Integrated Characterization of Phoenix dactylifera L. Fruits and Their Fermented Products: Volatilome Evolution and Quality Parameters
Abstract
1. Introduction
2. Results and Discussion
2.1. Volatilome of Different Palm Date Products
2.2. Ethanol Contents and Acidity
2.3. Polyphenols
3. Materials and Methods
3.1. Samples
3.2. Standard References and Solvents
3.3. Volatile Profiling
3.4. Alcoholic Degree Determination
3.5. GC-MS Instrument Setup
3.6. Total and Volatile Acidity Content Determination
3.7. Acetoin Content Determination
3.8. Polyphenolic Content
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Shahib, W.; Marshall, R.J. The Fruit of the Date Palm: Its Possible Use as the Best Food for the Future? Int. J. Food Sci. Nutr. 2003, 54, 247–259. [Google Scholar] [CrossRef]
- Shanta, F.H.; Rahut, B.K.; Islam, M.J.; Azad, M.O.K.; Sohel, M.A.T.; Rajib, M.R.R.; Shams-Ud-Din, M.; Adnan, M. Development of Value Added Drinks from Date Palm Juice (Phoenix Sylvestris). Heliyon 2021, 7, e08322. [Google Scholar] [CrossRef] [PubMed]
- Salomón-Torres, R.; Valdez-Salas, B.; Norzagaray-Plasencia, S. The Date Palm Genome: Date Palm: Source of Foods, Sweets and Beverages; Springer International Publishing: New York, NY, USA, 2021; Volume 2, pp. 3–26. [Google Scholar] [CrossRef]
- Plioni, I.; Bekatorou, A.; Terpou, A.; Mallouchos, A.; Plessas, S.; Koutinas, A.A.; Katechaki, E. Vinegar Production from Corinthian Currants Finishing Side-Stream: Development and Comparison of Methods Based on Immobilized Acetic Acid Bacteria. Foods 2021, 10, 3133. [Google Scholar] [CrossRef] [PubMed]
- Wanderley, B.R.d.S.M.; Ferreira, A.L.A.; Nunes, I.L.; Amboni, R.D.d.M.C.; Aquino, A.C.M.d.S.; Fritzen-Freire, C.B. The Role of Fruit Vinegar in Food Science: Perspectives among Consumers, the Scientific Community and Patent Holders. Biotechnol. Res. Innov. 2023, 7, e2023015. [Google Scholar] [CrossRef]
- El-Dalatony, M.M.; Saha, S.; Govindwar, S.P.; Abou-Shanab, R.A.I.; Jeon, B.H. Biological Conversion of Amino Acids to Higher Alcohols. Trends Biotechnol. 2019, 37, 855–869. [Google Scholar] [CrossRef] [PubMed]
- Fermented Food and Beverage Market Size, Demand & Forecast 2024–2034. Available online: https://www.futuremarketinsights.com/reports/fermented-foods-and-beverages-market (accessed on 23 May 2025).
- Saha, D.; Das, P.K.; Saha, D.; Das, P.K. Functional Food—Upgrading Natural and Synthetic Sources: Perspective Chapter: Bioconversion of Agricultural and Food Wastes to Vinegar; IntechOpen Limited: London, UK, 2023. [Google Scholar] [CrossRef]
- Cantadori, E.; Brugnoli, M.; Centola, M.; Uffredi, E.; Colonello, A.; Gullo, M. Date Fruits as Raw Material for Vinegar and Non-Alcoholic Fermented Beverages. Foods 2022, 11, 1972. [Google Scholar] [CrossRef] [PubMed]
- Transparency market Research Fermented Beverage Market-Global Industry Analysis, Size, Share, Growth, Trends, and Forescast 2017–2025. Available online: https://www.transparencymarketresearch.com/fermented-beverages-market.html. (accessed on 2 March 2025).
- Pérez-Armendáriz, B.; Cardoso-Ugarte, G.A. Traditional Fermented Beverages in Mexico: Biotechnological, Nutritional, and Functional Approaches. Food Res. Int. 2020, 136, 109307. [Google Scholar] [CrossRef] [PubMed]
- Martín-Sánchez, A.M.; Cherif, S.; Vilella-Esplá, J.; Ben-Abda, J.; Kuri, V.; Pérez-Álvarez, J.Á.; Sayas-Barberá, E. Characterization of Novel Intermediate Food Products from Spanish Date Palm (Phoenix dactylifera, L., Cv. Confitera) Co-Products for Industrial Use. Food Chem. 2014, 154, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Antón, J.M.; Rubio-Andrada, L.; Celemín-Pedroche, M.S.; Ruíz-Peñalver, S.M. From the Circular Economy to the Sustainable Development Goals in the European Union: An Empirical Comparison. Int. Environ. Agreem. Polit. Law Econ. 2022, 22, 67–95. [Google Scholar] [CrossRef] [PubMed]
- El Arem, A.; Saafi, E.B.; Flamini, G.; Issaoui, M.; Ferchichi, A.; Hammami, M.; Helall, A.N.; Achour, L. Volatile and Nonvolatile Chemical Composition of Some Date Fruits (Phoenix dactylifera, L.) Harvested at Different Stages of Maturity. Int. J. Food Sci. Technol. 2012, 47, 549–555. [Google Scholar] [CrossRef]
- Morales, M.L.; González, G.A.; Casas, J.A.; Troncoso, A.M. Multivariate Analysis of Commercial and Laboratory Produced Sherry Wine Vinegars: Influence of Acetification and Aging. Eur. Food Res. Technol. 2001, 212, 676–682. [Google Scholar] [CrossRef]
- Khalil, M.N.A.; Fekry, M.I.; Farag, M.A. Metabolome Based Volatiles Profiling in 13 Date Palm Fruit Varieties from Egypt via SPME GC–MS and Chemometrics. Food Chem. 2017, 217, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Randhawa, M.A.; Javed, M.S.; Ahmad, Z.; Amjad, A.; Khan, A.A.; Shah, F.U.H.; Filza, F. Amassing of Hydroxymethylfurfural, 2-Furfural and 5-Methyl Furfural in Orange (Citrus Reticulata) Juice during Storage. Food Sci. Technol. 2020, 40, 382–386. [Google Scholar] [CrossRef]
- Huang, H.; Chen, J.; Zheng, M.; Zhang, L.; Ji, H.; Cao, H.; Dai, F.; Wang, L. Precursors and Formation Pathways of Furfural in Sugarcane Juice during Thermal Treatment. Food Chem. 2023, 402, 134318. [Google Scholar] [CrossRef] [PubMed]
- Demyttenaere, J.C.R.; Willemen, H.M. Biotransformation of Linalool to Furanoid and Pyranoid Linalool Oxides by Aspergillus Niger. Phytochemistry 1998, 47, 1029–1036. [Google Scholar] [CrossRef] [PubMed]
- Gatfield, J.-M.; Hilmer, I.-L. U.S. Patent for Process for the Preparation of Linalool Oxide or of Linalool Oxide-Containing Mixtures. Patent Number 6703218, 2 November 2001. [Google Scholar]
- Ho, C.W.; Lazim, A.M.; Fazry, S.; Zaki, U.K.H.H.; Lim, S.J. Varieties, Production, Composition and Health Benefits of Vinegars: A Review. Food Chem. 2017, 221, 1621–1630. [Google Scholar] [CrossRef] [PubMed]
- Natera Marín, R.; Castro Mejías, R.; De Valme García Moreno, M.; García Rowe, F.; García Barroso, C. Headspace Solid-Phase Microextraction Analysis of Aroma Compounds in Vinegar: Validation Study. J. Chromatogr. A 2002, 967, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Callejón, R.M.; Tesfaye, W.; Torija, M.J.; Mas, A.; Troncoso, A.M.; Morales, M.L. Volatile Compounds in Red Wine Vinegars Obtained by Submerged and Surface Acetification in Different Woods. Food Chem. 2009, 113, 1252–1259. [Google Scholar] [CrossRef]
- Chai, L.J.; Qiu, T.; Lu, Z.M.; Deng, Y.J.; Zhang, X.J.; Shi, J.S.; Xu, Z.H. Modulating Microbiota Metabolism via Bioaugmentation with Lactobacillus Casei and Acetobacter Pasteurianus to Enhance Acetoin Accumulation during Cereal Vinegar Fermentation. Food Res. Int. 2020, 138, 109737. [Google Scholar] [CrossRef] [PubMed]
- Callejón, R.M.; Ríos-Reina, R.; Morales, M.L.; Troncoso, A.M.; Thomas, F.; Camin, F. Vinegar. In FoodIntegrity Handb.; Eurofins Analytics France: Nantes, France, 2018; pp. 265–285. [Google Scholar] [CrossRef]
- OENO 69/2000 Resolution OENO 69-2000. XVIII. Wine Vinegar—Measurement of the Acetoin Content. 2000. Available online: https://www.oiv.int/public/medias/2838/oeno-69-2000-2.pdf (accessed on 20 March 2025).
- Xu, Y.; Jiang, Y.; Li, X.; Sun, B.; Teng, C.; Yang, R.; Xiong, K.; Fan, G.; Wang, W. Systematic Characterization of the Metabolism of Acetoin and Its Derivative Ligustrazine in Bacillus Subtilis under Micro-Oxygen Conditions. J. Agric. Food Chem. 2018, 66, 3179–3187. [Google Scholar] [CrossRef] [PubMed]
- Matloob, M.H. Zahdi Date Vinegar: Production and Characterization. Am. J. Food Technol. 2014, 9, 231–245. [Google Scholar] [CrossRef]
- ALINORM 87/19 Joint FAO/WHO Food Standards Programme Codex Alimentarius Commission. Jt. FAO/WHO FOOD Stand. Program. CODEX Comm. Available online: https://www.fao.org/input/download/report/435/al87_19e.pdf (accessed on 2 April 2025).
- Solieri, L.; Giudici, P. Vinegars of the World; Springer: Milano, Italia, 2009; ISBN 9788578110796. [Google Scholar]
- Regulation (EC) No 1493/1999 of 17 May 1999 On the Common Organisation of the Market in Wine. Off. J Eur Union 1999, L 179/1, 1–83. Available online: https://eur-lex.europa.eu/eli/reg/1999/1493/oj/eng (accessed on 2 April 2025).
- Fernández-López, J.; Viuda-Martos, M.; Sayas-Barberá, E.; Navarro-Rodríguez de Vera, C.; Pérez-álvarez, J.Á. Biological, Nutritive, Functional and Healthy Potential of Date Palm Fruit (Phoenix dactylifera, L.): Current Research and Future Prospects. Agronomy 2022, 12, 876. [Google Scholar] [CrossRef]
- Al-Okbi, S.Y. Date Palm as Source of Nutraceuticals for Health Promotion: A Review. Curr. Nutr. Rep. 2022, 11, 574–591. [Google Scholar] [CrossRef] [PubMed]
- Hafzan, Y.; Saw, J.W.; Fadzilah, I. Physicochemical Properties, Total Phenolic Content, and Antioxidant Capacity of Homemade and Commercial Date (Phoenix dactylifera, L.) Vinegar. Int. Food Res. J. 2017, 24, 2557–2562. [Google Scholar]
- Ghnimi, S.; Umer, S.; Karim, A.; Kamal-Eldin, A. Date Fruit (Phoenix dactylifera, L.): An Underutilized Food Seeking Industrial Valorization. NFS J. 2017, 6, 1–10. [Google Scholar] [CrossRef]
- Leonard, W.; Zhang, P.; Ying, D.; Adhikari, B.; Fang, Z. Fermentation Transforms the Phenolic Profiles and Bioactivities of Plant-Based Foods. Biotechnol. Adv. 2021, 49, 107763. [Google Scholar] [CrossRef] [PubMed]
- Razola-Díaz, M.d.C.; De-Montijo-Prieto, S.; Áznar-Ramos, M.J.; Martín-García, B.; Jiménez-Valera, M.; Ruiz-Bravo, A.; Guerra-Hernández, E.J.; García-Villanova, B.; Verardo, V.; Gómez-Caravaca, A.M. Integrated Biotechnological Process Based on Submerged Fermentation and Sonotrode Extraction as a Valuable Strategy to Obtain Phenolic Enriched Extracts from Moringa Leaves. Food Res. Int. 2025, 201, 115602. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; O’Reilly, J.; Chen, Y.; Pawliszyn, J. Equilibrium In-Fibre Standardisation Technique for Solid-Phase Microextraction. J. Chromatogr. A 2005, 1072, 13–17. [Google Scholar] [CrossRef] [PubMed]
- OIV Methods of Analysis for Vinegars. Available online: https://www.oiv.int/standards/compendium-of-international-methods-of-analysis-for-vinegars/wine-vinegars/methods-of-analysis-for-vinegars (accessed on 11 February 2025).
- OIV OIV-MA-AS313-01 Total Acidity. Available online: https://www.oiv.int/it/standards/annex-a-methods-of-analysis-of-wines-and-musts/section-3-chemical-analysis/section-3-1-organic-compounds/section-3-1-3-acids/total-acidity-%28type-i%29 (accessed on 11 February 2025).
- OIV OIV-MA-AS313-02 V—Volatile Acidity. Available online: https://www.oiv.int/public/medias/3732/oiv-ma-as313-02.pdf (accessed on 11 February 2025).
- Martins, G.R.; Monteiro, A.F.; do Amaral, F.R.L.; da Silva, A.S. A Validated Folin-Ciocalteu Method for Total Phenolics Quantification of Condensed Tannin-Rich Açaí (Euterpe Oleracea Mart.) Seeds Extract. J. Food Sci. Technol. 2021, 58, 4693–4702. [Google Scholar] [CrossRef] [PubMed]
Compounds | Rt (min) | IT exp | IT lit | Target Ion | Qualifier Ions | Normalized Response (vs. IS) | ||||
---|---|---|---|---|---|---|---|---|---|---|
Fruit | Juice | Alcohol | Vinegar | Odor Description 1,2 | ||||||
Acetaldehyde | 1.86 | 715 | 724 | 44 | 45; 46 | 109.4 | 729 | 197.9 | 47.5 | fresh, green |
Acetone | 2.33 | 820 | 821 | 43 | 58; 42 | 46 | 12.2 | 6.1 | 4.9 | ethereal |
Methyl Acetate | 2.39 | 836 | 832 | 43 | 74; 59 | 83.2 | 16.5 | 6 | 10.2 | ethereal |
Ethyl Acetate | 2.95 | 878 | 895 | 43 | 61; 70 | 76.9 | 2188.7 | 6921 | 5186.3 | pineapple |
2-Methyl Butanal | 3.24 | 898 | 942 | 57 | 58; 39 | 7.5 | 2.1 | - | 1 | malty |
3-Methyl Butanal | 3.31 | 902 | 917 | 44 | 58; 39 | 7.1 | 10.3 | - | 3.7 | malty |
Ethanol | 3.73 | 960 | 956 | 45 | 46; 47 | 225.2 | 7574.8 | 11,758.5 | 2373 | ethanolic |
Ethyl Propanoate | 4.01 | 969 | 961 | 57 | 75; 74 | 0.7 | 16.6 | 13.8 | 7.3 | petrol-like, acrid |
Ethyl 2-Methylpropanoate | 4.09 | 971 | 971 | 43 | 71; 45 | - | - | 131.9 | 24.4 | sweet, ethereal |
Propyl Acetate | 4.33 | 978 | 977 | 43 | 61; 73 | - | 8 | 69.9 | 18.1 | petrol-like |
Methyl Isopropyl Ketone | 4.38 | 980 | 989 | 43 | 86; 44 | - | 38.8 | 137.7 | 67.6 | camphor |
Isobutyl Acetate | 5.14 | 1002 | 1002 | 43 | 56; 73 | 1.5 | 12.9 | 226.6 | 66.5 | fruit, apple, banana |
2-Methyl Propanol | 7.67 | 1078 | 1078 | 43 | 73; 74 | 10 | 237.4 | 161.5 | 17.1 | Ethereal-type |
Isoamyl Acetate | 8.28 | 1096 | 1107 | 43 | 70; 55 | 2 | 31.9 | 1027.6 | 689 | banana |
Limonene | 10.1 | 1171 | 1180 | 68 | 67; 93 | 6.7 | - | 2.5 | 15.4 | Lemon, orange |
3-Methyl-1-Butanol | 11.74 | 1200 | 1202 | 55 | 70; 39 | 39 | 747.1 | 1976.3 | 584 | fermented, fusel alcohol |
Ethyl Hexanoate | 12.35 | 1214 | 1223 | 69 | 281; 53 | - | - | 24.6 | 12 | apple peel, fruit |
1-Pentanol | 13.38 | 1242 | 1241 | 42 | 55; 70 | 23.1 | - | - | - | fermented, pungent |
p-Cymene | 13.89 | 1255 | 1263 | 119 | 134; 91 | 2.6 | 1.5 | 0.7 | 20.6 | terpenic, citrus |
Acetoin | 14.68 | 1275 | 1273 | 45 | 88; 44 | 39.7 | 206.8 | 675.5 | 1276.2 | butter-like |
1-Hexanol | 17.68 | 1349 | 1351 | 56 | 55; 69 | 37.6 | 6.8 | 1.2 | - | resin, flower green |
Nonanal | 19.24 | 1386 | 1385 | 57 | 56; 55 | 28 | 6.3 | 52.6 | 74.9 | fat, citrus, green |
Ethyl Octanoate | 20.93 | 1428 | 1429 | 88 | 57; 101 | - | 3.2 | 441.5 | - | sweet, fruity |
trans-Linalool Oxide | 21.17 | 1434 | 1432 | 59 | 94; 55 | - | 17.2 | - | - | Flower |
Acetic Acid | 20.33 | 1413 | 1413 | 43 | 45; 60 | 2.5 | 1723.8 | 5209.7 | 31,295.5 | sour |
Furfural | 22.28 | 1461 | 1462 | 96 | 95; 39 | 3 | 673.6 | 26.7 | 25.1 | marzipan-like, oats-like |
2-Ethyl,1-Hexanol | 23.42 | 1488 | 1488 | 57 | 55; 70 | 69.7 | 11.9 | 9.9 | 2.7 | rose, green |
2-Acetylfuran | 23.81 | 1498 | 1507 | 95 | 110; 43 | - | 534.3 | 25.6 | 13.6 | smoky |
Benzaldehyde | 24.39 | 1512 | 1500 | 106 | 105; 77 | 23.9 | 3.6 | 60.3 | 151 | almond, burnt sugar |
2,3-Butanediol | 25.35 | 1537 | 1539 | 45 | 57; 47 | 19.1 | 133.8 | 9.3 | 12.4 | butter-like, sweet |
5-Methylfurfural | 26.52 | 1566 | 1567 | 110 | 109; 53 | - | 383.8 | 23.3 | 36.5 | sweet, bitter almond-like |
1-Methoxy-2-Propyl Acetate | 26.85 | 1574 | 1570 | 43 | 88; 89 | 18.1 | 22.4 | 28 | 10.4 | - |
2-Methyl Propanoic Acid | 27.01 | 1579 | 1578 | 43 | 73; 39 | 69.3 | - | 28 | 90.7 | acidic, sour |
γ-Butyrolactone | 28.37 | 1613 | 1611 | 42 | 86; 56 | 290.1 | 70.6 | 4.4 | 14.2 | sweet, aromatic |
Ethyl Decanoate | 29.05 | 1631 | 1639 | 88 | 101; 55 | - | 3.8 | 73.7 | - | sweet, fruity |
2-Furanmethanol | 30.12 | 1659 | 1661 | 98 | 97; 53 | 0.8 | 642.7 | 25.9 | 12 | burnt |
Diethyl Succinate | 30.69 | 1674 | 1677 | 101 | 129; 55 | - | 11.7 | 31.8 | 554.4 | fruity-apple |
3-Methyl Butanoic Acid | 30.93 | 1680 | 1676 | 60 | 74; 87 | 1.6 | 3.3 | 44.3 | 93 | sweaty |
Benzyl Acetate | 32.38 | 1719 | 1711 | 108 | 91; 90 | - | 0.7 | - | 8.6 | sweet, fruity |
2-Phenylethyl Acetate | 35.58 | 1808 | 1811 | 104 | 91; 105 | 2.4 | 3778.7 | 346.9 | 1183 | Fruit, sweet |
Hexanoic Acid | 37.28 | 1857 | 1865 | 60 | 73; 55 | 58 | 2.2 | 23.6 | 299.3 | sour, fatty |
3-Methylphenylbutanoate | 37.62 | 1867 | - | 71 | 79; 108 | - | 10.3 | 7.9 | - | - |
Benzyl Alcohol | 37.63 | 1867 | 1861 | 79 | 108; 107 | 16.1 | 2.8 | 0.8 | 25.9 | sweaty |
Phenylethyl Alcohol | 38.75 | 1899 | 1894 | 91 | 92; 122 | 37.1 | 143.2 | 2072.9 | 3350.1 | honey, spice, rose, lilac |
Octanoic Acid | 44.32 | 2068 | 2064 | 60 | 73; 101 | 6.8 | 7.6 | 98 | 777.1 | sweat, cheese |
Nonanoic Acid | 47.57 | 2173 | 2164 | 60 | 73; 57 | 11.7 | 13.8 | 6 | 20 | green, fat |
Decanoic Acid | 50.75 | 2279 | 2276 | 60 | 73; 129 | 9.6 | 3.6 | 3.8 | 78.2 | rancid, fat |
5-Hydroxymethylfurfural | 56.38 | 2480 | 2485 | 97 | 126; 69 | - | 173.4 | 2.5 | 1.1 | fatty, buttery |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bagnulo, E.; Trevisan, G.; Strocchi, G.; Caratti, A.; Tapparo, G.; Felizzato, G.; Cordero, C.; Liberto, E. Integrated Characterization of Phoenix dactylifera L. Fruits and Their Fermented Products: Volatilome Evolution and Quality Parameters. Molecules 2025, 30, 3029. https://doi.org/10.3390/molecules30143029
Bagnulo E, Trevisan G, Strocchi G, Caratti A, Tapparo G, Felizzato G, Cordero C, Liberto E. Integrated Characterization of Phoenix dactylifera L. Fruits and Their Fermented Products: Volatilome Evolution and Quality Parameters. Molecules. 2025; 30(14):3029. https://doi.org/10.3390/molecules30143029
Chicago/Turabian StyleBagnulo, Eloisa, Gabriele Trevisan, Giulia Strocchi, Andrea Caratti, Giulia Tapparo, Giorgio Felizzato, Chiara Cordero, and Erica Liberto. 2025. "Integrated Characterization of Phoenix dactylifera L. Fruits and Their Fermented Products: Volatilome Evolution and Quality Parameters" Molecules 30, no. 14: 3029. https://doi.org/10.3390/molecules30143029
APA StyleBagnulo, E., Trevisan, G., Strocchi, G., Caratti, A., Tapparo, G., Felizzato, G., Cordero, C., & Liberto, E. (2025). Integrated Characterization of Phoenix dactylifera L. Fruits and Their Fermented Products: Volatilome Evolution and Quality Parameters. Molecules, 30(14), 3029. https://doi.org/10.3390/molecules30143029