Very-Long-Chain Resorcinolic Lipids of Ailanthus altissima Samaras
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Chemicals and Materials
3.2. Plant Material
3.3. Isolation and Purification of Resorcinolic Lipids
3.4. Quantitative Determination of Resorcinolic Lipids
3.5. Identification and Determination of Alkylresorcinol Homologue Compositions
3.6. Antifungal Activity of Alkylresorcinols
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sladonja, B.; Susek, M.; Guillermic, J. Review on invasive tree of heaven (Ailanthus altissima (Mill.) Swingle) conflicting values: Assessment of its ecosystem services and potential biological threat. Environ. Manag. 2015, 56, 1009–1034. [Google Scholar] [CrossRef] [PubMed]
- Soler, J.; Izquierdo, J. The invasive Ailanthus altissima: A biology, ecology, and control review. Plants 2024, 13, 931. [Google Scholar] [CrossRef] [PubMed]
- Brooks, R.K.; Barney, J.N.; Salom, S.M. The invasive tree, Ailanthus altissima, impacts understory nativity, not seedbank nativity. For. Ecol. Manag. 2021, 489, 119025. [Google Scholar] [CrossRef]
- Kowarik, I.; Saumel, I. Biological flora of Central Europe: Ailanthus altissima (Mill.) swingle. Perspect. Plant Ecol. Evol. Syst. 2007, 8, 207–237. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Ma, S.; Zhao, Q.; Wu, J.; Duan, L.; Xie, Y.; Wang, S. Traditional uses, phytochemistry, and pharmacology of Ailanthus altissima (Mill.) Swingle bark: A comprehensive review. J. Ethnopharmacol. 2021, 275, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Tan, Q.W.; Ni, J.C.; Shi, J.T.; Zhy, J.X.; Chen, Q.J. Two novel quassinoid glycosides with antiviral activity from the samara of Ailanthus altissima. Molecules 2020, 25, 5679. [Google Scholar] [CrossRef] [PubMed]
- Jeong, M.; Kim, H.M.; Ahn, J.H.; Lee, K.T.; Jang, D.S.; Choi, J.H. 9-Hydroxycanthin-6-one isolated from stem bark of Ailanthus altissima induces ovarian cancer cell apoptosis and inhibits the activation of tumor-associated macrophages. Chem. Biol. Interact. 2018, 280, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Lu, X.; Li, H.; Sun, L.; Yang, N.; Zhao, M.; Zhang, M.; Shi, Q. Antitumor activity of the Ailanthus altissima bark phytochemical ailanthone against breast cancer MCF-7 cells. Oncol. Lett. 2018, 15, 6022–6028. [Google Scholar] [CrossRef] [PubMed]
- Bailly, C. Anticancer properties and mechanism of action of the quassinoid ailanthone. Phytother. Res. 2020, 34, 2203–2213. [Google Scholar] [CrossRef] [PubMed]
- Al-Snafi, A.S. The pharmacological importance of Ailanthus altissima—A review. Int. J. Pharm. Rev. Res. 2015, 5, 121–129. [Google Scholar]
- Kozuharova, E.; Pasdran, A.; Tawaha, A.R.A.; Todorova, T.; Naychov, Z.; Ionkova, I. Assessment of the potential of the invasive arboreal plant Ailanthus altissima (Simaroubaceae) as an economically prospective source of natural pesticides. Diversity 2022, 14, 680. [Google Scholar] [CrossRef]
- Poljuha, D.; Sladonja, B.; Sola, I.; Dudas, S.; Bilic, J.; Rusak, G.; Motlhatlego, K.E.; Eloff, J.N. Phenolic composition of leaf extracts of Ailanthus altissima (Simaroubaceae) with antibacterial and antifungal activity equivalent to standard antibiotics. Nat. Prod. Commun. 2017, 12, 1609–1612. [Google Scholar] [CrossRef]
- Caser, M.; Demasi, S.; Caldera, F.; Dhakar, N.K.; Trotta, F.; Scariot, V. Activity of Ailanthus altissima (Mill.) Swingle extract as a potential bioherbicide for sustainable weed management in horticulture. Agronomy 2020, 10, 965. [Google Scholar] [CrossRef]
- Caramelo, D.; Pedero, S.I.; Marques, H.; Simao, A.Y.; Rosado, T.; Barroca, C.; Gominho, J.; Anjos, O.; Gallardo, E. Insights into the bioactivities and chemical analysis of Ailanthus altissima (Mill.) Swingle. Appl. Sci. 2021, 11, 11331. [Google Scholar] [CrossRef]
- Raja, W.Y.; Bhat, Z.A.; Chashoo, I.A. Pharmacognostic and phytochemical characteristics of Ailanthus altissima (Mill.) Swingle stem and root bark: A comparative study. Pharmacogn. J. 2017, 9, 668–673. [Google Scholar] [CrossRef]
- Ni, J.C.; Shi, J.T.; Tan, Q.W.; Chen, Q.J. Phenylpropionamides, piperidine, and phenolic derivatives from the fruit of Ailanthus altissima. Molecules 2017, 22, 2107. [Google Scholar] [CrossRef] [PubMed]
- Ni, J.C.; Shi, J.T.; Tan, Q.W.; Chen, Q.J. Two new compounds from the fruit of Ailanthus altissima. Nat. Prod. Res. 2019, 33, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Kozubek, A.; Tyman, J.H.P. Resorcinolic lipids, the natural non-isoprenoid phenolic amphiphiles and their biological activities. Chem. Rev. 1999, 99, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Zarnowski, R.; Kozubek, A.; Pietr, S.J. Effect of rye 5-n-alkylresorcinols on in vitro growth of phytopathogenic Fusarium and Rhizoctonia fungi. Bull. Pol. Acad. Sci. 1999, 47, 231–235. [Google Scholar]
- Magnucka, E.G.; Oksińska, M.; Pietr, S.J. The role of resorcinolic lipids of caryopsis surface in the process of cereal infection by Rhizoctonia solani and Fusarium culmorum. Appl. Sci. 2022, 12, 7735. [Google Scholar] [CrossRef]
- Zabolotneva, A.A.; Shatova, O.P.; Sadova, A.A.; Shestopalov, A.V.; Roumianstev, S.A. An overview of alkylresorcinols biological properties and effects. J. Nutr. Metab. 2022, 2022, 4667607. [Google Scholar] [CrossRef] [PubMed]
- Zarnowski, R.; Kozubek, A. Alkylresorcinol homologs in seeds of Pisum sativum varieties. Z. Naturforsch. C 1999, 54, 44–48. [Google Scholar] [CrossRef]
- Gajda, A.; Kulawinek, M.; Kozubek, A. An improved colorimetric method for the determination of alkylresorcinols in cereals and whole-grain cereal products. J. Food Compos. Anal. 2008, 21, 428–434. [Google Scholar] [CrossRef]
- Kubus, G.; Tluscik, F. Alkyl resorcinols in grains from plants from the family Gramineae. Acta Soc. Botan. Polon. 1983, 53, 223–230. [Google Scholar] [CrossRef]
- Magnucka, E.G.; Suzuki, Y.; Pietr, S.J.; Kozubek, A.; Zarnowski, R. Cycloate, an inhibitor of fatty acid elongase, modulates the metabolism of very-long-side-chain alkylresorcinols in rye seedlings. Pest Manag. Sci. 2009, 65, 1065–1070. [Google Scholar] [CrossRef] [PubMed]
- Jaromin, A.; Zarnowski, R.; Kozubek, A. Emulsions of oil from Adenanthera pavonina L. seeds and their protective effect. Cell. Mol. Biol. Lett. 2006, 11, 438–448. [Google Scholar] [CrossRef] [PubMed]
- Ciccoritti, R.; Taddei, F.; Gazza, L.; Nocente, F. Influence of kernel thermal pre-treatments on 5-n-alkylresorcinols, polyphenols and antioxidant activity of durum and einkorn wheat. Eur. Food Res. Technol. 2021, 247, 353–362. [Google Scholar] [CrossRef]
- Zarnowski, R.; Pietr, S.J.; Hendrich, A. Sensitivity of Rhizoctonia solani to derivatives of natural resorcinols of plant origin. In Third International Symposium on Rhizoctonia (ISR 2000); National Chung Hsing University: Taichung, Taiwan, 2000; p. 92. [Google Scholar]
- Guimarães, A.; Venâncio, A. The potential of fatty acids and their derivatives as antifungal agents: A Review. Toxins 2022, 14, 188. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Yu, H.; Yang, E.; Choi, Y.; Chang, P.-S. Effects of alkyl chain length on the interfacial, antibacterial, and antioxidative properties of erythorbyl fatty acid esters. LWT 2023, 174, 114421. [Google Scholar] [CrossRef]
- Kumar, Y.; Wani, F.A.; Ahmedi, S.; Shamsi, A.; Nadeem, M.; Manzoor, N.; Kamli, M.R.; Malik, M.A.; Rizvi, M.A.; Patel, R. In vitro antifungal activity, cytotoxicity and binding analysis of imidazolium based ionic liquids with fluconazole: DFT and spectroscopic study. J. Mol. Liq. 2024, 401, 124631. [Google Scholar] [CrossRef]
- Magnucka, E.G.; Pietr, S.J.; Zarnowski, R. Dynamics of alkylresorcinols during rye caryopsis germination and early seedling growth. Z. Naturforsch. C 2015, 70, 71–73. [Google Scholar] [CrossRef] [PubMed]
- Magnucka, E.G.; Oksińska, M.; Pietr, S.J. Monitoring of changes in 5-n-alkylresorcinols during wheat seedling development. Z. Naturforsch. C 2012, 76, 67–70. [Google Scholar] [CrossRef] [PubMed]
Sample No. | Trunk Diameter b [cm] | Resorcinol Content a [mg kg−1 DW] | Homologue Composition [%] | |
---|---|---|---|---|
C29:0 | C31:0 | |||
1. | 142 | 13.2 c | 50.1 | 49.9 |
2. | 140 and 133 d | 14.8 c | 48.6 | 51.4 |
3. | 93 | 16.9 c | 48.6 | 51.4 |
4. | 70 | 21.1 b | 42.5 | 57.5 |
5. | 260 | 22.7 b | 50.1 | 49.9 |
6. | 90 c | 25.6 b | 44.0 | 56.0 |
7. | 127 | 28.8 ab | 44.8 | 55.2 |
8. | 110 | 31.1 a | 42.8 | 57.2 |
9. | 239 | 33.0 a | 46.5 | 53.5 |
10. | 164 | 33.9 a | 49.0 | 51.0 |
IC50 [µg mL−1] | Fusarium | Rhizoctonia | |||
culmorum F1 | oxysporum R1 | cerealis F71 | solani F92 | solani F93 | |
64.4 ± 3.6 b | 178.6 ± 14.8 a | 12.8 ± 1.1 c | 14.6 ± 1.7 c | 14.2 ± 1.7 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magnucka, E.G.; Zarnowski, R.; Bąbelewski, P. Very-Long-Chain Resorcinolic Lipids of Ailanthus altissima Samaras. Molecules 2025, 30, 2970. https://doi.org/10.3390/molecules30142970
Magnucka EG, Zarnowski R, Bąbelewski P. Very-Long-Chain Resorcinolic Lipids of Ailanthus altissima Samaras. Molecules. 2025; 30(14):2970. https://doi.org/10.3390/molecules30142970
Chicago/Turabian StyleMagnucka, Elżbieta G., Robert Zarnowski, and Przemysław Bąbelewski. 2025. "Very-Long-Chain Resorcinolic Lipids of Ailanthus altissima Samaras" Molecules 30, no. 14: 2970. https://doi.org/10.3390/molecules30142970
APA StyleMagnucka, E. G., Zarnowski, R., & Bąbelewski, P. (2025). Very-Long-Chain Resorcinolic Lipids of Ailanthus altissima Samaras. Molecules, 30(14), 2970. https://doi.org/10.3390/molecules30142970