Controlled Silver Nanoparticle Formation in Hair Fibers Dyed with Reseda luteola L.: A Study on Additive-Dependent Penetration and Aggregation
Abstract
1. Introduction
2. Results
2.1. Investigations of Hair Surface
2.2. Investigations of Hair Microtome Cuts
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Pre-Treatment of Hair Strands
4.3. General Dyeing Method Using Reseda luteola L. and AgNO3
4.4. Method of Wash Fastness Testing
4.5. Analytics of Hair Fiber Surface
4.5.1. Light Microscopy Images of Hair Surface
4.5.2. SEM Images and EDX Mapping of Hair Surface
4.6. Analytics of Hair Microtome Cuts
4.6.1. Light Microscopy
4.6.2. Transmission Electron Microscopy of Microtome Cuts
4.6.3. Determination of Particle Size on TEM Images of Microtome Cuts
4.7. Transmission Electron Microscopy of Ground Hair Strands
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
UPW | Ultra-Pure Water |
RE | Reseda luteola L. Extract |
HCl | Hydrochloric acid |
CA | Citric Acid |
XRD | X-Ray Powder Diffractometry |
TEM | Transmission Electron Microscopy |
SEM | Scanning Electron Microscopy |
AgNP | Silver Nanoparticle |
EDX | Energy-Dispersive X-Ray Spectroscopy |
r.t. | Room Temperature |
TOP | Trioctylphosphine |
Å | Ångström |
SLES | Sodium Laureth Sulfate |
SD | Standard Deviation |
IQR | Interquartile Range |
CMC | Cell Membrane Complex |
FT-IR | Fourier-Transformed Infrared Spectroscopy |
HR-MAS | High-Resolution Magic Angle Spinning |
NMR | Nuclear Magnetic Resonance Spectroscopy |
h | Hours |
References
- Biertümpfel, A.; Wurl, G. Dye Plants in Europe. In Handbook of Natural Colorants; Bechtold, T., Mussak, R., Eds.; John Wiley & Sons Ltd.: Chichester, West Sussex, UK, 2009; pp. 39–52. ISBN 9780470511992. [Google Scholar]
- Sankar, J.; Sawarkar, S.; Malakar, J.; Singh Rawa, B.; Asif Ali, M. Mechanism of Hair Dying and Their Safety Aspects: A Review. Asian J. Appl. Sci. 2017, 10, 190–196. [Google Scholar] [CrossRef]
- Tkaczyk, A.; Mitrowska, K.; Posyniak, A. Synthetic Organic Dyes as Contaminants of the Aquatic Environment and Their Implications for Ecosystems: A Review. Sci. Total Environ. 2020, 717, 137222. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Cai, R.; Hua, Z.; Tang, Y. Plant Colorants for Natural Hair Coloration: Dyeing Optimization and Photostability Assessment. Sustain. Chem. Pharm. 2023, 36, 2352–5541. [Google Scholar] [CrossRef]
- Ali, S.; Maqbool, M.; Hussain, M.T. Efficacy of Some Plants Extracts for Natural Dyeing of Human Hair. J. Nat. Fibers 2022, 19, 2581–2595. [Google Scholar] [CrossRef]
- Akhtar, M.S.; Panwar, J.; Yun, Y.-S. Biogenic Synthesis of Metallic Nanoparticles by Plant Extracts. ACS Sustain. Chem. Eng. 2013, 1, 591–602. [Google Scholar] [CrossRef]
- Rizwana, H.; Alwhibi, M.S.; Al-Judaie, R.A.; Aldehaish, H.A.; Alsaggabi, N.S. Sunlight-Mediated Green Synthesis of Silver Nanoparticles Using the Berries of Ribes Rubrum (Red Currants): Characterisation and Evaluation of Their Antifungal and Antibacterial Activities. Molecules 2022, 27, 2186. [Google Scholar] [CrossRef]
- Filip, G.A.; Moldovan, B.; Baldea, I.; Olteanu, D.; Suharoschi, R.; Decea, N.; Cismaru, C.M.; Gal, E.; Cenariu, M.; Clichici, S.; et al. UV-Light Mediated Green Synthesis of Silver and Gold Nanoparticles Using Cornelian Cherry Fruit Extract and Their Comparative Effects in Experimental Inflammation. J. Photochem. Photobiol. B 2019, 191, 26–37. [Google Scholar] [CrossRef]
- Prathna, T.C.; Raichur, A.M.; Chandrasekaran, N.; Mukherjee, A. Sunlight Irradiation Induced Green Synthesis of Stable Silver Nanoparticles Using Citrus Limon Extract. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2014, 84, 65–70. [Google Scholar] [CrossRef]
- Mathew, S.; Prakash, A.; Radhakrishnan, E.K. Inorganic and Nano-Metal Chemistry Sunlight Mediated Rapid Synthesis of Small Size Range Silver Nanoparticles Using Zingiber Officinale Rhizome Extract and Its Antibacterial Activity Analysis. Inorg. Nano-Metal. Chem. 2018, 48, 139–145. [Google Scholar] [CrossRef]
- Singh, J.; Singh Dhaliwal, A. Novel Green Synthesis and Characterization of the Antioxidant Activity of Silver Nanoparticles Prepared from Nepeta Leucophylla Root Extract. Anal. Lett. 2018, 52, 213–230. [Google Scholar] [CrossRef]
- Sooraj, M.P.; Nair, A.S.; Vineetha, D. Sunlight-Mediated Green Synthesis of Silver Nanoparticles Using Sida Retusa Leaf Extract and Assessment of Its Antimicrobial and Catalytic Activities. Chem. Pap. 2021, 75, 351–363. [Google Scholar] [CrossRef]
- Silva Brito, R.; João Bebianno, M.; Rocha, T.L. Plant-Based Silver Nanoparticles Ecotoxicity: Perspectives about Green Technologies in the One Health Context. Crit. Rev. Environ. Sci. Technol. 2024, 54, 1218–1235. [Google Scholar] [CrossRef]
- Mohanta, Y.K.; Panda, S.K.; Bastia, A.K.; Mohanta, T.K. Biosynthesis of Silver Nanoparticles from Protium Serratum and Investigation of Their Potential Impacts on Food Safety and Control. Front. Microbiol. 2017, 8, 626. [Google Scholar] [CrossRef] [PubMed]
- Melo, M.J. History of Natural Dyes in the Ancient Mediterranean World. In Handbook of Natural Colorants; Bechthold, T., Mussak, R., Eds.; Wiley: John Wiley & Sons Ltd.: Chichester, West Sussex, UK, 2009; pp. 3–20. ISBN 9780470511992. [Google Scholar]
- Ferreira, E.S.B.; Hulme, A.N.; Mcnab, H.; Quye, A. The Natural Constituents of Historical Textile Dyes. Chem. Soc. Rev. 2004, 33, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Mesrar, F.E.; Tachallait, H.; Bougrin, K.; Benhida, R. Ultrasound-Assisted Extraction of Vegetable Dyes and Mordants from Wool Dyed with Curcuma Longa and Reseda Luteola. Ind. Crops Prod. 2024, 208, 117807. [Google Scholar] [CrossRef]
- Safapour, S.; Mazhar, M.; Abedinpour, S. Color Shade Extension of Reseda Luteola L. Natural Colorant on Wool Textiles via Binary Combination of Metal Salts: Colorimetric and Fastness Studies. Fibers Polym. 2023, 24, 3221–3233. [Google Scholar] [CrossRef]
- Boroumand, M.N.; Montazer, M.; Dutschk, V. Biosynthesis of Silver Nanoparticles Using Reseda Luteola L and Their Antimicrobial Activity. Ind. Textila 2013, 64, 123–128. [Google Scholar]
- Jafari, R.; Gharanjig, K.; Hosseinnezhad, M. Substitution of Metal Ion Mordant with Biomordants: Effect on Color and Fastness of Reseda Dyed on Wool Yarns. J. Text. Inst. 2023, 114, 1623–1633. [Google Scholar] [CrossRef]
- Hachmann, J.K.; Sauler, J.M.; Ruhmlieb, C.; Vill, V.; Straske, F. Red Era: Dyeing Yak Hair Fibres Red with in Situ Generated Silver Nanoparticles Using Silver Nitrate and a Flavonoid-containing Plant Extract. Color. Technol. 2025, 1–17. [Google Scholar] [CrossRef]
- Sidhu, A.K.; Verma, N.; Kaushal, P. Role of Biogenic Capping Agents in the Synthesis of Metallic Nanoparticles and Evaluation of Their Therapeutic Potential. Front. Nanotechnol. 2022, 3, 801620. [Google Scholar] [CrossRef]
- Henglein, A.; Giersig, M. Formation of Colloidal Silver Nanoparticles: Capping Action of Citrate. J. Phys. Chem. B 1999, 103, 9533–9539. [Google Scholar] [CrossRef]
- Li, X.; Lenhart, J.J.; Walker, H.W. Aggregation Kinetics and Dissolution of Coated Silver Nanoparticles. Langmuir 2012, 28, 1095–1104. [Google Scholar] [CrossRef]
- Li, X.; Lenhart, J.J.; Walker, H.W. Dissolution-Accompanied Aggregation Kinetics of Silver Nanoparticles. Langmuir 2010, 26, 16690–16698. [Google Scholar] [CrossRef] [PubMed]
- Siakavella, I.K.; Lamari, F.; Papoulis, D.; Orkoula, M.; Gkolfi, P.; Lykouras, M.; Avgoustakis, K.; Hatziantoniou, S. Effect of Plant Extracts on the Characteristics of Silver Nanoparticles for Topical Application. Pharmaceutics 2020, 12, 1244. [Google Scholar] [CrossRef] [PubMed]
- Mittal, A.K.; Chisti, Y.; Banerjee, U.C. Synthesis of Metallic Nanoparticles Using Plant Extracts. Biotechnol. Adv. 2013, 31, 346–356. [Google Scholar] [CrossRef]
- Montes-Hernandez, G.; Di Girolamo, M.; Sarret, G.; Bureau, S.; Fernandez-Martinez, A.; Lelong, C.; Eymard Vernain, E. In Situ Formation of Silver Nanoparticles (Ag-NPs) onto Textile Fibers. ACS Omega 2021, 6, 1316–1327. [Google Scholar] [CrossRef]
- Rajput, S.K.; Singh, M.K.; Shakyawar, D.B. Herbal Synthesis of Silver Nanoparticles for Improved Dyeing and UV Protection of Cotton Fabric. Text. Res. J. 2025, 95, 1988–2002. [Google Scholar] [CrossRef]
- Shahid, M.; Cheng, X.W.; Tang, R.C.; Chen, G. Silk Functionalization by Caffeic Acid Assisted In-Situ Generation of Silver Nanoparticles. Dye. Pigment. 2017, 137, 277–283. [Google Scholar] [CrossRef]
- Sadeghi-Kiakhani, M.; Tehrani-Bagha, A.R.; Miri, F.S.; Hashemi, E.; Safi, M. Eco-Friendly Procedure for Rendering the Antibacterial and Antioxidant of Cotton Fabrics via Phyto-Synthesized AgNPs With Malva Sylvestris (MS) Natural Colorant. Front. Bioeng. Biotechnol. 2022, 9, 814374. [Google Scholar] [CrossRef]
- Haveli, S.D.; Walter, P.; Patriarche, G.; Ayache, J.; Castaing, J.; Van Elslande, E.; Tsoucaris, G.; Wang, P.-A.; Kagan, H.B. Hair Fiber as a Nanoreactor in Controlled Synthesis of Fluorescent Gold Nanoparticles. Nano Lett. 2012, 12, 6212–6217. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, Z.; Yang, S.; Smith, G.J.; Liu, L. Diatomite Encapsulated AgNPs as Novel Hair Dye Cosmetics: Preparation, Performance, and Toxicity. Colloids Surf. B Biointerfaces 2021, 200, 111599. [Google Scholar] [CrossRef] [PubMed]
- Im, D.S.; Hong, B.M.; Kim, M.H.; Park, W.H. Formation of Human Hair-Ag Nanoparticle Composites via Thermal and Photo-Reduction: A Comparison Study. Colloids Surf. A Physicochem. Eng. Asp. 2020, 600, 124995. [Google Scholar] [CrossRef]
- Deng, D.; Gopiraman, M.; Kim, S.H.; Chung, I.M.; Kim, I.S. Human Hair: A Suitable Platform for Catalytic Nanoparticles. ACS Sustain. Chem. Eng. 2016, 4, 5409–5414. [Google Scholar] [CrossRef]
- Gopiraman, M.; Deng, D.; Zhang, K.-Q.; Kai, W.; Chung, I.-M.; Karvembu, R.; Kim, I.S. Utilization of Human Hair as a Synergistic Support for Ag, Au, Cu, Ni, and Ru Nanoparticles: Application in Catalysis. Ind. Eng. Chem. Res. 2017, 56, 1926–1939. [Google Scholar] [CrossRef]
- De Cássia Comis Wagner, R.; Kunihiko Kiyohara, P.; Silveira, M.; Joekes, I. Electron Microscopic Observations of Human Hair Medulla. J. Microsc. 2007, 226, 54–63. [Google Scholar] [CrossRef]
- Solovan, C.; Doroftei, F.; Pinteala, M.; Chiriac, A.; Cristea, C. Scanning Electron Microscopic Examination of the Hair Shaft Abnormalities in Netherton’s Syndrome. Int. J. Dermatol. 2015, 54, 693–694. [Google Scholar] [CrossRef]
- Yang, F.-C.; Zhang, Y.; Rheinstädter, M.C. The Structure of People’s Hair. PeerJ 2014, 2, e619. [Google Scholar] [CrossRef]
- Coroaba, A.; Chiriac, A.E.; Sacarescu, L.; Pinteala, T.; Minea, B.; Ibanescu, S.-A.; Pertea, M.; Moraru, A.; Esanu, I.; Maier, S.S.; et al. New Insights into Human Hair: SAXS, SEM, TEM and EDX for Alopecia Areata Investigations. PeerJ 2020, 8, e8376. [Google Scholar] [CrossRef]
- Kadir, M.; Wang, X.; Zhu, B.; Liu, J.; Harland, D.; Popescu, C. The Structure of the ‘’amorphous” Matrix of Keratins. J. Struct. Biol. 2017, 198, 116–123. [Google Scholar] [CrossRef]
- Essendoubi, M.; Andre, N.; Granger, B.; Clave, C.; Manfait, M.; Thuillier, I.; Piot, O.; Ginestar, J. New Approach for Hair Keratin Characterization: Use of the Confocal Raman Spectroscopy to Assess the Effect of Thermal Stress on Human Hair Fibre. Int. J. Cosmet. Sci. 2022, 44, 588–601. [Google Scholar] [CrossRef]
- Essendoubi, M.; Meunier, M.; Scandolera, A.; Gobinet, C.; Manfait, M.; Lambert, C.; Auriol, D.; Reynaud, R.; Piot, O. Conformation Changes in Human Hair Keratin Observed Using Confocal Raman Spectroscopy after Active Ingredient Application. Int. J. Cosmet. Sci. 2019, 41, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Müllner, A.R.M.; Pahl, R.; Brandhuber, D.; Peterlik, H.; Lichtenegger, H.; Rennhofer, H. Porosity at Different Structural Levels in Human and Yak Belly Hair and Its Effect on Hair Dyeing. Molecules 2020, 25, 2143. [Google Scholar] [CrossRef] [PubMed]
- Gummer, C.L. Elucidating Penetration Pathways into the Hair Fiber Using Novel Microscopic Techniques. J. Cosmet. Sci. 2001, 52, 265–280. [Google Scholar] [PubMed]
- Rust, R.C.; Schlatter, H. Hair Dyes. In Cosmetic Dermatology: Products and Procedures; Draelos, Z.D., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2016; pp. 239–250. [Google Scholar]
- Robbins, C.R. Chemical and Physical Behavior of Human Hair, 5th ed.; Springer: Heidelberg, Germany; Dordrecht, The Netherlands; London, UK; New York, NY, USA, 2012. [Google Scholar]
- Liu, H.L.; Zhao, B.Y.; Yu, W.D. Structural Changes in Slenderized Yak Hair Induced by Heat-Humidity Conditions Using Raman Spectroscopy. J. Mol. Struct. 2013, 1037, 57–62. [Google Scholar] [CrossRef]
- Negri, A.P.; Cornell, H.J.; Rivett, D.E. A Model for the Surface of Keratin Fibers. Text. Res. J. 1993, 63, 109–115. [Google Scholar] [CrossRef]
- Raj, S.; Trivedi, R.; Soni, V. Biogenic Synthesis of Silver Nanoparticles, Characterization and Their Applications—A Review. Surfaces 2022, 5, 67–90. [Google Scholar] [CrossRef]
- Sow, C.; Mettela, G.; Kulkarni, G.U. Noble Metal Nanomaterials with Nontraditional Crystal Structures. Annu. Rev. Mater. Res. 2020, 50, 345–370. [Google Scholar] [CrossRef]
- Dong, Y.; Zhang, D.; Li, D.; Jia, H.; Qin, W. Control of Ostwald Ripening. Sci. China Mater. 2023, 66, 1249–1255. [Google Scholar] [CrossRef]
- Ostwald, W. Studien Über Die Bildung Und Umwandlung Fester Körper: 1. Abhandlung: Übersättigung Und Überkaltung. Z. Phys. Chem. 1897, 22U, 289–330. [Google Scholar] [CrossRef]
- Richards, V.N.; Rath, N.P.; Buhro, W.E. Pathway from a Molecular Precursor to Silver Nanoparticles: The Prominent Role of Aggregative Growth. Chem. Mater. 2010, 22, 3556–3567. [Google Scholar] [CrossRef]
- Zheng, H.; Smith, R.K.; Jun, Y.W.; Kisielowski, C.; Dahmen, U.; Paul Alivisatos, A. Observation of Single Colloidal Platinum Nanocrystal Growth Trajectories. Science 2009, 324, 1309–1312. [Google Scholar] [CrossRef]
- El Badawy, A.M.; Luxton, T.P.; Silva, R.G.; Scheckel, K.G.; Suidan, M.T.; Tolaymat, T.M. Impact of Environmental Conditions (PH, Ionic Strength, and Electrolyte Type) on the Surface Charge and Aggregation of Silver Nanoparticles Suspensions. Environ. Sci. Technol. 2010, 44, 1260–1266. [Google Scholar] [CrossRef]
- King, M.E.; Kent, I.A.; Personick, M.L. Halide-Assisted Metal Ion Reduction: Emergent Effects of Dilute Chloride, Bromide, and Iodide in Nanoparticle Synthesis. Nanoscale 2019, 11, 15612–15621. [Google Scholar] [CrossRef]
- Chadha, R.; Maiti, N.; Kapoor, S. Reduction and Aggregation of Silver Ions in Aqueous Citrate Solutions. Mater. Sci. Eng. C 2014, 38, 192–196. [Google Scholar] [CrossRef]
- Jiang, X.C.; Chen, C.Y.; Chen, W.M.; Yu, A.B. Role of Citric Acid in the Formation of Silver Nanoplates through a Synergistic Reduction Approach. Langmuir 2010, 26, 4400–4408. [Google Scholar] [CrossRef]
- Ranoszek-Soliwoda, K.; Tomaszewska, E.; Socha, E.; Krzyczmonik, P.; Ignaczak, A.; Orlowski, P.; Krzyzowska, M.; Celichowski, G.; Grobelny, J. The Role of Tannic Acid and Sodium Citrate in the Synthesis of Silver Nanoparticles. J. Nanopart Res. 2017, 19, 273. [Google Scholar] [CrossRef]
- Maccuspie, R.I. Colloidal Stability of Silver Nanoparticles in Biologically Relevant Conditions. J. Nanopart Res. 2011, 13, 2893–2908. [Google Scholar] [CrossRef]
- Al-Ghamdi, H.S.; Mahmoud, W.E. One Pot Synthesis of Multi-Plasmonic Shapes of Silver Nanoparticles. Mater. Lett. 2013, 105, 62–64. [Google Scholar] [CrossRef]
- Tang, B.; Li, J.; Hou, X.; Afrin, T.; Sun, L.; Wang, X. Colorful and Antibacterial Silk Fiber from Anisotropic Silver Nanoparticles. Ind. Eng. Chem. Res. 2013, 52, 4556–4563. [Google Scholar] [CrossRef]
- Luo, W.; Hu, W.; Xiao, S. Size Effect on the Thermodynamic Properties of Silver Nanoparticles. J. Phys. Chem. C 2008, 112, 2359–2369. [Google Scholar] [CrossRef]
- Feng, D.; Feng, Y.; Yuan, S.; Zhang, X.; Wang, G. Melting Behavior of Ag Nanoparticles and Their Clusters. Appl. Therm. Eng. 2017, 111, 1457–1463. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, Y.; Yao, Y. Molecular Dynamics on the Sintering Mechanism and Mechanical Feature of the Silver Nanoparticles at Different Temperatures. Mater. Today Commun. 2023, 34, 105292. [Google Scholar] [CrossRef]
- Park, H.J.; Ryu, K.; Lee, H.L.; Moon, Y.J.; Hwang, J.Y.; Moon, S.J. Physical Characteristics of Sintered Silver Nanoparticle Inks with Different Sizes during Furnace Sintering. Materials 2024, 17, 978. [Google Scholar] [CrossRef]
- Chen, Z.; Gengenbach, U.; Koker, L.; Huang, L.; Mach, T.P.; Reichert, K.M.; Thelen, R.; Ungerer, M. Systematic Investigation of Novel, Controlled Low-Temperature Sintering Processes for Inkjet Printed Silver Nanoparticle Ink. Small 2024, 20, e2306865. [Google Scholar] [CrossRef]
- Späth, A.; Meyer, M.; Huthwelker, T.; Borca, C.N.; Meßlinger, K.; Bieber, M.; Barkova, L.L.; Fink, R.H. X-Ray Microscopy Reveals the Outstanding Craftsmanship of Siberian Iron Age Textile Dyers. Sci. Rep. 2021, 11, 5141. [Google Scholar] [CrossRef]
- Bhushan, B. Nanoscale Characterization of Human Hair and Hair Conditioners. Prog. Mater. Sci. 2008, 53, 585–710. [Google Scholar] [CrossRef]
- Caballero-Díaz, E.; Pfeiffer, C.; Kastl, L.; Rivera-Gil, P.; Simonet, B.; Valcárcel, M.; Jiménez-Lamana, J.; Laborda, F.; Parak, W.J. The Toxicity of Silver Nanoparticles Depends on Their Uptake by Cells and Thus on Their Surface Chemistry. Part. Part. Syst. Charact. 2013, 30, 1079–1085. [Google Scholar] [CrossRef]
- Molleman, B.; Hiemstra, T. Surface Structure of Silver Nanoparticles as a Model for Understanding the Oxidative Dissolution of Silver Ions. Langmuir 2015, 31, 13361–13372. [Google Scholar] [CrossRef]
- Hadrup, N.; Sharma, A.K.; Loeschner, K. Toxicity of Silver Ions, Metallic Silver, and Silver Nanoparticle Materials after in Vivo Dermal and Mucosal Surface Exposure: A Review. Regul. Toxicol. Pharmacol. 2018, 98, 257–267. [Google Scholar] [CrossRef]
- Samberg, M.E.; Oldenburg, S.J.; Monteiro-Riviere, N.A. Evaluation of Silver Nanoparticle Toxicity in Skin in Vivo and Keratinocytes in Vitro. Environ. Health Perspect. 2010, 118, 407–413. [Google Scholar] [CrossRef]
- Kazem Koohi, M.; Hejazy, M.; Asadi, F.; Asadian, P. Assessment of Dermal Exposure and Histopathologic Changes of Different Sized Nano-Silver in Healthy Adult Rabbits. J. Phys. Conf. Ser. 2011, 304, 12028. [Google Scholar] [CrossRef]
- Danscher, G.; Jansons Locht, L. In Vivo Liberation of Silver Ions from Metallic Silver Surfaces. Histochem. Cell Biol. 2010, 133, 359–366. [Google Scholar] [CrossRef]
- Larese, F.F.; D’agostin, F.; Crosera, M.; Adami, G.; Renzi, N.; Bovenzi, M.; Maina, G. Human Skin Penetration of Silver Nanoparticles through Intact and Damaged Skin. Toxicology 2009, 255, 33–37. [Google Scholar] [CrossRef]
- Lademann, J.; Richter, H.; Teichmann, A.; Otberg, N.; Blume-Peytavi, U.; Luengo, J.; Weiß, B.; Schaefer, U.F.; Lehr, C.M.; Wepf, R.; et al. Nanoparticles—An Efficient Carrier for Drug Delivery into the Hair Follicles. Eur. J. Pharm. Biopharm. 2007, 66, 159–164. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hachmann, J.K.; Ruhmlieb, C.; Vill, V.; Straske, F. Controlled Silver Nanoparticle Formation in Hair Fibers Dyed with Reseda luteola L.: A Study on Additive-Dependent Penetration and Aggregation. Molecules 2025, 30, 3446. https://doi.org/10.3390/molecules30163446
Hachmann JK, Ruhmlieb C, Vill V, Straske F. Controlled Silver Nanoparticle Formation in Hair Fibers Dyed with Reseda luteola L.: A Study on Additive-Dependent Penetration and Aggregation. Molecules. 2025; 30(16):3446. https://doi.org/10.3390/molecules30163446
Chicago/Turabian StyleHachmann, Julia Katharina, Charlotte Ruhmlieb, Volkmar Vill, and Fabian Straske. 2025. "Controlled Silver Nanoparticle Formation in Hair Fibers Dyed with Reseda luteola L.: A Study on Additive-Dependent Penetration and Aggregation" Molecules 30, no. 16: 3446. https://doi.org/10.3390/molecules30163446
APA StyleHachmann, J. K., Ruhmlieb, C., Vill, V., & Straske, F. (2025). Controlled Silver Nanoparticle Formation in Hair Fibers Dyed with Reseda luteola L.: A Study on Additive-Dependent Penetration and Aggregation. Molecules, 30(16), 3446. https://doi.org/10.3390/molecules30163446