Irrigation Regime Effects on Phenolic Composition of Portuguese Grape Varieties
Abstract
1. Introduction
2. Results and Discussion
2.1. Internal Validation of the HPLC-DAD Method
2.2. Oenological Results of Samples
2.3. Low-Molecular-Weight Phenolic Compounds in Grapes
2.4. Principal Component Analysis
3. Materials and Methods
3.1. Chemicals
3.2. Sample Material
3.3. Climatic Conditions
3.4. Oenological Parameters
3.5. Sample Preparation
3.6. HPLC-DAD Analysis
3.7. Internal Validation of the HPLC-DAD Method
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fonseca, A.; Fraga, H.; Santos, J.A. Exposure of Portuguese Viticulture to Weather Extremes under Climate Change. Clim. Serv. 2023, 30, 100357. [Google Scholar] [CrossRef]
- Fraga, H.; Atauri, I.G.d.C.; Malheiro, A.C.; Moutinho-Pereira, J.; Santos, J.A. Viticulture in Portugal: A Review of Recent Trends and Climate Change Projections. OENO One 2017, 51, 61–69. [Google Scholar] [CrossRef]
- Santos, J.A.; Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Dinis, L.-T.; Correia, C.; Moriondo, M.; Leolini, L.; Dibari, C.; Costafreda-Aumedes, S.; et al. A Review of the Potential Climate Change Impacts and Adaptation Options for European Viticulture. Appl. Sci. 2020, 10, 3092. [Google Scholar] [CrossRef]
- Scholasch, T.; Rienth, M. Review of Water Deficit Mediated Changes in Vine and Berry Physiology; Consequences for the Optimization of Irrigation Strategies. OENO One 2019, 53. [Google Scholar] [CrossRef]
- Villangó, S.Z.; Szekeres, A.; Bencsik, O.; Láposi, R.; Pálfi, Z.; Zsófi, Z. The Effect of Postveraison Water Deficit on the Phenolic Composition and Concentration of the Kékfrankos (Vitis vinifera L.) Berry. Sci. Hortic. 2016, 209, 113–116. [Google Scholar] [CrossRef]
- Ramos, M.C.; Ibáñez Jara, M.Á.; Rosillo, L.; Salinas, M.R. Effect of Temperature and Water Availability on Grape Phenolic Compounds and Their Extractability in Merlot Grown in a Warm Area. Sci. Hortic. 2024, 337, 113475. [Google Scholar] [CrossRef]
- Rouxinol, M.I.; Martins, M.R.; Salgueiro, V.; Costa, M.J.; Barroso, J.M.; Rato, A.E. Climate Effect on Morphological Traits and Polyphenolic Composition of Red Wine Grapes of Vitis vinifera. Beverages 2023, 9, 8. [Google Scholar] [CrossRef]
- Pérez-Álvarez, E.P.; Intrigliolo, D.S.; Almajano, M.P.; Rubio-Bretón, P.; Garde-Cerdán, T. Effects of Water Deficit Irrigation on Phenolic Composition and Antioxidant Activity of Monastrell Grapes under Semiarid Conditions. Antioxidants 2021, 10, 1301. [Google Scholar] [CrossRef]
- Alatzas, A.; Theocharis, S.; Miliordos, D.-E.; Leontaridou, K.; Kanellis, A.K.; Kotseridis, Y.; Hatzopoulos, P.; Koundouras, S. The Effect of Water Deficit on Two Greek Vitis vinifera L. Cultivars: Physiology, Grape Composition and Gene Expression during Berry Development. Plants 2021, 10, 1947. [Google Scholar] [CrossRef]
- Garde-Cerdán, T.; Gonzalo-Diago, A.; Pérez-Álvarez, E.P. Phenolic Compounds: Types, Effects, and Research; Nova Science Publishers: New York, NY, USA, 2017. [Google Scholar]
- Jordão, A.M.; Sousa, J.; Correia, A.C.; Valdés, M.E.; Nunes, F.M.; Cosme, F. Phenolic Composition of Vine Leaves Infusions Produced from Different Portuguese and Spanish Vitis vinifera L. Varieties. BIO Web Conf. 2019, 12, 04004. [Google Scholar] [CrossRef]
- Scepanovic, R.P.; Vuletic, D.; Christofi, S.; Kallithraka, S. Maceration Duration and Grape Variety: Key Factors in Phenolic Compound Enrichment of Montenegrin Red Wine. OENO One 2024, 58. [Google Scholar] [CrossRef]
- Costa, E.; Cosme, F.; Jordão, A.M.; Mendes-Faia, A. Anthocyanin Profile and Antioxidant Activity from 24 Grape Varieties Cultivated in Two Portuguese Wine Regions. OENO One 2014, 48, 51–62. [Google Scholar] [CrossRef]
- Bucchetti, B.; Matthews, M.A.; Falginella, L.; Peterlunger, E.; Castellarin, S.D. Effect of Water Deficit on Merlot Grape Tannins and Anthocyanins across Four Seasons. Sci. Hortic. 2011, 128, 297–305. [Google Scholar] [CrossRef]
- Sabra, A.; Netticadan, T.; Wijekoon, C. Grape Bioactive Molecules, and the Potential Health Benefits in Reducing the Risk of Heart Diseases. Food Chem. X 2021, 12, 100149. [Google Scholar] [CrossRef] [PubMed]
- Cañadas, R.; Díaz, I.; Rodríguez, M.; González, E.J.; González-Miquel, M. An Integrated Approach for Sustainable Valorization of Winery Wastewater Using Bio-Based Solvents for Recovery of Natural Antioxidants. J. Clean. Prod. 2022, 334, 130181. [Google Scholar] [CrossRef]
- Sousa, C.; Moutinho, C.; Matos, C.; Vinha, A.F. Portuguese Grapevine Leaves: A Neglected By-Product with High Potential. Appl. Sci. 2024, 14, 9803. [Google Scholar] [CrossRef]
- Barros, A.; Gironés-Vilaplana, A.; Teixeira, A.; Collado-González, J.; Moreno, D.A.; Gil-Izquierdo, A.; Rosa, E.; Domínguez-Perles, R. Evaluation of Grape (Vitis vinifera L.) Stems from Portuguese Varieties as a Resource of (Poly)Phenolic Compounds: A Comparative Study. Food Res. Int. 2014, 65, 375–384. [Google Scholar] [CrossRef]
- Cataldo, E.; Eichmeier, A.; Mattii, G.B. Effects of Global Warming on Grapevine Berries Phenolic Compounds—A Review. Agronomy 2023, 13, 2192. [Google Scholar] [CrossRef]
- Tarara, J.M.; Lee, J.; Spayd, S.E.; Scagel, C.F. Berry Temperature and Solar Radiation Alter Acylation, Proportion, and Concentration of Anthocyanin in Merlot Grapes. Am. J. Enol. Vitic. 2008, 59, 235–247. [Google Scholar] [CrossRef]
- Cortell, J.M.; Halbleib, M.; Gallagher, A.V.; Righetti, T.L.; Kennedy, J.A. Influence of Vine Vigor on Grape (Vitis vinifera L. Cv. Pinot Noir) Anthocyanins. 2. Anthocyanins and Pigmented Polymers in Wine. J. Agric. Food Chem. 2007, 55, 6585–6595. [Google Scholar] [CrossRef]
- Pereira, G.E.; Gaudillere, J.-P.; Pieri, P.; Hilbert, G.; Maucourt, M.; Deborde, C.; Moing, A.; Rolin, D. Microclimate Influence on Mineral and Metabolic Profiles of Grape Berries. J. Agric. Food Chem. 2006, 54, 6765–6775. [Google Scholar] [CrossRef]
- Santos, T.P.; Lopes, C.M.; Rodrigues, M.L.; de Souza, C.R.; Ricardo-da-Silva, J.M.; Maroco, J.P.; Pereira, J.S.; Chaves, M.M. Effects of Deficit Irrigation Strategies on Cluster Microclimate for Improving Fruit Composition of Moscatel Field-Grown Grapevines. Sci. Hortic. 2007, 112, 321–330. [Google Scholar] [CrossRef]
- Cifre, J.; Bota, J.; Escalona, J.M.; Medrano, H.; Flexas, J. Physiological Tools for Irrigation Scheduling in Grapevine (Vitis vinifera L.). Agric. Ecosyst. Environ. 2005, 106, 159–170. [Google Scholar] [CrossRef]
- Esteban, M.A.; Villanueva, M.J.; Lissarrague, J.R. Effect of Irrigation on Changes in the Anthocyanin Composition of the Skin of Cv Tempranillo (Vitis vinifera L) Grape Berries during Ripening. J. Sci. Food Agric. 2001, 81, 409–420. [Google Scholar] [CrossRef]
- Deluc, L.G.; Quilici, D.R.; Decendit, A.; Grimplet, J.; Wheatley, M.D.; Schlauch, K.A.; Mérillon, J.-M.; Cushman, J.C.; Cramer, G.R. Water Deficit Alters Differentially Metabolic Pathways Affecting Important Flavor and Quality Traits in Grape Berries of Cabernet Sauvignon and Chardonnay. BMC Genom. 2009, 10, 212. [Google Scholar] [CrossRef]
- Kyraleou, M.; Koundouras, S.; Kallithraka, S.; Theodorou, N.; Proxenia, N.; Kotseridis, Y. Effect of Irrigation Regime on Anthocyanin Content and Antioxidant Activity of Vitis vinifera L. Cv. Syrah Grapes under Semiarid Conditions. J. Sci. Food Agric. 2016, 96, 988–996. [Google Scholar] [CrossRef]
- Cohen, S.D.; Tarara, J.M.; Kennedy, J.A. Assessing the Impact of Temperature on Grape Phenolic Metabolism. Anal. Chim. Acta 2008, 621, 57–67. [Google Scholar] [CrossRef]
- Agostinelli, F.; Caldeira, I.; Ricardo-da-Silva, J.M.; Damásio, M.; Egipto, R.; Silvestre, J. First Approach to the Aroma Characterization of Monovarietal Red Wines Produced from Varieties Better Adapted to Abiotic Stresses. Plants 2023, 12, 2063. [Google Scholar] [CrossRef]
- Böhm, J.; Antunes, M.T.; Andrade, R.; Barroso, J.M.; Cabrita, M.J.; Cardoso, H.; Eiras-Dias, J.E.; Fernandes, L.; Fevereiro, P.; Figueiredo, A.; et al. Portugal Vitícola. O Grande livro das Castas: Enciclopédia dos Vinhos de Portugal; Chaves Ferreira Publicações, S.A.: Lisboa, Portugal, 2007. [Google Scholar]
- Piras, S.; Brazão, J.; Ricardo-da-Silva, J.M.; Anjos, O.; Caldeira, I. Volatile and Sensory Characterization of White Wines from Three Minority Portuguese Grapevine Varieties. Ciênc. Téc. Vitiv. 2020, 35, 49–62. [Google Scholar] [CrossRef]
- Cunha, J.; Brazão, J.; Baeta, F.; Eiras-Dias, J. Coleção Ampelográfica Nacional: Uma Ferramenta Indispensável à Preservação e Ao Melhoramento de Variedades Autóctones de Videira. Viticultura 2020, 59, 24–28. [Google Scholar]
- Sun, B.; Neves, A.C.; Fernandes, T.A.; Fernandes, A.L.; Mateus, N.; De Freitas, V.; Leandro, C.; Spranger, M.I. Evolution of Phenolic Composition of Red Wine during Vinification and Storage and Its Contribution to Wine Sensory Properties and Antioxidant Activity. J. Agric. Food Chem. 2011, 59, 6550–6557. [Google Scholar] [CrossRef]
- Neves, A.C.; Spranger, M.I.; Zhao, Y.; Leandro, M.C.; Sun, B. Effect of Addition of Commercial Grape Seed Tannins on Phenolic Composition, Chromatic Characteristics, and Antioxidant Activity of Red Wine. J. Agric. Food Chem. 2010, 58, 11775–11782. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Spranger, M.I. Changes in Phenolic Composition of Tinta Miúda Red Wines after 2 Years of Ageing in Bottle: Effect of Winemaking Technologies. Eur. Food Res. Technol. 2005, 221, 305–312. [Google Scholar] [CrossRef]
- Sun, B.; Spranger, I.; Roque-do-Vale, F.; Leandro, C.; Belchior, P. Effect of Different Winemaking Technologies on Phenolic Composition in Tinta Miúda Red Wines. J. Agric. Food Chem. 2001, 49, 5809–5816. [Google Scholar] [CrossRef]
- Padilha, C.V. da S.; Miskinis, G.A.; de Souza, M.E.A.O.; Pereira, G.E.; de Oliveira, D.; Bordignon-Luiz, M.T.; Lima, M.D.S. Rapid Determination of Flavonoids and Phenolic Acids in Grape Juices and Wines by RP-HPLC/DAD: Method Validation and Characterization of Commercial Products of the New Brazilian Varieties of Grape. Food Chem. 2017, 228, 106–115. [Google Scholar] [CrossRef]
- Moratalla-López, N.; Sánchez, A.M.; Lorenzo, C.; López-Córcoles, H.; Alonso, G.L. Quality Determination of Crocus Sativus L. Flower by High-Performance Liquid Chromatography. J. Food Compos. Anal. 2020, 93, 103613. [Google Scholar] [CrossRef]
- Ollé, D.; Guiraud, J.L.; Souquet, J.M.; Terrier, N.; Ageorges, A.; Cheynier, V.; Verries, C. Effect of Pre- and Post-Veraison Water Deficit on Proanthocyanidin and Anthocyanin Accumulation during Shiraz Berry Development. Aust. J. Grape Wine Res. 2011, 17, 90–100. [Google Scholar] [CrossRef]
- Castellarin, S.D.; Pfeiffer, A.; Sivilotti, P.; Degan, M.; Peterlunger, E.; DI Gaspero, G. Transcriptional Regulation of Anthocyanin Biosynthesis in Ripening Fruits of Grapevine under Seasonal Water Deficit. Plant Cell Environ. 2007, 30, 1381–1399. [Google Scholar] [CrossRef]
- Theocharis, S.; Nikolaou, N.; Zioziou, E.; Kyraleou, M.; Kallithraka, S.; Kotseridis, Y.; Koundouras, S. Effects of Post-Veraison Irrigation on the Phenolic Composition of Vitis vinifera L. Cv. ‘Xinomavro’ Grapes. OENO One 2021, 55, 173–189. [Google Scholar] [CrossRef]
- Zarrouk, O.; Francisco, R.; Pinto-Marijuan, M.; Brossa, R.; Santos, R.R.; Pinheiro, C.; Costa, J.M.; Lopes, C.; Chaves, M.M. Impact of Irrigation Regime on Berry Development and Flavonoids Composition in Aragonez (Syn. Tempranillo) Grapevine. Agric. Water Manag. 2012, 114, 18–29. [Google Scholar] [CrossRef]
- Descritivo Castas: Tinta Miúda. Available online: http://www.ivv.gov.pt/np4/home/377.html (accessed on 6 August 2025).
- Cabrita, M.J.P.d.B. Caracterização Físico-Química de Uvas e Vinhos de Castas Tradicionais do Alentejo. Doctoral Thesis, Universidade de Évora, Évora, Portugal, 2003. [Google Scholar]
- TINTA GORDA T. Available online: https://www.iniav.pt/can/tintas/tinta-gorda-t (accessed on 13 January 2025).
- Castas de Portugal: Tinta Caiada. Available online: https://www.vidarural.pt/sem-categoria/castas-de-portugal-tinta-caiada/ (accessed on 6 August 2025).
- Kumar, N.; Bansal, A.; Sarma, G.S.; Rawal, R.K. Chemometrics Tools Used in Analytical Chemistry: An Overview. Talanta 2014, 123, 186–199. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.; Zhang, J.; Zhang, L.; Huang, C.; Chen, L.; Wang, G.; Liu, X.; Lu, C. Elements Characterization of Chinese Tea with Different Fermentation Degrees and Its Use for Geographical Origins by Liner Discriminant Analysis. J. Food Compos. Anal. 2019, 82, 103246. [Google Scholar] [CrossRef]
- Prebihalo, S.E.; Berrier, K.L.; Freye, C.E.; Bahaghighat, H.D.; Moore, N.R.; Pinkerton, D.K.; Synovec, R.E. Multidimensional Gas Chromatography: Advances in Instrumentation, Chemometrics, and Applications. Anal. Chem. 2018, 90, 505–532. [Google Scholar] [CrossRef] [PubMed]
- OIV Compendium of International Methods of Analysis of Wines and Musts. Available online: http://www.oiv.int/en/normes-etdocumentstechniques/methodes-danalyse/recueil-des-methodesinternationales-danalyse-des-vins-et-des-mouts-2-vol (accessed on 2 November 2023).
- Cebrián-Tarancón, C.; Sánchez-Gómez, R.; Cabrita, M.J.; García, R.; Zalacain, A.; Alonso, G.L.; Salinas, M.R. Winemaking with Vine-Shoots. Modulating the Composition of Wines by Using Their Own Resources. Food Res. Int. 2019, 121, 117–126. [Google Scholar] [CrossRef]
- Magnusson, B.; Ornemark, U. Eurachem Guide: The Fitness for Purpose of Analytical Methods a Laboratory Guide to Method Validation and Related Topics, 2nd ed.; Eurachem Secretary: Bucharest, Romania, 2014. [Google Scholar]
Standards | Detection Wavelength (nm) | Retention Time (min) | Concentration Range (mg L−1) | Regression Equation | R2 | LOD (mg L−1) | LOQ (mg L−1) | Repeatability (% RSD) | Reproducibility (% RSD) |
---|---|---|---|---|---|---|---|---|---|
Gallic acid | 280 | 3.70 | 3.91–55.90 | y = 53.23x − 13.98 | 0.9997 | 0.30 | 0.37 | 5.54 | 7.91 |
Protocatechuic acid | 280 | 6.42 | 1.41–20.10 | y = 32.57x − 3.09 | 0.9998 | 0.17 | 0.34 | 4.32 | 1.27 |
4-Hidroxybenzoic acid | 256 | 10.46 | 9.71–138.76 | y = 109.89x − 18.79 | 0.9998 | 0.20 | 0.28 | 0.78 | 0.38 |
(+)-Catechin | 280 | 14.11 | 7.54–107.78 | y = 10.85x − 8.34 | 0.9996 | 1.06 | 1.75 | 2.94 | 0.82 |
Vanillic acid | 256 | 15.32 | 7.41–105.92 | y = 64.68x − 15.35 | 0.9998 | 0.29 | 0.40 | 0.76 | 0.49 |
Caffeic acid | 324 | 15.83 | 3.21–45.86 | y = 104.84x − 29.13 | 0.9997 | 0.34 | 0.50 | 0.88 | 0.29 |
(−)-Epicatechin | 280 | 18.76 | 10.19–145.58 | y = 12.87x − 3.74 | 0.9999 | 0.52 | 1.04 | 1.29 | 0.53 |
Syringic acid | 280 | 18.65 | 1.84–26.32 | y = 60.63x − 7.94 | 0.9998 | 0.19 | 0.32 | 0.52 | 0.50 |
Coumaric acid | 308 | 22.23 | 1.05–14.99 | y = 151.65x − 13.14 | 0.9996 | 0.11 | 0.17 | 3.54 | 0.85 |
Ferulic acid | 324 | 27.49 | 14.83–211.90 | y = 101.50x − 34.26 | 0.9999 | 0.43 | 0.65 | 0.65 | 5.28 |
Resveratrol piceid | 308 | 29.79 | 1.94–27.76 | y = 88.72x − 17.16 | 0.9996 | 0.24 | 0.35 | 2.40 | 0.47 |
Sinapic acid | 324 | 31.26 | 5.36–76.56 | y = 96.69x − 43.70 | 0.9999 | 0.60 | 0.94 | 1.53 | 1.70 |
trans-Resveratrol | 308 | 44.62 | 1.31–18.67 | y = 142.98x − 52.59 | 0.9982 | 0.39 | 0.43 | 0.69 | 4.79 |
Quercetin | 365 | 48.37 | 0.66–9.39 | y = 60.81x − 36.92 | 0.9808 | 0.62 | 0.65 | 1.20 | 1.19 |
Malvidin-3-glucoside | 520 | 28.19 | 19.86–397.10 | y = 48.65x − 171.75 | 0.9976 | 11.95 | 31.61 | 0.48 | 1.57 |
Procyanidin | 280 | 15.75 | 10.00–160.00 | y = 7.96x − 14.35 | 0.9991 | 2.16 | 2.99 | 0.50 | 1.12 |
Epigallocatechin gallate | 280 | 22.92 | 3.00–48.00 | y = 10.81x − 3.82 | 0.9974 | 0.79 | 1.80 | 1.76 | 6.65 |
Epicatechin gallate | 280 | 31.28 | 3.00–48.00 | y = 14.17x − 2.58 | 0.9992 | 0.59 | 1.54 | 1.07 | 2.41 |
Catechin gallate | 280 | 36.00 | 3.00–48.00 | y = 8.99x − 4.97 | 0.9993 | 1.14 | 2.49 | 1.41 | 1.36 |
Piceatannol | 324 | 36.65 | 3.00–48.00 | y = 39.74x − 0.73 | 1.0000 | 0.07 | 0.19 | 0.62 | 1.84 |
Viniferin | 324 | 49.49 | 2.00–32.00 | y = 27.64x − 14.29 | 0.9986 | 0.53 | 0.57 | 0.46 | 0.45 |
Varieties | Irrigation Regime | Potential Alcohol Degree (% v/v) | pH | Total Acidity (g L−1) * |
---|---|---|---|---|
Tinta Gorda | C | 12.70 | 3.79 | 4.58 |
D | 13.00 | 3.72 | 4.07 | |
R | 12.40 | 3.77 | 3.94 | |
Tinta Miúda | C | 14.60 | 3.39 | 6.70 |
D | 15.80 | 3.36 | 6.75 | |
R | 17.30 | 3.42 | 7.65 | |
Tinta Caiada | C | 11.60 | 3.62 | 5.32 |
D | 12.30 | 3.75 | 4.69 | |
R | 13.70 | 3.91 | 4.45 | |
Moreto | C | 10.60 | 3.70 | 4.38 |
D | 8.40 | 3.71 | 4.16 | |
R | 9.50 | 3.74 | 3.99 |
Compounds | Tinta Gorda | F-Ratio | Tinta Miúda | F-Ratio | Tinta Caiada | F-Ratio | Moreto | F-Ratio | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C | D | R | C | D | R | C | D | R | C | D | R | |||||
Anthocyanins | ||||||||||||||||
Delphinidin-3-glucoside | 25.33 ± 1.75 a | 26.45 ± 0.58 a | 23.99 ± 0.66 a | 3.55 | 34.11 ± 1.65 a | 41.61 ± 0.86 c | 37.09 ± 0.61 b | 33.55 | 34.04 ± 1.06 a | 36.27 ± 1.08 a | 55.95 ± 1.30 b | 329.85 | 12.13 ± 0.25 b | 9.35 ± 0.63 a | 11.55 ± 0.68 b | 21.11 |
Cyanidin-3-glucoside | 7.64 ± 0.62 a | 7.62 ± 0.13 a | 7.28 ± 0.32 a | 0.72 | 8.83 ± 0.31 a | 9.94 ± 1.00 a | 8.75 ± 0.24 a | 3.46 | 10.51 ± 0.06 b | 9.23 ± 0.31 a | 13.27 ± 0.68 c | 68.88 | 6.45 ± 0.24 b | 5.49 ± 0.14 a | 5.92 ± 0.39 ab | 8.95 |
Petunidin-3-glucoside | 27.69 ± 2.11 a | 30.9 ± 0.09 b | 28.66 ± 0.37 ab | 5.30 | 42.32 ± 1.57 a | 48.06 ± 1.57 b | 46.96 ± 0.49 b | 16.13 | 54.27 ± 2.21 a | 55.99 ± 1.17 a | 81.97 ± 1.75 b | 232.05 | 17.50 ± 0.57 c | 12.86 ± 0.48 a | 15.51 ± 0.16 b | 83.92 |
Peonidin-3-glucoside | 23.75 ± 2.31 a | 28.09 ± 0.82 b | 27.75 ± 0.61 b | 8.20 | 83.4 ± 3.99 a | 92.51 ± 2.78 b | 88.21 ± 1.10 ab | 7.52 | 12.65 ± 0.65 b | 11.47 ± 0.47 a | 17.07 ± 0.16 c | 116.69 | 27.22 ± 0.35 c | 17.77 ± 0.26 a | 22.38 ± 0.31 b | 722.88 |
Malvidin-3-glucoside | 143.55 ± 11.48 a | 161.93 ± 1.49 b | 162.73 ± 3.84 b | 7.13 | 456.16 ± 14.67 a | 511.97 ± 6.51 b | 561.72 ± 2.05 c | 95.90 | 134.96 ± 4.49 a | 143.15 ± 1.30 b | 224.97 ± 1.91 c | 874.22 | 152.52 ± 1.01 c | 103.93 ± 1.27 a | 141.19 ± 0.56 b | 1984.39 |
Delphinidin-3-coumaroyl-glucoside | 36.70 ± 2.80 a | 44.67 ± 0.94 b | 47.17 ± 0.83 b | 28.65 | 79.11 ± 2.53 a | 89.04 ± 0.66 b | 100.64 ± 1.22 c | 125.36 | 72.03 ± 1.86 a | 82.75 ± 1.44 b | 85.20 ± 2.04 b | 45.51 | 23.89 ± 1.22 b | 18.45 ± 0.75 a | 24.28 ± 0.64 b | 38.68 |
Anthocyanin derivate a | 20.43 ± 1.63 a | 28.62 ± 2.96 b | 30.11 ± 0.45 b | 20.97 | 14.89 ± 0.05 a | 16.77 ± 0.87 b | 18.08 ± 0.46 c | 23.62 | 33.14 ± 1.07 a | 35.42 ± 0.19 b | 35.54 ± 0.31 b | 12.87 | 10.05 ± 0.56 b | 7.74 ± 0.23 a | 10.11 ± 0.52 b | 25.92 |
Petunidin-3-coumaroyl-glucoside | 27.71 ± 2.11 a | 32.93 ± 1.72 b | 31.59 ± 0.47 b | 8.65 | 17.45 ± 0.41 a | 19.81 ± 0.85 b | 18.52 ± 0.24 a | 13.21 | 70.32 ± 1.86 b | 75.27 ± 1.97 c | 66.69 ± 0.66 a | 21.47 | 10.11 ± 0.35 c | 8.81 ± 0.09 a | 9.60 ± 0.10 b | 27.80 |
Malvidin-3-coumaroyl-glucoside | 154.12 ± 11.91 a | 178.62 ± 4.23 b | 178.77 ± 1.62 b | 11.15 | 224.48 ± 4.44 a | 229.63 ± 1.99 a | 247.16 ± 1.15 b | 50.83 | 166.38 ± 6.94 ab | 173.37 ± 3.39 b | 163.6 ± 1.17 a | 3.73 | 87.98 ± 1.47 c | 63.82 ± 1.46 a | 78.69 ± 0.59 b | 287.72 |
Total | 466.93 ± 36.72 a | 539.82 ± 12.96 b | 538.05 ± 9.16 b | 12.82 | 960.75 ± 29.62 a | 1059.34 ± 17.11 b | 1127.13 ± 7.56 c | 96.37 | 588.31 ± 20.20 a | 622.92 ± 11.33 b | 744.27 ± 9.97 c | 108.87 | 347.85 ± 6.02 c | 248.22 ± 5.31 a | 319.23 ± 3.95 b | 778.71 |
Flavanols | ||||||||||||||||
(+)-Catechin | 23.01 ± 0.84 c | 14.76 ± 0.49 b | 11.37 ± 0.63 a | 239.39 | 81.42 ± 1.62 b | 72.71 ± 5.55 a | 69.68 ± 1.19 a | 9.58 | 45.74 ± 0.56 a | 42.40 ± 3.83 a | 43.00 ± 0.07 a | 1.90 | 56.16 ± 0.81 b | 60.66 ± 0.49 c | 40.63 ± 0.49 a | 880.23 |
Procyanidin derivative 1 b | 26.92 ± 4.26 a | 25.56 ± 1.47 a | 27.51 ± 0.60 a | 0.43 | 56.93 ± 6.67 a | 60.80 ± 7.04 a | 67.38 ± 5.17 a | 2.08 | 53.49 ± 1.12 c | 47.38 ± 1.48 a | 50.02 ± 1.12 b | 17.99 | 62.56 ± 1.55 c | 58.68 ± 0.59 b | 40.75 ± 0.69 a | 377.01 |
Flavanol 1 c | 82.91 ± 13.52 a | 99.59 ± 7.63 a | 120.17 ± 3.15 b | 12.49 | 111.07 ± 1.61 a | 116.23 ± 6.30 a | 147.38 ± 5.59 b | 46.65 | 88.57 ± 1.81 a | 97.24 ± 2.59 b | 108.58 ± 0.34 c | 89.58 | 80.78 ± 1.98 a | 92.90 ± 0.62 c | 89.15 ± 0.51 b | 75.90 |
(−)-Epicatechin | 11.44 ± 3.28 a | 8.71 ± 3.85 a | 12.99 ± 1.49 a | 1.53 | 16.13 ± 1.18 b | 11.03 ± 0.86 a | 18.89 ± 0.63 c | 56.47 | 1.60 ± 0.12 b | 1.93 ± 0.05 c | 0.87 ± 0.12 a | 86.40 | 13.04 ± 4.59 a | 13.05 ± 1.00 a | 11.17 ± 0.31 a | 0.47 |
Procyanidin derivative 2 b | 83.76 ± 3.70 a | 101.81 ± 0.77 b | 117.89 ± 1.68 c | 153.06 | 168.02 ± 1.50 a | 190.49 ± 2.89 b | 215.69 ± 1.56 c | 392.85 | 89.55 ± 1.60 b | 85.59 ± 0.12 a | 98.56 ± 0.91 c | 117.06 | 131.10 ± s37.29 b | 109.71 ± 0.39 ab | 87.28 ± 0.44 a | 3.11 |
Epicatechin gallate | 78.54 ± 2.82 ab | 76.16 ± 0.44 a | 80.23 ± 1.37 b | 3.75 | 145.09 ± 1.30 a | 154.58 ± 0.51 b | 164.92 ± 3.72 c | 56.14 | 112.56 ± 1.04 b | 86.21 ± 1.19 a | 87.40 ± 0.28 a | 768.36 | 125.66 ± 11.41 b | 113.22 ± 2.71 b | 82.10 ± 1.12 a | 32.64 |
Total | 306.59 ± 28.43 a | 362.60 ± 14.65 ab | 370.16 ± 8.92 b | 3.89 | 578.66 ± 13.88 a | 605.84 ± 23.14 a | 683.74 ± 17.86 b | 15.05 | 391.51 ± 6.25 b | 360.74 ± 9.27 a | 388.43 ± 2.85 a | 23.74 | 439.30 ± 57.63 b | 448.22 ± 5.80 b | 351.07 ± 3.56 a | 49.97 |
Flavonols | ||||||||||||||||
Flavonol 1 d | 34.31 ± 1.82 b | 29.16 ± 1.01 a | 32.38 ± 0.95 b | 11.69 | 74.03 ± 2.85 a | 91.70 ± 2.03 c | 82.41 ± 0.89 b | 53.92 | 57.35 ± 0.97 b | 48.07 ± 0.37 a | 61.94 ± 1.13 c | 190.60 | 25.73 ± 0.78 a | 31.33 ± 0.27 b | 26.50 ± 0.25 a | 111.42 |
Flavonol 2 d | 5.00 ± 0.23 a | 5.58 ± 0.10 b | 6.55 ± 0.29 c | 37.78 | 7.75 ± 0.28 a | 9.30 ± 0.09 b | 9.41 ± 0.33 b | 40.26 | 3.49 ± 0.04 a | 4.19 ± 0.05 b | 5.37 ± 0.17 c | 243.27 | 2.54 ± 0.09 b | 2.08 ± 0.10 a | 2.49 ± 0.06 b | 26.70 |
Total | 39.31 ± 2.05 b | 34.74 ± 1.11 a | 38.93 ± 1.24 b | 8.73 | 81.78 ± 3.13 a | 101.01 ± 2.12 c | 91.81 ± 1.22 b | 53.69 | 60.84 ± 1.01 b | 52.26 ± 0.42 a | 67.31 ± 1.30 c | 182.61 | 28.27 ± 0.87 a | 33.41 ± 0.36 b | 28.98 ± 0.32 a | 80.48 |
Others | ||||||||||||||||
Caffeic acid | 1.38 ± 0.07 a | 1.56 ± 0.06 b | 1.50 ± 0.11 ab | 3.73 | 2.36 ± 0.11 a | 2.73 ± 0.11 b | 2.91 ± 0.23 b | 9.46 | 1.41 ± 0.02 a | 1.48 ± 0.03 b | 1.51 ± 0.04 b | 8.60 | 2.30 ± 0.05 c | 2.08 ± 0.16 b | 1.88 ± 0.01 a | 14.42 |
Resveratrol piceid | nd | nd | nd | -- | 3.06 ± 0.20 a | 3.48 ± 0.60 a | 3.41 ± 0.25 a | 0.99 | nd | nd | nd | -- | nd | nd | nd | -- |
Total | 1.38 ± 0.07 a | 1.56 ± 0.06 b | 1.50 ± 0.11 ab | 3.73 | 5.42 ± 0.31 a | 6.21 ± 0.71 a | 6.32 ± 0.48 a | 3.24 | 1.41 ± 0.02 a | 1.48 ± 0.03 b | 1.51 ± 0.04 b | 8.60 | 2.30 ± 0.05 c | 2.08 ± 0.16 b | 1.88 ± 0.01 a | 14.42 |
Compounds | Water Comfort | Moderate Water Deficit | Rainfed | |||
---|---|---|---|---|---|---|
Component 1 | Component 2 | Component 1 | Component 2 | Component 1 | Component 2 | |
(+)-Catechin | 0.2808 | −0.0923 | 0.1871 | −0.2102 | 0.2326 | 0.0238 |
Procyanidin derivative 1 | 0.1338 | −0.1015 | 0.1469 | −0.2075 | 0.2573 | −0.0372 |
Flavanol 1 | 0.3130 | 0.0577 | 0.2935 | 0.0212 | 0.2673 | −0.0053 |
Caffeic acid | 0.1974 | −0.2748 | 0.2445 | −0.2308 | 0.2585 | 0.1806 |
Delphinidin-3-glucoside | 0.1704 | 0.3147 | 0.2217 | 0.2677 | 0.1240 | −0.3720 |
(−)-Epicatechin | 0.1519 | −0.2982 | 0.0499 | −0.3674 | 0.1568 | 0.3258 |
Procyanidin derivative 2 | 0.2706 | −0.1890 | 0.2802 | −0.1360 | 0.2850 | 0.0878 |
Cyanidin-3-glucoside | 0.0914 | 0.3577 | 0.2253 | 0.2613 | 0.0702 | −0.3933 |
Petunidin-3-glucoside | 0.1231 | 0.3442 | 0.1603 | 0.3192 | 0.0979 | −0.3824 |
Peonidin-3-glucoside | 0.2997 | −0.0987 | 0.2882 | −0.0719 | 0.2784 | 0.1391 |
Malvidin-3-glucoside | 0.3118 | −0.0455 | 0.2988 | −0.0201 | 0.2950 | 0.0325 |
Resveratrol piceid | 0.3132 | −0.0281 | 0.2977 | −0.0608 | 0.2861 | 0.1060 |
Epicatechin gallate | 0.2513 | −0.0955 | 0.2529 | −0.2007 | 0.2896 | 0.0812 |
Flavonol 1 | 0.2706 | 0.2005 | 0.2973 | 0.0173 | 0.2737 | −0.1463 |
Flavonol 2 | 0.2633 | 0.0415 | 0.2737 | 0.0861 | 0.2608 | −0.0427 |
Delphinidin-3-coumaroyl-glucoside | 0.2314 | 0.2596 | 0.2200 | 0.2569 | 0.2539 | −0.2121 |
Anthocyanin derivate | −0.0740 | 0.3688 | −0.0433 | 0.3899 | −0.0201 | −0.3627 |
Petunidin-3-coumaroyl-glucoside | −0.0752 | 0.3559 | −0.0518 | 0.3630 | −0.0273 | −0.4087 |
Malvidin-3-coumaroylated-glucoside | 0.2489 | 0.1963 | 0.2230 | 0.2382 | 0.2586 | −0.0843 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fonseca, D.; Sánchez-Gómez, R.; Salinas, M.R.; Cabrita, M.J.; Martins, N.; Garcia, R.; Cebrián-Tarancón, C. Irrigation Regime Effects on Phenolic Composition of Portuguese Grape Varieties. Molecules 2025, 30, 3408. https://doi.org/10.3390/molecules30163408
Fonseca D, Sánchez-Gómez R, Salinas MR, Cabrita MJ, Martins N, Garcia R, Cebrián-Tarancón C. Irrigation Regime Effects on Phenolic Composition of Portuguese Grape Varieties. Molecules. 2025; 30(16):3408. https://doi.org/10.3390/molecules30163408
Chicago/Turabian StyleFonseca, Daniela, Rosario Sánchez-Gómez, M. Rosario Salinas, Maria João Cabrita, Nuno Martins, Raquel Garcia, and Cristina Cebrián-Tarancón. 2025. "Irrigation Regime Effects on Phenolic Composition of Portuguese Grape Varieties" Molecules 30, no. 16: 3408. https://doi.org/10.3390/molecules30163408
APA StyleFonseca, D., Sánchez-Gómez, R., Salinas, M. R., Cabrita, M. J., Martins, N., Garcia, R., & Cebrián-Tarancón, C. (2025). Irrigation Regime Effects on Phenolic Composition of Portuguese Grape Varieties. Molecules, 30(16), 3408. https://doi.org/10.3390/molecules30163408