Interaction Mechanisms of KRAS G12C Inhibitors (Sotorasib and Adagrasib) with Human Serum Albumin: Insights from Spectroscopic and Molecular Docking Studies
Abstract
1. Introduction
2. Results and Discussion
2.1. UV-Vis Absorption Spectroscopic Analysis
2.2. Fluorescence Spectroscopy Analysis
2.3. Stoichiometry of Drug-HSA Complexes
2.4. Quenching Mechanism
2.5. Binding Constants Between HSA and Drugs
2.6. Three-Dimensional Fluorescence Spectra
2.7. Molecular Docking
2.8. Molecular Dynamics Simulation
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. UV-Vis Spectroscopy
3.3. Fluorescence Spectroscopy
3.4. Molecular Docking
3.5. Molecular Dynamics Simulation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reck, M.; Carbone, D.P.; Garassino, M.; Barlesi, F. Targeting KRAS in non-small-cell lung cancer: Recent progress and new approaches. Ann. Oncol. 2021, 32, 1101–1110. [Google Scholar] [CrossRef] [PubMed]
- Hong, D.S.; Fakih, M.G.; Strickler, J.H.; Desai, J.; Durm, G.A.; Shapiro, G.I.; Govindan, R.; Price, T.J.; Falchook, G.S.; Li, B.T.; et al. KRASG12C inhibition with sotorasib in advanced solid tumors. N. Engl. J. Med. 2020, 383, 1207–1217. [Google Scholar] [CrossRef] [PubMed]
- Lee, A. Sotorasib: A review in KRAS G12C mutation-positive non-small cell lung cancer. Target. Oncol. 2022, 17, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.Z.; Marrone, K.A.; Spira, A.; Rosner, S. Adagrasib: A novel inhibitor for KRASG12C-mutated non-small-cell lung cancer. Future Oncol. 2023, 19, 1037–1051. [Google Scholar] [CrossRef]
- Murciano-Goroff, Y.R.; Lito, P. The KRYSTAL-1 study of adagrasib—A new trial for KRAS G12C-mutated non-small-cell lung cancer. Nat. Rev. Clin. Oncol. 2022, 19, 677–678. [Google Scholar] [CrossRef]
- Skoulidis, F.; Li, B.T.; Dy, G.K.; Price, T.J.; Falchook, G.S.; Wolf, J.; Italiano, A.; Schuler, M.; Borghaei, H.; Barlesi, F.; et al. Sotorasib for lung cancers with KRAS p. G12C mutation. N. Engl. J. Med. 2021, 384, 2371–2381. [Google Scholar] [CrossRef]
- Parodi, A.; Miao, J.; Soond, S.M.; Rudzińska, M.; Zamyatnin, A.A., Jr.; Gorodnya, O.M.; Rizvanov, A.A.; Scaria, P.V.; Celia, C.; Zylberberg, C.; et al. Albumin nanovectors in cancer therapy and imaging. Biomolecules 2019, 9, 218. [Google Scholar] [CrossRef]
- Yang, M.; Li, J.; Gu, P.; Fan, X. The application of nanoparticles in cancer immunotherapy: Targeting tumor microenvironment. Bioact. Mater. 2021, 6, 1973–1987. [Google Scholar] [CrossRef]
- Li, F.; Yeh, S.; Shi, Q.; Zhang, L.; Wang, Y.; Chen, X.; Liu, H.; Zhou, W.; Zhao, J.; Wu, K.; et al. A novel thermal-driven self-assembly method to prepare albumin nanoparticles: Formation kinetics, degradation behavior and formation mechanism. AAPS PharmSciTech 2022, 23, 250. [Google Scholar] [CrossRef]
- Solanki, R.; Rostamabadi, H.; Patel, S.; Jafari, S.M.; Tabibiazar, M.; Kumar, A.; Dewangan, H.K.; Pandey, A.; Mishra, B.; Pathak, Y.; et al. Anticancer nano-delivery systems based on bovine serum albumin nanoparticles: A critical review. Int. J. Biol. Macromol. 2021, 193, 528–540. [Google Scholar] [CrossRef]
- Macii, F.; Biver, T. Spectrofluorimetric analysis of the binding of a target molecule to serum albumin: Tricky aspects and tips. J. Inorg. Biochem. 2021, 216, 111305. [Google Scholar] [CrossRef]
- Ferreira, L.G.; Dos Santos, R.N.; Oliva, G.; Andricopulo, A.D.; Salum, L.B.; Dias, L.C.; Guido, R.V.; Moraes, C.B.; Freitas-Junior, L.H.; Silva, E.B.; et al. Molecular docking and structure-based drug design strategies. Molecules 2015, 20, 13384–13421. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.X.; Kim, H.Y.; Dass, C. Probing three-dimensional structure of bovine serum albumin by chemical cross-linking and mass spectrometry. J. Am. Soc. Mass Spectrom. 2004, 15, 1237–1247. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, S.; Ameen, F.; ur Rehman, S.; Sarwar, T.; Husain, F.M.; Alajmi, M.F.; Khan, M.A. Studying the interaction of drug/ligand with serum albumin. J. Mol. Liq. 2021, 336, 116200. [Google Scholar] [CrossRef]
- Spada, A.; Emami, J.; Tuszynski, J.A.; Lavasanifar, A.; Leung, A.W.Y.; Bragazzi, N.L.; Raciti, G.; Grasso, G.; Deriu, M.A.; Sadeghian, H.; et al. The uniqueness of albumin as a carrier in nanodrug delivery. Mol. Pharm. 2021, 18, 1862–1894. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, S.; Ameen, F.; Jahan, I.; Nayeem, S.M.; Tabish, M.; Alam, P.; Zaidi, N.; Khan, R.H.; Khan, M.A. A comprehensive spectroscopic and computational investigation on the binding of the anti-asthmatic drug triamcinolone with serum albumin. New J. Chem. 2019, 43, 4137–4151. [Google Scholar] [CrossRef]
- Xu, X.; Du, Z.; Wu, W.; Li, Y.; Li, J.; Zhang, H.; Wang, J.; Yang, X.; Jiang, C.; Liu, Y.; et al. Synthesis of triangular silver nanoprisms and spectroscopic analysis on the interaction with bovine serum albumin. Anal. Bioanal. Chem. 2017, 409, 5327–5336. [Google Scholar] [CrossRef]
- Li, X.; Ni, T. Probing the binding mechanisms of α-tocopherol to trypsin and pepsin using isothermal titration calorimetry, spectroscopic, and molecular modeling methods. J. Biol. Phys. 2016, 42, 415–434. [Google Scholar] [CrossRef]
- Xu, X.; Du, Z.; Wu, W.; Li, Y.; Li, J.; Zhang, H.; Wang, J.; Yang, X.; Jiang, C.; Liu, Y.; et al. Study of the interaction between icariin and human serum albumin by fluorescence spectroscopy. J. Mol. Struct. 2008, 881, 132–138. [Google Scholar] [CrossRef]
- Moriyama, Y.; Ohta, D.; Hachiya, K.; Mitsui, Y.; Takeda, K. Fluorescence behavior of tryptophan residues of bovine and human serum albumins in ionic surfactant solutions: A comparative study of the two and one tryptophan (s) of bovine and human albumins. J. Protein Chem. 1996, 15, 265–272. [Google Scholar] [CrossRef]
- Rezaei, S.; Meftah, H.S.; Ebtehajpour, Y.; Rahimi, H.R.; Mousavi, P.; Hushmandi, K. Investigation on the effect of fluorescence quenching of calf thymus DNA by piperine: Caspase activation in the human breast cancer cell line studies. DNA Cell Biol. 2024, 43, 26–38. [Google Scholar] [CrossRef]
- Kragh-Hansen, U.; Chuang, V.T.G.; Otagiri, M. Practical aspects of the ligand-binding and enzymatic properties of human serum albumin. Biol. Pharm. Bull. 2002, 25, 695–704. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Li, X.; Gao, B.; Chen, J.; Song, Y. Spectroscopic and molecular docking studies on binding interactions of camptothecin drugs with bovine serum albumin. Sci. Rep. 2025, 15, 8055. [Google Scholar] [CrossRef]
- Wang, Y.; Ni, Y. Combination of UV–vis spectroscopy and chemometrics to understand protein–nanomaterial conjugate: A case study on human serum albumin and gold nanoparticles. Talanta 2014, 119, 320–330. [Google Scholar] [CrossRef]
- Povedailo, V.A.; Ronishenko, B.V.; Stepuro, V.I.; Tsybulsky, D.A.; Shmanai, V.V.; Yakovlev, D.L. Fluorescence quenching of dyes by graphene oxide. J. Appl. Spectrosc. 2018, 85, 605–610. [Google Scholar] [CrossRef]
- Wang, T.; Zhao, Z.; Wei, B.; Zhang, Y.; Wang, H. Spectroscopic investigations on the binding of dibazol to bovine serum albumin. J. Mol. Struct. 2010, 970, 128–133. [Google Scholar] [CrossRef]
- Togashi, D.M.; Ryder, A.G.; McMahon, D.; Dunne, P.; McManus, J. Fluorescence study of bovine serum albumin and Ti and Sn oxide nanoparticles interactions. In Proceedings of the SPIE-OSA Biomedical Optics (Optica Publishing Group 2007), Munich, Germany, 17–21 June 2007; pp. 6628–6661. [Google Scholar]
- Sharifi-Rad, A.; Mehrzad, J.; Darroudi, M.; Saberi, M.R.; Chamani, J.; Hoseini-Ghahfarokhi, M.; Miri, A.; Mahdavi, M.; Sharifi-Rad, M.; Paoli, P. Oil-in-water nanoemulsions comprising Berberine in olive oil: Biological activities, binding mechanisms to human serum albumin or holo-transferrin and QMMD simulations. J. Biomol. Struct. Dyn. 2021, 39, 1029–1043. [Google Scholar] [CrossRef] [PubMed]
- Kaffash, M.; Tolou-Shikhzadeh-Yazdi, S.; Soleimani, S.; Asoodeh, A.; Saberi, M.R. Spectroscopy and molecular simulation on the interaction of Nano-Kaempferol prepared by oil-in-water with two carrier proteins: An investigation of protein-protein interaction. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 309, 123815. [Google Scholar] [CrossRef] [PubMed]
- Kabir, M.Z.; Tee, W.V.; Mohamad, S.B.; Alias, Z.; Tayyab, S. Interaction of an anticancer drug, gefitinib with human serum albumin: Insights from fluorescence spectroscopy and computational modeling analysis. RSC Adv. 2016, 6, 91756–91767. [Google Scholar] [CrossRef]
- Sudlow, G.D.J.B.; Birkett, D.J.; Wade, D.N. Further characterization of specific drug binding sites on human serum albumin. Mol. Pharmacol. 1976, 12, 1052–1061. [Google Scholar] [PubMed]
- Tabasi, M.; Maghami, P.; Amiri-Tehranizadeh, Z.; Saberi, M.R.; Chamani, J. New perspective of the ternary complex of nano-curcumin with β-lactoglobulin in the presence of α-lactalbumin: Spectroscopic and molecular dynamic investigations. J. Mol. Liq. 2023, 392, 123472. [Google Scholar] [CrossRef]
- Zacharioudaki, D.E.; Fitilis, I.; Kotti, M. Review of fluorescence spectroscopy in environmental quality applications. Molecules 2022, 27, 4801. [Google Scholar] [CrossRef] [PubMed]
- Zazeri, G.; Povinelli, A.P.R.; Le Duff, C.S.; Lima, M.F.; de Freitas, R.P.; Cornélio, M.L.; da Silva, V.H. Synthesis and spectroscopic analysis of piperine-and piperlongumine-inspired natural product scaffolds and their molecular docking with IL-1β and NF-κB proteins. Molecules 2020, 25, 2841. [Google Scholar] [CrossRef] [PubMed]
- Zazeri, G.; Povinelli, A.P.R.; Pavan, N.M.; Lima, M.F.; de Freitas, R.P.; Cornélio, M.L.; da Silva, V.H. Solvent-induced lag phase during the formation of lysozyme amyloid fibrils triggered by sodium dodecyl sulfate: Biophysical experimental and in silico study of solvent effects. Molecules 2023, 28, 6891. [Google Scholar] [CrossRef] [PubMed]
Drugs | Changes in Absorption Peaks (nm) |
---|---|
Sotorasib | 211 nm→218 nm |
Adagrasib | 211 nm→219 nm |
Ligand | Ksv (L·mol−1 × 103) | Kq (L·mol−1 × 1011) | Stern–Volmer Equation | ||
---|---|---|---|---|---|
R2 | Intercept | Slope | |||
Sotorasib | 2.64 ± 0.07 | 4.18 ± 0.04 | 0.92 | 1.10 ± 0.01 | 2635.35 ± 388.50 |
Adagrasib | 60.73 ± 0.07 | 96.40 ± 0.04 | 0.97 | 0.91 ± 0.06 | 60,727.00 ± 4008.03 |
Ligand | logKb (L·mol−1) | Kb (L·mol−1 × 103) | n | R2 | ∆G (kJ·mol−1) |
---|---|---|---|---|---|
Sotorasib | 4.14 | 13.64 | 1.06 | 0.83 | −23.6 |
Adagrasib | 4.80 | 63.67 | 1.02 | 0.98 | −27.3 |
System | Drug/HSA | Peak | λex/λem (nm/nm) | Intensity | Reduction Percent |
---|---|---|---|---|---|
HSA | 0 | 1 | 220/345 | 3462 | 0 |
2 | 275/350 | 1680 | 0 | ||
Adagrasib | 2.5∶1 | 1 | 220/345 | 3156 | 9% |
2 | 275/350 | 1573 | 6% | ||
5∶1 | 1 | 220/345 | 2915 | 16% | |
2 | 275/350 | 1518 | 10% | ||
Sotorasib | 2.5∶1 | 1 | 220/345 | 3435 | 1% |
2 | 275/350 | 1617 | 4% | ||
5∶1 | 1 | 220/345 | 3159 | 9% | |
2 | 275/350 | 1573 | 6% |
Ligand | Binding Site | ∆E1 (kJ∙mol−1) | ∆E2 (kJ∙mol−1) | ∆E3 (kJ∙mol−1) | ∆G (kJ∙mol−1) |
---|---|---|---|---|---|
Sotorasib | Site I | −30.80 | −28.83 | −1.68 | −24.60 |
Site II | −28.07 | −27.61 | −0.50 | −21.83 | |
Adagrasib | Site I | −39.68 | −30.80 | −9.26 | −30.92 |
Site II | −38.97 | −32.18 | −6.79 | −30.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, J.; Chen, Z.; Wang, C.; Mai, L.; Wang, X.; Li, J.; Liu, H.; Song, Y. Interaction Mechanisms of KRAS G12C Inhibitors (Sotorasib and Adagrasib) with Human Serum Albumin: Insights from Spectroscopic and Molecular Docking Studies. Molecules 2025, 30, 3436. https://doi.org/10.3390/molecules30163436
Qin J, Chen Z, Wang C, Mai L, Wang X, Li J, Liu H, Song Y. Interaction Mechanisms of KRAS G12C Inhibitors (Sotorasib and Adagrasib) with Human Serum Albumin: Insights from Spectroscopic and Molecular Docking Studies. Molecules. 2025; 30(16):3436. https://doi.org/10.3390/molecules30163436
Chicago/Turabian StyleQin, Junsong, Zhepeng Chen, Chuangyan Wang, Lin Mai, Xian Wang, Junfeng Li, Hui Liu, and Yun Song. 2025. "Interaction Mechanisms of KRAS G12C Inhibitors (Sotorasib and Adagrasib) with Human Serum Albumin: Insights from Spectroscopic and Molecular Docking Studies" Molecules 30, no. 16: 3436. https://doi.org/10.3390/molecules30163436
APA StyleQin, J., Chen, Z., Wang, C., Mai, L., Wang, X., Li, J., Liu, H., & Song, Y. (2025). Interaction Mechanisms of KRAS G12C Inhibitors (Sotorasib and Adagrasib) with Human Serum Albumin: Insights from Spectroscopic and Molecular Docking Studies. Molecules, 30(16), 3436. https://doi.org/10.3390/molecules30163436