The Effect of Alkyl Substituents on the Formation and Structure of Homochiral (R*,R*)-[R2Ga(µ-OCH(Me)CO2R′)]2 Species—Towards the Factors Controlling the Stereoselectivity of Dialkylgallium Alkoxides in the Ring-Opening Polymerization of rac-Lactide
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure of rac-[R2Ga(µ-OCH(Me)CO2Me]2 (R = Et (1), iPr (2))
2.2. Structure of (S,S)-[R2Ga(µ-OCH(Me)CO2Me]2 (R = Et((S,S)-1), iPr((S,S)-2))
2.3. Structure of rac-[R2Ga(µ-OCH(Me)C5H4N]2 (R = Et (3), iPr (4))
2.4. Ring-Opening Polymerization of rac-LA with [R2Ga(µ-OCH(Me)CO2Me]2 (R = Me, Et, iPr)
3. Materials and Methods
3.1. General Procedures
3.2. Synthesis of Gallium Complexes
3.3. General Procedure for the ROP of rac-LA with (S,S)-1 and (S,S)-2
3.4. Crystal Structure Determination
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Horeglad, P.; Cybularczyk, M.; Litwińska, A.; Dąbrowska, A.M.; Dranka, M.; Żukowska, G.Z.; Urbańczyk, M.; Michalak, M. Controlling the stereoselectivity of rac-LA polymerization by chiral recognition induced the formation of homochiral dimeric metal alkoxides. Polym. Chem. 2016, 7, 2022–2036. [Google Scholar] [CrossRef]
- Thomas, C.M. Stereocontrolled ring-opening polymerization of cyclic esters: Synthesis of new polyester microstructures. Chem. Soc. Rev. 2010, 39, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Stanford, M.J.; Dove, A.P. Stereocontrolled ring-opening polymerisation of lactide. Chem. Soc. Rev. 2010, 39, 486–494. [Google Scholar] [CrossRef] [PubMed]
- Dijkstra, P.J.; Du, H.; Feijen, J. Single site catalysts for stereoselective ring-opening polymerization of lactides. Polym. Chem. 2011, 2, 520–527. [Google Scholar] [CrossRef]
- Becker, J.M.; Pounder, R.J.; Dove, A.P. Synthesis of Poly(lactide)s with Modified Thermal and Mechanical Properties. Macromol. Rapid Commun. 2010, 31, 1923–1937. [Google Scholar] [CrossRef] [PubMed]
- Michell, R.M.; Ladelta, V.; Da Silva, E.; Müller, A.J.; Hadjichristidis, N. Poly(lactic acid) stereocomplexes based molecular architectures: Synthesis and crystallization. Prog. Polym. Sci. 2023, 146, 101742. [Google Scholar] [CrossRef]
- Fazekas, E.; Lowy, P.A.; Rahman, M.A.; Lykkeberg, A.; Zhou, Y.; Chambenahalli, R.; Garden, J.A. Main group metal polymerisation catalysts. Chem. Soc. Rev. 2022, 51, 8793–8814. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Robinson, J.R. The versatile roles of neutral donor ligands in tuning catalyst performance for the ring-opening polymerization of cyclic esters. New J. Chem. 2022, 46, 444–453. [Google Scholar] [CrossRef]
- Munzeiwa, W.A.; Omondi, B.O.; Nyamori, V.O. A perspective into ring-opening polymerization of ε-caprolactone and lactides: Effect of, ligand, catalyst structure and system dynamics, on catalytic activity and polymer properties. Polym. Bull. 2024, 81, 9419–9464. [Google Scholar] [CrossRef]
- Kremer, A.B.; Mehrkhodavandi, P. Dinuclear catalysts for the ring opening polymerization of lactide. Coord. Chem. Rev. 2019, 380, 35–57. [Google Scholar] [CrossRef]
- Gao, J.; Zhu, D.; Zhang, W.; Solan, G.A.; Ma, Y.; Sun, W.-H. Recent progress in the application of group 1, 2 & 13 metal complexes as catalysts for the ring opening polymerization of cyclic esters. Inorg. Chem. Front. 2019, 6, 2619–2652. [Google Scholar]
- Yolsal, U.; Shaw, P.J.; Lowy, P.A.; Chambenahalli, R.; Garden, J.A. Exploiting Multimetallic Cooperativity in the Ring-Opening Polymerization of Cyclic Esters and Ethers. ACS Catal. 2024, 14, 1050–1074. [Google Scholar] [CrossRef] [PubMed]
- Aluthge, D.C.; Patrick, B.O.; Mehrkhodavandi, P. A highly active and site selective indium catalyst for lactide polymerization. Chem. Commun. 2013, 49, 4295–4297. [Google Scholar] [CrossRef]
- Honrado, M.; Otero, A.; Fernández-Baeza, J.; Sánachez-Barba, L.F.; Garcés, A.; Lara-Sánchez, A.; Rodriguez, A.M. Stereoselective ROP of rac-Lactide Mediated by Enantiopure NNO-Scorpionate Zinc Initiators. Organometallics 2014, 33, 1859–1866. [Google Scholar] [CrossRef]
- Sun, Y.; Cui, Y.; Xiong, J.; Dai, Z.; Tang, N.; Wu, J. Different mechanisms at different temperatures for the ring-opening polymerization of lactide catalyzed by binuclear magnesium and zinc alkoxides. Dalton Trans. 2015, 44, 16383–16391. [Google Scholar]
- Pang, X.; Duan, R.; Li, X.; Hu, C.; Wang, X.; Chen, X. Breaking the Paradox between Catalytic Activity and Stereoselectivity: Rac-Lactide Polymerization by Trinuclear Salen–Al Complexes. Macromolecules 2018, 51, 906–913. [Google Scholar] [CrossRef]
- Jensen, T.R.; Breyfogle, L.E.; Hillmyer, M.A.; Tolman, W.B. Stereoelective polymerization of D, L-lactide using N-heterocyclic carbene based compounds. Chem. Commun. 2004, 2504–2505. [Google Scholar] [CrossRef] [PubMed]
- Pietrangelo, A.; Knight, S.C.; Gupta, A.K.; Yao, L.J.; Hillmyer, M.A.; Tolman, W.B. Mechanistic Study of the Stereoselective Polymerization of d,l-Lactide Using Indium(III) Halides. J. Am. Chem. Soc. 2010, 132, 11649–11657. [Google Scholar] [CrossRef]
- Sinenkov, M.; Kirillov, E.; Roisnel, T.; Fukin, G.; Trifonov, A.; Carpentier, J.-F. Rare Earth Complexes with Multidentate Tethered Phenoxy-Amidinate Ligands: Synthesis, Structure and Activity in Ring-Opening Polymerization of Lactide. Organometallics 2011, 30, 5509–5523. [Google Scholar] [CrossRef]
- Pappuru, S.; Chokkapu, E.R.; Chakraborty, D.; Ramkumar, V. Group IV complexes containing the benzotriazole phenoxide ligand as catalysts for the ring-opening polymerization of lactides, epoxides and as precatalysts for the polymerization of ethylene. Dalton Trans. 2013, 42, 16412–16427. [Google Scholar] [CrossRef]
- Garcés, A.; Sánachez-Barba, L.F.; Fernández-Baeza, J.; Otero, A.; Honrado, M.; Lara-Sánchez, A.; Rodriguez, A.M. Heteroscorpionate Magnesium Alkyls Bearing Unprecedented Apical σ-C(sp3)–Mg Bonds: Heteroselective Ring-Opening Polymerization of rac-Lactide. Inorg. Chem. 2013, 52, 12691–12701. [Google Scholar] [CrossRef] [PubMed]
- Whitehorn, T.J.J.; Vabre, B.; Schaper, F. Lactide polymerization catalyzed by Mg and Zn diketiminate complexes with flexible ligand frameworks. Dalton Trans. 2014, 43, 6339–6352. [Google Scholar] [CrossRef]
- Nifant’ev, I.E.; Shlyakhtin, A.V.; Bagarov, V.V.; Minyaev, M.E.; Churakov, A.V.; Karchevsky, S.G.; Birin, K.P.; Ivchenko, P.V. Mono-BHT heteroleptic magnesium complexes: Synthesis, molecular structure and catalytic behavior in the ring-opening polymerization of cyclic esters. Dalton Trans. 2017, 46, 12132–12146. [Google Scholar] [CrossRef]
- Kuran, W. Principles of Coordination Polymerisation, 1st ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2001. [Google Scholar]
- Byers, J.A.; Biernesser, A.B.; Delle Chiaie, K.R.; Kaur, A.; Kehl, J.A. Catalytic Systems for the Production of Poly(lactic acid). In Synthesis, Structure and Properties of Poly(lactic acid); Advances in Polymer Science; Di Lorenzo, M.L., Androsch, R., Eds.; Springer: Cham, Switzerland, 2017; Volume 279, pp. 67–118. [Google Scholar]
- Gruszka, W.; Walker, L.C.; Shaver, M.P.; Garden, J.A. In Situ Versus Isolated Zinc Catalysts in the Selective Synthesis of Homo and Multi-block Polyesters. Macromolecules 2020, 53, 4294–4302. [Google Scholar] [CrossRef]
- Ghosh, S.; Schulte, Y.; Wölper, C.; Tjaberings, A.; Gröschel, A.H.; Haberhauer, G.; Schulz, S. Cooperative Effect in Binuclear Zinc Catalysts in the ROP of Lactide. Organometallics 2022, 41, 2698–2708. [Google Scholar] [CrossRef]
- Fiorentini, F.; Diment, W.T.; Deacy, A.C.; Kerr, R.W.F.; Faulkner, S.; Williams, C.K. Understanding catalytic synergy in dinuclear polymerization catalysts for sustainable polymers. Nat. Commun. 2023, 14, 4783. [Google Scholar] [CrossRef] [PubMed]
- Nakano, K.; Hiyama, T.; Nozaki, K. Asymmetric amplification in asymmetric alternating copolymerization of cyclohexene oxide and carbon dioxide. Chem. Commun. 2005, 1871–1873. [Google Scholar] [CrossRef]
- Satyanarayana, T.; Abraham, S.; Kagan, H.B. Nonlinear Effects in Asymmetric Catalysis. Angew. Chem. Int. Ed. 2009, 48, 456–494. [Google Scholar] [CrossRef] [PubMed]
- Platel, R.H.; White, A.J.P.; Williams, C.K. Stereocontrolled lactide polymerisation determined by the nuclearity of the yttrium initiator. Chem. Commun. 2009, 4115–4117. [Google Scholar] [CrossRef]
- Fortun, S.; Daneshmand, P.; Schaper, F. Isotactic rac-Lactide Polymerization with Copper Complexes: The Influence of Complex Nuclearity. Angew. Chem. Int. Ed. 2015, 54, 13669–13672. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Yu, I.; Mehrkhodavandi, P.; Maron, L. Theoretical Investigation of Lactide Ring-Opening Polymerization Induced by a Dinuclear Indium Catalyst. Organometallics 2013, 32, 6950–6956. [Google Scholar] [CrossRef]
- Aluthge, D.C.; Ahn, J.M.; Mehrkhodavandi, P. Overcoming aggregation in indium salen catalysts for isoselective lactide polymerization. Chem. Sci. 2015, 6, 5284–5292. [Google Scholar] [CrossRef]
- Hu, M.; Wang, M.; Zhu, H.; Zhang, L.; Zhang, H.; Sun, L. Preparation and structures of enantiomeric dinuclear zirconium and hafnium complexes containing two homochiral N atoms, and their catalytic property for polymerization of rac-lactide. Dalton Trans. 2010, 39, 4440–4446. [Google Scholar] [CrossRef]
- Ma, H.; Spaniol, T.P.; Okuda, J. Highly Heteroselective Ring-Opening Polymerization of rac-Lactide Initiated by Bis(phenolato)scandium Complexes. Angew. Chem. Int. Ed. 2006, 45, 7818–7821. [Google Scholar] [CrossRef]
- Hu, M.; Wang, M.; Zhang, P.; Wang, L.; Zhu, F.; Sun, L. Preparation and structure of an enantiomeric water-bridged dinuclear indium complex containing two homochiral N atoms and its performance as an initiator in polymerization of rac-lactide. Inorg. Chem. Commun. 2010, 13, 968–971. [Google Scholar] [CrossRef]
- Gesslbauer, S.; Hutchison, G.; White, A.J.P.; Burés, J.; Romain, C. Chirality-Induced Catalyst Aggregation: Insights into Catalyst Speciation and Activity Using Chiral Aluminum Catalysts in Cyclic Ester Ring-Opening Polymerization. ACS Catal. 2021, 11, 4084–4093. [Google Scholar] [CrossRef]
- Carmalt, C.J.; King, S.J. Gallium(III) and indium(III) alkoxides and aryloxides. Coord. Chem. Rev. 2006, 250, 682–709. [Google Scholar] [CrossRef]
- Lewiński, J.; Zachara, J.; Justyniak, I. Structure investigation of a dimethylaluminium derivative of ethyl rac-lactate in the solid state and solution. First evidence for stereoselective association of a dialkylaluminium O,O′-chelate complex. Chem. Commun. 1997, 1519–1520. [Google Scholar]
- Lewiński, J.; Horeglad, P.; Wójcik, K.; Justyniak, I. Chelation Effect in Polymerization of Cyclic Esters by Metal Alkoxides: Structure Characterization of the Intermediate Formed by Primary Insertion of Lactide into the Al-OR Bond of an Organometallic Initiator. Organometallics 2005, 24, 4588–4593. [Google Scholar] [CrossRef]
- Horeglad, P.; Kruk, P.; Pécaut, J. Heteroselective Polymerization of rac-Lactide in the Presence of Dialkylgallium Alkoxides: The Effect of Lewis Base on Polymerization Stereoselectivity. Organometallics 2010, 29, 3729–3734. [Google Scholar] [CrossRef]
- Chamberlain, B.M.; Cheng, M.; Moore, D.R.; Ovitt, T.M.; Lobkovsky, E.B.; Coates, G.W. Polymerization of Lactide with Zinc and Magnesium β-Diiminate Complexes: Stereocontrol and Mechanism. J. Am. Chem. Soc. 2001, 123, 3229–3238. [Google Scholar] [CrossRef]
- Dove, A.P.; Gibson, V.C.; Marshall, E.L.; Rzepa, H.S.; White, A.J.P.; Williams, D.J. Synthetic, Structural, Mechanistic, and Computational Studies on Single-Site β-Diketiminate Tin(II) Initiators for the Polymerization of rac-Lactide. J. Am. Chem. Soc. 2006, 128, 9834–9984. [Google Scholar] [CrossRef]
- Horeglad, P.; Rola-Nowowryta, A.; Tuszyński, D.; Fabianowska, I.; Marek, N.A.; Gładysz, P.; Wielgus, I.; Dąbrowska, A.M. Enhancing the stereoselectivity of Me2GaOR(NHC) species in the ring-opening polymerization of rac-lactide, with the help of the chelation effect. RSC Adv. 2024, 14, 28638–28647. [Google Scholar] [CrossRef] [PubMed]
- Westerhausen, M.; Kneifel, A.N.; Mayer, P.; Nöth, H. Synthesis and Molekular Structures of N-substituted Diethylgallium-2-pyridylmethylamides. Z. Anorg. Allg. Chem. 2004, 630, 2013–2021. [Google Scholar] [CrossRef]
- Basharat, S.; Carmalt, C.J.; Palgrave, R.; Barnett, S.A.; Tocher, D.A.; Davies, H.O. Syntheses, X-ray structures and CVD studies of diorganoalkoxogallanes. J. Organomet. Chem. 2008, 693, 1787–1796. [Google Scholar] [CrossRef]
- Atwood, D.A.; Rutherford, D. Use of Tetradentate (N2O2) Ligands To Form Monomeric, Trimetallic Gallium Complexes. Organometallics 1995, 14, 2880–2886. [Google Scholar] [CrossRef]
- Webster, M.; Browning, D.J.; Corker, J.M. Bis[([μ]-2,6-diphenylphenoxido-O:O)diethylgallium]. Acta Cryst. 1996, C52, 2439–2441. [Google Scholar] [CrossRef]
- Wei, P.; Atwood, D.A. Syntheses and reactions of Saltren–Group 13 complexes. J. Organomet. Chem. 1998, 563, 87–93. [Google Scholar] [CrossRef]
- Hill, M.S.; Wei, P.; Atwood, D.A. Bimetallic mixed-metal complexes of the salen(tBu) ligands. Polyhedron 1998, 17, 811–819. [Google Scholar] [CrossRef]
- Van Aelstyn, M.A.; Keizer, T.S.; Klopotek, D.L.; Liu, S.; Munoz-Hernandez, M.-A.; Wei, P.; Atwood, D.A. Bimetallic Aluminum and Gallium Chelates with N2O2 Ligands. Organometallics 2000, 19, 1796–1801. [Google Scholar] [CrossRef]
- Basiak, D.; Dobrzycki, Ł.; Socha, P.; Rzepiński, P.; Plichta, A.; Bujnowski, K.; Synoradzki, L.; Orłowska, N.; Ziemkowska, W. Aminophenolates of aluminium, gallium and zinc: Synthesis, characterization and polymerization activity. Appl. Organometal. Chem. 2017, 31, e3748. [Google Scholar] [CrossRef]
- Price, C.E.; Dantas, A.B.; Powell, D.R.; Wehmschulte, R.J. Alkylaluminum, -gallium, -magnesium, and -zinc monophenolates with bulky substituents. Z. Naturforsch. B Chem. Sci. 2018, 73, 943. [Google Scholar] [CrossRef]
- Lewiński, J.; Zachara, J.; Justyniak, I. Electronic factors determining the rearrangement of dialkylaluminum O,O′-chelate compounds from dimeric five- to monomeric four-coordinated complexes on dissolution. Structure investigations of dialkylaluminum chelate derivatives of α- and β-hydroxy carbonyl compounds. Organometallics 1997, 16, 4597–4605. [Google Scholar]
- Lewis Basicity and Affinity Scales: Data and Measurement; Laurence, C., Gal, J.-F., Eds.; John Wiley & Sons Ltd.: Chichester, UK, 2010. [Google Scholar]
- Van Poppel, L.H.; Bott, S.G.; Barron, A.R. 1,4-Dioxobenzene Compounds of Gallium: Reversible Binding of Pyridines to [{(tBu)2Ga}2(μ-OC6H4O)]n in the Solid State. J. Am. Chem. Soc. 2003, 125, 11006–11017. [Google Scholar] [CrossRef] [PubMed]
- Steves, J.E.; Stahl, S.S. Copper(I)/ABNO-Catalyzed Aerobic Alcohol Oxidation: Alleviating Steric and Electronic Constraints of Cu/TEMPO Catalyst Systems. J. Am. Chem. Soc. 2013, 135, 15742–15745. [Google Scholar] [CrossRef]
- APEX3, V2019; Bruker Nano, Inc.: Madison, WI, USA, 2019.
- SAINT, V8.40A; Bruker Nano, Inc.: Madison, WI, USA, 2019.
- SADABS, V2016/2; Bruker Nano, Inc.: Madison, WI, USA, 2019.
- TWINABS, V2012/1; Bruker Nano, Inc.: Madison, WI, USA, 2019.
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H.A. Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT-Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. Crystal structure refinement with SHELX. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Parsons, S.; Flack, H.D.; Wagner, T. Use of Intensity Quotients and Differences in Absolute Structure Refinement. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mat. 2013, 69, 249–259. [Google Scholar] [CrossRef] [PubMed]
No. | Cat. | Pyridine (Equiv.) | Temp. [°C] | Solvent | Conv. [%] | 10−3 Mn b | 10−3 Mn c | Pm d |
---|---|---|---|---|---|---|---|---|
1 a | (S,S)-[Me2Ga(melac]2 | - | 40 | DCM | 82 | 2.0 | 3.0 | 0.50 |
2 | (S,S)-1 | - | 40 | DCM | 87 | 2.6 | 3.2 | 0.50 |
3 | (S,S)-2 | - | 40 | DCM | 93 | 3.9 | 3.4 | 0.50 |
4 a | (S,S)-[Me2Ga(melac]2 | 6 | 40 | Tol. | 90 | 2.0 | 3.3 | 0.66 |
5 | (S,S)-1 | 6 | 40 | Tol. | 83 | 3.0 | 3.1 | 0.58 |
6 | (S,S)-2 | 6 | 40 | Tol. | 89 | 3.9 | 3.3 | 0.50 |
7 | (S,S)-[Me2Ga(melac]2 | - | 70 | Tol. | 97 | 2.5 | 3.6 | 0.50 |
8 | (S,S)-1 | - | 70 | Tol. | 97 | 3.8 | 3.6 | 0.50 |
9 | (S,S)-2 | - | 70 | Tol. | 92 | 3.8 | 3.4 | 0.50 |
10 | (S,S)-[Me2Ga(melac]2 | 6 | 70 | Tol. | 97 | 2.7 | 3.6 | 0.50 |
11 | (S,S)-1 | 6 | 70 | Tol. | 97 | 3.5 | 3.6 | 0.50 |
12 | (S,S)-2 | 6 | 70 | Tol. | 96 | 3.9 | 3.6 | 0.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaźmierczak, M.; Dobrzycki, Ł.; Dranka, M.; Horeglad, P. The Effect of Alkyl Substituents on the Formation and Structure of Homochiral (R*,R*)-[R2Ga(µ-OCH(Me)CO2R′)]2 Species—Towards the Factors Controlling the Stereoselectivity of Dialkylgallium Alkoxides in the Ring-Opening Polymerization of rac-Lactide. Molecules 2025, 30, 190. https://doi.org/10.3390/molecules30010190
Kaźmierczak M, Dobrzycki Ł, Dranka M, Horeglad P. The Effect of Alkyl Substituents on the Formation and Structure of Homochiral (R*,R*)-[R2Ga(µ-OCH(Me)CO2R′)]2 Species—Towards the Factors Controlling the Stereoselectivity of Dialkylgallium Alkoxides in the Ring-Opening Polymerization of rac-Lactide. Molecules. 2025; 30(1):190. https://doi.org/10.3390/molecules30010190
Chicago/Turabian StyleKaźmierczak, Magdalena, Łukasz Dobrzycki, Maciej Dranka, and Paweł Horeglad. 2025. "The Effect of Alkyl Substituents on the Formation and Structure of Homochiral (R*,R*)-[R2Ga(µ-OCH(Me)CO2R′)]2 Species—Towards the Factors Controlling the Stereoselectivity of Dialkylgallium Alkoxides in the Ring-Opening Polymerization of rac-Lactide" Molecules 30, no. 1: 190. https://doi.org/10.3390/molecules30010190
APA StyleKaźmierczak, M., Dobrzycki, Ł., Dranka, M., & Horeglad, P. (2025). The Effect of Alkyl Substituents on the Formation and Structure of Homochiral (R*,R*)-[R2Ga(µ-OCH(Me)CO2R′)]2 Species—Towards the Factors Controlling the Stereoselectivity of Dialkylgallium Alkoxides in the Ring-Opening Polymerization of rac-Lactide. Molecules, 30(1), 190. https://doi.org/10.3390/molecules30010190