. Sci. Total Environ. 2018, 643, 1602–1609. [Google Scholar] [CrossRef]
- Feng, L.Z.; Zhang, W.; Li, X.Q. Monitoring of regional drug abuse through wastewater-based epidemiology—A critical review. Sci. China Earth Sci. 2018, 61, 239–255. [Google Scholar] [CrossRef]
- Zuccato, E.; Gracia-Lor, E.; Rousis, N.I.; Parabiaghi, A.; Senta, I.; Riva, F.; Castiglioni, S. Illicit drug consumption in school populations measured by wastewater analysis. Drug Alcohol Depend. 2017, 178, 2852–2890. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.H.; Tan, Y.Z.; Li, P.; Ren, Y. Can water quality indicators and biomarkers be used to estimate realtime population? Sci. Total Environ. 2019, 660, 603–610. [Google Scholar]
- Rico, M.; Andrés-Costa, M.J.; Picó, Y. Estimating population size in wastewater-based epidemiology. Valencia metropolitan area as a case study. J. Hazard. Mater. 2017, 323, 156–165. [Google Scholar] [CrossRef]
- Archer, E.; Castrignanò, E.; Kasprzyk-Hordern, B.; Wolfaardt, G.M. Wastewater-based epidemiology and enantiomeric profiling for drugs of abuse in South African wastewaters. Sci. Total Environ. 2018, 625, 792–800. [Google Scholar] [CrossRef]
- Been, F.; Bifisma, L.; Benaglia, L.; Berset, J.D.; Botero-Coy, A.M.; Castiglioni, S.; Kraus, L.; Zobel, F.; Schaub, M.P.; Buecheli, A.; et al. Assessing geographical differences in illicit drug consumption—A comparison of results from epidemiological and wastewater data in Germany and Switzerland. Drug Alcohol Depend. 2016, 161, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Raimondo, B.; Methsiri, E.; Wayne, H.; Jochen, F.M.; Foon, Y.L.; Jake, W.O.; Phong, K.T. Association between purity of drug seizures and illicit drug loads measured in wastewater in a South East Queensland catchment over a six year period. Sci. Total Environ. 2018, 635, 779–783. [Google Scholar]
- Heuett, N.V.; Ramirez, C.E.; Fernandez, A.; Gardinali, P.R. Analysis of drugs of abuse by online SPE-LC high resolution mass spectrometry: Communal assessment of consumption. Sci. Total Environ. 2015, 511, 319–330. [Google Scholar] [CrossRef]
- Yang, F.Y.; Zou, Y.; Ni, C.F.; Wang, R.; Liang, C.; Zhang, J.B.; Yuan, X.L.; Liu, W.B. Megnetic dispersive solid-phase extraction based on modified magnetic nanopaticles for the detection of cocaine and cocaine metabolites in human urine by high-performance LC-MS. J. Sep. Sci. 2017, 40, 4234–4245. [Google Scholar] [CrossRef]
- Ibrahim, W.A.W.; Nodeh, H.R.; Aboul-Enein, H.Y.; Sanagi, M.M. Magnetic solid-phase extraction based on modified ferum oxides for enrichment, preconcentration, and isolation of pesticides and selected pollutants. Crit. Rev. Anal. Chem. 2015, 45, 270–287. [Google Scholar] [CrossRef]
- Ramandi, N.F.; Shemirani, F. Selective ionic liquid ferrofluid based dispersive-solid phase extraction for simultaneous preconcentration/separation of lead and cadmium in milk andbiological samples. Talanta 2015, 131, 404–411. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.W.; Lian, R.; Yang, F.Y.; Xu, Z.R.; Cao, F.Q.; Wang, R.; Liang, C.; Zhang, Y.R. Rapid quantitation of three synthetic cathinones in urine by magnetic dispersive solid-phase extraction combined with DART-HRMS. Anal. Methods 2021, 13, 5048–5055. [Google Scholar] [CrossRef] [PubMed]
- Kinyua, J.; Covaci, A.; Maho, W.; McCall, A.; Neels, H.; Nuijs, A.L.N. Sewage-basedepidemiology in monitoring the use of new psychoactive substances: Validation and applicationof an analytical method using LC-MS/MS. Drug Test. Anal. 2015, 7, 812–818. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Liu, C.; Hua, W.; Ghislain, L.P.; Liu, J.; Aschenbrenner, L.; Noell, S.; Dirico, K.J.; Lanyon, L.F.; Steppan, C.M.; et al. Acoustic ejection mass spectrometry for high-throughput analysis. Anal. Chem. 2021, 93, 10850–10861. [Google Scholar] [CrossRef] [PubMed]
- Liu, C. Acoustic ejection mass spectrometry: Fundamentals and applications in high-throughput drug discovery. Expert Opin. Drug Discov. 2022, 17, 775–787. [Google Scholar] [CrossRef] [PubMed]
- Wilson, Z.S. Acoustic ejection mass spectrometry: Development, applications, and future perspective. Biomed. Chromatogr. 2022, 36, e5278. [Google Scholar]
- Deng, Y.H.; Qi, D.W.; Deng, C.H.; Zhang, X.M.; Zhao, D.Y. Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J. Am. Chem. Soc. 2008, 130, 28–29. [Google Scholar] [CrossRef]
No | Drugs | Linear Range (ng/mL) | LOQ (ng/mL) | Linear Regression Equation | R2 |
---|---|---|---|---|---|
1 | Amphetamine | 2–500 | 2 | y = 0.00200 x + −8.92197e−4 | 0.99968 |
2 | Methamphetamine | 1–250 | 1 | y = 0.00625 x + 0.00113 | 0.99603 |
3 | O6-monoacetylmorphine | 2–500 | 2 | y = 0.00463 x + 3.36531e−4 | 0.99827 |
4 | Morphine | 2–500 | 2 | y = 0.00218 x + 1.56023e−4 | 0.99509 |
5 | Ketamine | 1–500 | 1 | y = 0.00318 x + 0.00102 | 0.99772 |
6 | Norketamine | 2–500 | 2 | y = 0.00256 x + 0.00136 | 0.99593 |
7 | Cocaine | 1–500 | 1 | y = 0.00721 x + 0.00269 | 0.99694 |
8 | Benzoylecgonine | 1–500 | 1 | y = 0.00299 x + 0.00105 | 0.99501 |
9 | 3,4-Methylenedioxyamphetamine | 2–500 | 2 | y = 0.04854 x + −0.00804 | 0.99952 |
10 | 3,4-methylenedioxymethamphetamine | 2–500 | 2 | y = 0.00244 x + −5.97610e−4 | 0.99522 |
11 | Cathinone | 1–500 | 1 | y = 0.00341 x + 0.00402 | 0.99550 |
12 | Methcathinone | 1–500 | 1 | y = 0.00162 x + −0.00110 | 0.99264 |
13 | Fentanyl | 1–500 | 1 | y = 0.00608 x + −0.00142 | 0.99910 |
14 | Diazepam | 1–500 | 1 | y = 0.00313 x + 0.00316 | 0.99822 |
15 | Estazolam | 1–500 | 1 | y = 0.00394 x + 5.11284e−4 | 0.99747 |
16 | Methadone | 1–500 | 1 | y = 0.00664 x + 0.00565 | 0.99431 |
17 | N-(1-methoxy-3,3-dimethyl-1-oxobutan-2-yl)-1-(5-fluoropentyl)-1H-indole- 3-carboxamide | 1–500 | 1 | y = 0.02089 x + 0.03709 | 0.99773 |
No. | Drugs | Precision, RSD % (n = 6) | ||
---|---|---|---|---|
Sample 5 | Sample 6 | Sample 7 | ||
1 | Amphetamine | 3.4 | 2.3 | 2.5 |
2 | Methamphetamine | 3.4 | 3.8 | 4.5 |
3 | O6-monoacetylmorphine | 2.7 | 3.4 | 3.4 |
4 | Morphine | 1.6 | 4.9 | 4.7 |
5 | Ketamine | 2.6 | 2.7 | 3.7 |
6 | Norketamine | 4.0 | 0.8 | 4.8 |
7 | Cocaine | 4.8 | 4.8 | 3.6 |
8 | Benzoylecgonine | 1.4 | 2.5 | 2.7 |
9 | 3,4-Methylenedioxyamphetamine | 2.3 | 3.4 | 4.1 |
10 | 3,4-methylenedioxymethamphetamine | 4.4 | 3.4 | 3.6 |
11 | Cathinone | 1.9 | 4.3 | 3.7 |
12 | Methcathinone | 2.5 | 4.1 | 2.9 |
13 | Fentanyl | 4.2 | 4.6 | 4.9 |
14 | Diazepam | 3.3 | 4.4 | 4.5 |
15 | Estazolam | 2.1 | 3.3 | 1.9 |
16 | Methadone | 5.0 | 4.9 | 2.3 |
17 | N-(1-methoxy-3,3-dimethyl-1-oxobutan-2-yl)-1-(5-fluoropentyl)-1H-indole- 3-carboxamide | 1.1 | 3.7 | 2.0 |
No. | Drugs | Matrix Effects % (20 ng/mL) a (%RSD) | Recoveries % (20 ng/mL) a (%RSD) | Matrix Effects % (100 ng/mL) b (%RSD) | Recoveries % (100 ng/mL) b (%RSD) | Matrix Effects % (250 ng/mL) c (%RSD) | Recoveries % (250 ng/mL) c (%RSD) |
---|---|---|---|---|---|---|---|
1 | Amphetamine | 75 (7.1) | 85 (4.6) | 83 (5.7) | 96 (3.1) | 88 (6.3) | 95 (2.9) |
2 | Methamphetamine | 80 (6.9) | 90 (5.2) | 89 (6.1) | 91 (4.9) | 95 (4.3) | 92 (3.5) |
3 | O6-monoacetylmorphine | 84 (7.2) | 89 (6.2) | 92 (6.3) | 97 (5.6) | 100 (4.9) | 99 (5.8) |
4 | Morphine | 79 (8.5) | 92 (7.9) | 91 (7.2) | 97 (5.1) | 94 (6.1) | 97 (4.3) |
5 | Ketamine | 81 (3.9) | 88(3.2) | 89 (4.1) | 96 (6.3) | 91 (3.5) | 97 (5.4) |
6 | Norketamine | 82 (8.2) | 59 (3.9) | 72 (7.8) | 67 (7.5) | 69 (4.6) | 68 (6.3) |
7 | Cocaine | 91 (3.1) | 90 (2.9) | 93 (4.2) | 92 (3.7) | 96 (2.3) | 93 (1.6) |
8 | Benzoylecgonine | 87 (3.9) | 91 (3.1) | 84 (2.8) | 99 (2.2) | 91 (6.4) | 95 (4.1) |
9 | 3,4-Methylenedioxyamphetamine | 83 (5.6) | 87 (3.5) | 87 (3.4) | 87 (3.1) | 92 (4.7) | 97 (6.7) |
10 | 3,4-Methylenedioxymethamphetamine | 86 (4.8) | 83 (3.9) | 92 (3.6) | 94 (4.8) | 91 (5.3) | 88 (6.3) |
11 | Cathinone | 67 (9.7) | 46 (8.5) | 69 (7.2) | 56 (7.5) | 51 (6.8) | 44 (4.3) |
12 | Methcathinone | 63 (7.3) | 86 (6.6) | 108 (8.9) | 82 (6.4) | 107 (6.2) | 95 (5.2) |
13 | Fentanyl | 86 (3.4) | 80 (3.6) | 86 (5.1) | 93 (4.3) | 84 (6.9) | 90 (3.1) |
14 | Diazepam | 92 (4.7) | 93 (2.5) | 95 (4.3) | 100 (3.6) | 101 (5.1) | 95 (4.7) |
15 | Estazolam | 89 (6.3) | 93 (2.9) | 79 (3.2) | 83 (5.1) | 89 (3.3) | 91 (2.2) |
16 | Methadone | 77 (7.4) | 88 (6.2) | 90 (6.6) | 95 (4.9) | 87 (5.6) | 92 (7.8) |
17 | N-(1-methoxy-3,3-dimethyl-1-oxobutan-2-yl)-1-(5-fluoropentyl)-1H-indole- 3-carboxamide | 78 (5.9) | 89 (5.5) | 85 (7.8) | 91 (4.6) | 83 (3.4) | 96 (6.1) |
No. | Drugs | Precursor Ion (m/z) | Fragment Ion (m/z) | Declustering Potential (V) | Collision Energy (V) |
---|---|---|---|---|---|
1 | amphetamine | 136.1 | 119.1 * | 20 | 13 |
136.1 | 91.1 | 20 | 23 | ||
amphetamine-D5 | 141.1 | 124.1 * | 20 | 13 | |
2 | methamphetamine | 150.1 | 119.1 * | 25 | 16 |
150.1 | 91.1 | 25 | 27 | ||
methamphetamine-D5 | 155.2 | 121.1 * | 25 | 16 | |
3 | O6-monoacetylmorphine | 328.2 | 211.1 * | 120 | 34 |
328.2 | 165.1 | 120 | 50 | ||
O6-monoacetylmorphine-D3 | 331.2 | 211.1 | 120 | 34 | |
4 | morphine | 286.1 | 201.1 * | 110 | 36 |
286.1 | 165.1 | 110 | 57 | ||
morphine-D3 | 289.2 | 201.1 * | 110 | 36 | |
5 | ketamine | 238.1 | 207.1 * | 35 | 19 |
238.1 | 125 | 35 | 35 | ||
ketamine-D4 | 242.1 | 211.1 * | 35 | 19 | |
6 | Norketamine | 224.1 | 207.1 * | 30 | 18 |
224.1 | 125 | 30 | 35 | ||
Norketamine-D4 | 228.1 | 211.1 * | 30 | 18 | |
7 | Cocaine | 304.2 | 182.1 * | 80 | 27 |
304.2 | 150.1 | 80 | 32 | ||
Cocaine-D3 | 307.2 | 185.1 * | 80 | 27 | |
8 | Benzoylecgonine | 290.1 | 168.1 * | 70 | 26 |
290.1 | 105 | 70 | 36 | ||
Benzoylecgonine-D3 | 293.1 | 171.1 * | 70 | 26 | |
9 | 3,4-Methylenedioxyamphetamine | 180.1 | 133.1 * | 15 | 25 |
180.1 | 105.1 | 15 | 30 | ||
3,4-Methylenedioxyamphetamine-D4 | 184 | 167 * | 15 | 16 | |
10 | 3,4-methylenedioxymethamphetamine | 194.1 | 163.1 * | 30 | 16 |
194.1 | 105.1 | 30 | 32 | ||
3,4-methylenedioxymethamphetamine-D4 | 198.1 | 167.1 * | 30 | 16 | |
11 | Cathinone | 150.4 | 117.2 * | 30 | 31 |
150.4 | 132.2 | 30 | 17 | ||
Cathinone-D5 | 155.3 | 122 * | 40 | 31 | |
12 | Methcathinone | 164.1 | 105.1 * | 70 | 31 |
164.1 | 131.1 | 70 | 26 | ||
Methcathinone-D5 | 169.1 | 136.1 * | 70 | 31 | |
13 | Fentanyl | 337.2 | 188.3 * | 90 | 31 |
337.2 | 105.2 | 90 | 45 | ||
Fentanyl-D5 | 342.2 | 105 * | 90 | 45 | |
14 | Diazepam | 285.1 | 193 * | 125 | 44 |
285.1 | 154 | 125 | 35 | ||
Diazepam-D5 | 290 | 198 * | 125 | 44 | |
15 | Estazolam | 295.2 | 267.3 * | 130 | 32 |
295.1 | 205.2 | 130 | 54 | ||
Estazolam-D5 | 300 | 272 * | 130 | 34 | |
16 | methadone | 310.2 | 265.2 * | 40 | 21 |
310.2 | 105.1 | 40 | 34 | ||
methadone-D10 | 320 | 275 * | 40 | 21 | |
17 | N-(1-methoxy-3,3-dimethyl-1-oxobutan-2-yl)-1-(5-fluoropentyl)- 1H-indole-3- carboxamide(5F-MDMB-PICA) | 377 | 232 * | 110 | 20 |
377 | 144 | 110 | 54 | ||
N-(1-methoxy-3,3-dimethyl-1-oxobutan-2-yl)-1-(5-fluoropentyl)- 1H-indole- 3-carboxamide-D4 | 381 | 236 * | 110 | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, F.; Ma, K.; Cao, Y.; Li, Z. Application of Magnetic Materials Combined with Echo® Mass Spectrometry System in Analysis of Illegal Drugs in Sewage. Molecules 2024, 29, 2060. https://doi.org/10.3390/molecules29092060
Yang F, Ma K, Cao Y, Li Z. Application of Magnetic Materials Combined with Echo® Mass Spectrometry System in Analysis of Illegal Drugs in Sewage. Molecules. 2024; 29(9):2060. https://doi.org/10.3390/molecules29092060
Chicago/Turabian StyleYang, Feiyu, Kaijun Ma, Yichao Cao, and Zhiyuan Li. 2024. "Application of Magnetic Materials Combined with Echo® Mass Spectrometry System in Analysis of Illegal Drugs in Sewage" Molecules 29, no. 9: 2060. https://doi.org/10.3390/molecules29092060
APA StyleYang, F., Ma, K., Cao, Y., & Li, Z. (2024). Application of Magnetic Materials Combined with Echo® Mass Spectrometry System in Analysis of Illegal Drugs in Sewage. Molecules, 29(9), 2060. https://doi.org/10.3390/molecules29092060