Advancing the Potential of Polyscias fruticosa as a Source of Bioactive Compounds: Biotechnological and Pharmacological Perspectives
Abstract
1. Introduction
2. Materials and Methods
3. Morphology, Systematics, Distribution, and Ethnobotanical Relevance of Polyscias fruticosa (L.) Harms
4. Micropropagation Strategies for Polyscias fruticosa
4.1. Historical Background of In Vitro Studies on Polyscias fruticosa
4.2. Biotechnological Strategies for In Vitro Culture of Polyscias fruticosa
4.2.1. In Vitro Regeneration of Polyscias fruticosa: Embryogenesis and Shoot Apices
4.2.2. Adventitious Root Cultures of Polyscias fruticosa: Induction, Optimization, and Saponin Production
4.2.3. Cell Suspension Cultures of Polyscias fruticosa: Optimization, Bioreactor Scaling, and Production of Bioactive Triterpenoids
4.3. In Vitro Propagation and Phytoremediation Potential of Polyscias fruticosa
4.4. Author’s Perspective and Future Directions
- The integration of transcriptomic, metabolomic, and proteomic analyses to unravel biosynthetic regulatory networks;
- The optimization of culture parameters using metabolic modeling, combinatorial elicitation, and environmental stimuli (e.g., light, temperature);
- Comparative profiling of triterpenoid production across culture types and elicitation regimes;
- The evaluation of genetic and biochemical stability under long-term and large-scale in vitro propagation.
5. Chemical Composition and Structural Diversity of Bioactive Compounds in Polyscias fruticosa
5.1. Triterpenoid Saponins
5.1.1. Contextual Account of Triterpenoid Saponin Discovery in Polyscias fruticosa
5.1.2. Extraction Strategies for Triterpenoid Saponins
5.1.3. Pharmacological Potential of Polyscias fruticosa Saponins
5.1.4. Proposed Biosynthetic Pathway of Triterpenoid Saponins (TSBP) in Polyscias fruticosa
5.1.5. Concluding Remarks on Triterpenoid Saponins
5.2. Phenolic Constituents of Polyscias fruticosa: Chemotaxonomic Significance and Pharmacological Perspectives
5.2.1. Flavonoids and Phenolic Acids in Polyscias fruticosa
5.2.2. Extraction and Analysis of Phenolic Compound Fractions
5.2.3. Pharmacological Significance of Selected Phenolic Compounds Identified in Polyscias fruticosa
5.3. Sterols and Steroidal Derivatives Identified in Polyscias fruticosa
Biological Properties of Sterols and Steroidal Derivatives in Polyscias fruticosa
5.4. Essential Oils and Volatile Constituents Identified in Polyscias fruticosa
5.5. Pharmacologically Relevant Rare Terpenoids and Norisoprenoids Identified in Polyscias fruticosa
5.6. First Identification and Biological Role of Tocopherols in Polyscias fruticosa
5.7. Bioactive Polyacetylenes in Polyscias fruticosa: Phytochemical Identification and Pharmacological Relevance
5.8. Fatty Acids in Polyscias fruticosa and Their Pharmacological Significance
5.9. Newly Identified Volatile and Lipophilic Constituents in Polyscias fruticosa
5.10. Newly Identified Structurally Diverse Compounds in Polyscias fruticosa
5.11. Critical Review and Future Directions in the Phytochemical Research of Polyscias fruticosa
6. Pharmacological Properties of Polyscias fruticosa: An Overview of Current Evidence
6.1. Bronchial Asthma—Clinical Background and Treatment Challenges
6.1.1. Antiasthmatic Potential of Polyscias fruticosa: Pharmacological and Mechanistic Insights
6.1.2. Mucolytic and Antitussive Activity
6.1.3. Bronchodilatory and Antihistaminic Effects
6.1.4. Molecular Mechanisms: Anti-Inflammatory and Antioxidant Pathways
6.2. Antidiabetic Activity of Polyscias fruticosa
6.2.1. Type 2 Diabetes and the Need for New Therapies
6.2.2. Mechanisms of Action of Identified Compounds
6.2.3. In Vivo Evidence of Antidiabetic Activity
6.2.4. Structure–Activity Relationship and Glycosidic Considerations
6.2.5. Molecular Mechanisms in Diabetes: Anti-Inflammatory and Antioxidant Pathways
6.2.6. Pharmacokinetics and Bioavailability of PFS
6.2.7. Safety and Toxicity of Polyscias fruticosa Preparations
6.2.8. Comparison with Other Antidiabetic Plants
6.3. Potential of Polyscias fruticosa in Neurodegenerative Diseases
6.3.1. Molecular Mechanisms and Comparative Neuroprotective Potential of Polyscias fruticosa
6.3.2. Safety and Therapeutic Relevance
6.4. Antibacterial Properties of Polyscias fruticosa
6.4.1. Phytochemical Composition and Antibacterial Potential
6.4.2. Comparative Antibacterial Efficacy
6.4.3. Evidence of Antibacterial Activity
6.4.4. Mechanisms of Antibacterial Action
- Inhibition of protein and peptidoglycan biosynthesis—certain constituents may bind to ribosomal subunits or enzymes that are critical for bacterial cell wall synthesis, disrupting growth and replication [17].
- Alteration of membrane potential and intracellular pH—some extracts interfere with bacterial membrane electrochemical gradients, leading to acidification and metabolic dysfunction [165].
6.5. Phytochemical Significance of Polyscias fruticosa in Green Synthesis of Anticancer Nanoparticles
6.5.1. Biosynthesis and Cytotoxicity of Nanoparticles
6.5.2. Mechanistic Insights and Therapeutic Prospects
6.6. Reproductive Effects of Polyscias fruticosa
6.6.1. Female Reproductive Effects
6.6.2. Male Reproductive Effects
6.6.3. Phytoestrogenic Mechanisms and Broader Context
6.7. Anti-Osteoclastogenic Potential of Polyscias fruticosa in Bone Health
6.8. Author’s Perspective on the Pharmacological Potential of Polyscias fruticosa
- Standardization and quantification of active fractions;
- Comparative efficacy studies in validated animal models;
- Mechanistic investigations using omics platforms;
- Toxicological profiling under chronic and reproductive exposure;
- Development of delivery systems to overcome bioavailability limitations.
7. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lowry, P.P., II; Plunkett, G.M. Recircumscription of Polyscias (Araliaceae) to include six related genera, with a new infrageneric classification and a synopsis of species. Plant Divers. Evol. 2010, 128, 55–84. [Google Scholar] [CrossRef]
- Hernández Peña, A.M.; Hernández Pérez, L.A. Polyscias fruticosa L. en Cuba. Valores de uso. Agrisost 2020, 26, 1–7. [Google Scholar]
- Vo, D.H.; Yamamura, S.; Ohtani, K.; Kasai, R.; Yamasaki, K.; Chau, N.T.N.; Minh, H.M. Saponins from Polyscias fruticosa. Phytochemistry 1998, 47, 451–457. [Google Scholar] [CrossRef] [PubMed]
- Ashmawy, N.S.; Gad, H.A.; Ashour, M.L.; El-Ahmady, S.H.; Singab, A.N.B. The genus Polyscias (Araliaceae): A phytochemical and biological review. J. Herb. Med. 2020, 23, 100377. [Google Scholar] [CrossRef]
- Proliac, A.; Chaboud, A.; Rougny, A.; Gopalsamy, N.; Raynaud, J.; Cabalion, P. A oleanolic saponin from Polyscias fruticosa Harms var. yellow leaves. Pharmazie 1996, 51, 611–612. [Google Scholar]
- Divakar, M.; Pillai, N.R.; Rao, S.B. Triterpene Saponins from Polyscias fruticosa Leaves and Roots. Indian J. Nat. Prod. 2005, 21, 7–13. [Google Scholar]
- Do, V.M.; Tran, C.L.; Nguyen, T.P. Polysciosides J and K, two new oleanane-type triterpenoid saponins from the leaves of Polyscias fruticosa (L.) Harms. cultivating in An Giang Province, Viet Nam. Nat. Prod. Res. 2020, 34, 1250–1255. [Google Scholar] [CrossRef]
- Do, V.M.; Tran, C.L.; Duong, T.H.; Phan, H.V.T.; Nguyen, H.H.; Nguyen, T.P.; Sichaem, J. Chemical Constituents of the Leaves of Polyscias fruticosa. Chem. Nat. Compd. 2021, 57, 1125–1127. [Google Scholar] [CrossRef]
- Brophy, J.J.; Lassakt, E.V.; Suksamrarn, A. Constituents of the Volatile Leaf Oils of Polyscias fruticosa (L.) Harms. Flavour Fragr. J. 1990, 5, 179–182. [Google Scholar] [CrossRef]
- Rarison, R.H.G.; Truong, V.L.; Yoon, B.H.; Park, J.W.; Jeong, W.S. Antioxidant and Anti-Inflammatory Mechanisms of Lipophilic Fractions from Polyscias fruticosa Leaves Based on Network Pharmacology, In Silico, and In Vitro Approaches. Foods 2023, 12, 3643. [Google Scholar] [CrossRef]
- Lutomski, J.; Luan, T.C.; Hoa, T.T. Polyacetylenes in the Araliaceae Family. Part IV. Herba Pol. 1992, 3, 137–140. [Google Scholar]
- Le, T.V.A.; Tran, N.T.A.; Duong, P.A.; Ha, T.B.C.; Dinh, T.H.D.; Mai, T.P.N. Influence of the elicitors on the accumulation of secondary metabolites and antioxidant activities in the Polyscias fruticosa (L.) Harms in vitro roots. Acad. J. Biol. 2024, 46, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.P. Impact of Roasting to Total Phenolic, Flavonoid and Antioxidant Activities in Root, Bark and Leaf of Polyscias fruticosa. J. Pharm. Res. Int. 2020, 32, 13–17. [Google Scholar] [CrossRef]
- Tran, T.H.H.; Nguyen, H.D.; Nguyen, T.D. α-Amylase and α-Glucosidase Inhibitory Saponins from Polyscias fruticosa Leaves. J. Chem. 2016, 2016, 2082946. [Google Scholar]
- Asumeng Koffuor, G.; Boye, A.; Kyei, S.; Ofori-Amoah, J.; Akomanin Asiamah, E.; Barku, A.; Acheampong, J.; Amegashie, E.; Kumi Awuku, A. Anti-asthmatic property and possible mode of activity of an ethanol leaf extract of Polyscias fruticosa. Pharm. Biol. 2016, 54, 1354–1363. [Google Scholar] [CrossRef]
- Bensita, M.B.; Nilani, P.; Sandhya, S.M. Studies on the adaptogenic and antibacterial properties of Polyscias fructicosa (L.) Harms. Anc. Sci. Life 1999, 18, 231–246. [Google Scholar]
- Titova, M.V.; Kochkin, D.V.; Sukhanova, E.S.; Gorshkova, E.N.; Tyurina, T.M.; Ivanov, I.M.; Lunkova, M.K.; Tsvetkova, E.V.; Orlova, A.; Popova, E.V.; et al. Suspension Cell Culture of Polyscias fruticosa (L.) Harms in Bubble-Type Bioreactors—Growth Characteristics, Triterpene Glycosides Accumulation and Biological Activity. Plants 2023, 12, 3641. [Google Scholar] [CrossRef]
- Asumeng Koffuor, G.; Boye, A.; Ofori-Amoah, J.; Kyei, S.; Nouoma, C.; Debrah, A. Evaluating Muco-suppressant, Anti-tussive and Safety Profile of Polyscias fruticosa (L.) Harms (Araliaceae) in Asthma Management. Br. J. Med. Med. Res. 2015, 10, 1–11. [Google Scholar] [CrossRef]
- Tran, P.T.; Dang, N.H.; Kim, O.; Van Cuong, P.; Dat, N.T.; Hwangbo, C.; Van Minh, C.; Lee, J.H. Ethanol extract of Polyscias fruticosa leaves suppresses RANKL-mediated osteoclastogenesis in vitro and LPS-Induced Bone Loss in Vivo. Phytomedicine 2019, 59, 152908. [Google Scholar] [CrossRef]
- Ly, H.T.; Nguyen, T.T.H.; Le, V.M.; Lam, B.T.; Mai, T.T.T.; Dang, T.P.T. Therapeutic Potential of Polyscias fruticosa (L.) Harms Leaf Extract for Parkinson’s Disease Treatment by Drosophila Melanogaster Model. Oxid. Med. Cell. Longev. 2022, 2022, 5262677. [Google Scholar] [CrossRef]
- Selvaraj, B.; Le, T.T.; Kim, D.W.; Jung, B.H.; Yoo, K.Y.; Ahn, H.R.; Thuong, P.T.; Tran, T.T.T.; Pae, A.N.; Jung, S.H.; et al. Neuroprotective Effects of Ethanol Extract of Polyscias fruticosa (EEPF) against Glutamate-Mediated Neuronal Toxicity in HT22 Cells. Int. J. Mol. Sci. 2023, 24, 3969. [Google Scholar] [CrossRef]
- Pandya, D.; Mankad, A.; Pandya, H. Cost effective micropropagation of Polyscias fruticosa (L.) Harm. Int. Assoc. Biol. Comput. Dig. 2022, 1, 58–62. [Google Scholar]
- Sakr, S.S.; Melad, S.S.; El-Shamy, M.A.; Elhafez, A.E.A. In vitro Propagation of Polyscias fruticosa Plant. Int. J. Plant Soil Sci. 2014, 3, 1254–1265. [Google Scholar] [CrossRef]
- Phuong, T.T.B.; Trung, V.P.; An, N.H.; Tuan, N.D.; Nguyen, P.T.T. The Effects of 2,4-Dichlorophenoxyacetic Acid and α-Naphthaleneacetic Acid on Biomass Increment, Rhizogenesis and Somatic Embryogenesis of Suspension-cultured Dinh Lang Cells [Polyscias fruticosa (L.) Harms]. Indian J. Agric. Res. 2022, 56, 70–75. [Google Scholar] [CrossRef]
- Kim, P.T.A.; An, L.T.B.; Chung, N.T.; Truong, N.T.; Thu, L.T.A.; Huan, L.V.T.; Loc, N.H. Growth and Oleanolic Acid Accumulation of Polyscias fruticosa Cell Suspension Cultures. Curr. Pharm. Biotechnol. 2020, 22, 1266–1272. [Google Scholar] [CrossRef]
- Kim, P.T.Á.; Ngân, N.T.H.; Thư, L.T.A.; Huân, L.V.T. Effects of Carbon Sources and Elicitors on Growth of Polyscias fruticosa (L.) Harms Suspension Cells. Hue Univ. J. Sci. Nat. Sci. 2018, 127, 85–94. [Google Scholar]
- Lyu, S.; Nosov, A.M.; Eugene, R.; Andrey, A.G.; Ling, Y. Effects of malonyl-ginsenosides on cell growth and saponin accumulation of Polyscias fruticosa and Polyscias filicifolia. Chin. Tradit. Herb. Drugs 2024, 55, 8171–8184. [Google Scholar]
- Andrews, H.C. The Botanist’s Repository for New and Rare Plants; Public Domain Illustration Contributed by Missouri Botanical Garden; Biodiversity Heritage Library: Chicago, IL, USA, 1809; Plate 595; Volume 9, ISBN 2013206534. [Google Scholar]
- Rumphius, G.E. Herbarium Amboinense; Public Domain Illustration Contributed by Missouri Botanical Garden, St. Louis, USA; Biodiversity Heritage Library: Chicago, IL, USA, 1743; Plate XXXIII; Volume 4, p. 78. ISBN 2013206534. [Google Scholar]
- Vu, T.H.; Tran, Q.L.; Nguyen, H.V.; Tran, V.O.; Pham, Y.A.; Tran, D.K. Analyses of Genetic Diversity and Relationships of Some Polyscias Samples Collected in Vietnam Using Morphological and Molecular Markers. African J. Biol. Sci. 2024, 6, 1965–1980. [Google Scholar]
- Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Available online: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:847351-1 (accessed on 27 April 2025).
- Popova, E.V.; Nosov, A.V.; Titova, M.V.; Kochkin, D.V.; Fomenkov, A.A.; Kulichenko, I.E.; Nosov, A.M. Advanced Biotechnologies: Collections of Plant Cell Cultures as a Basis for Development and Production of Medicinal Preparations. Russ. J. Plant Physiol. 2021, 68, 385–400. [Google Scholar] [CrossRef]
- Yuorieva, N.; Sinetova, M.; Messineva, E.; Kulichenko, I.; Fomenkov, A.; Vysotskaya, O.; Osipova, E.; Baikalova, A.; Prudnikova, O.; Titova, M.; et al. Plants, Cells, Algae, and Cyanobacteria In Vitro and Cryobank Collections at the Institute of Plant Physiology, Russian Academy of Sciences—A Platform for Research and Production Center. Biology 2023, 12, 838. [Google Scholar] [CrossRef]
- Hasnain, A.; Naqvi, S.A.H.; Ayesha, S.I.; Khalid, F.; Ellahi, M.; Iqbal, S.; Hassan, M.Z.; Abbas, A.; Adamski, R.; Markowska, D.; et al. Plants in vitro propagation with its applications in food, pharmaceuticals and cosmetic industries; current scenario and future approaches. Front. Plant Sci. 2022, 13, 1009395. [Google Scholar] [CrossRef]
- Ozyigit, I.I.; Dogan, I.; Hocaoglu-Ozyigit, A.; Yalcin, B.; Erdogan, A.; Yalcin, I.E.; Cabi, E.; Kaya, Y. Production of secondary metabolites using tissue culture-based biotechnological applications. Front Plant Sci. 2023, 14, 1132555. [Google Scholar] [CrossRef]
- Amit; Rajkumar; Singh, N. In Vitro Propagation of an Economically Important Medicinal Plant Lawsonia inermis L. through Nodal Segments. J. Appl. Nat. Sci. 2021, 13, 897–906. [Google Scholar] [CrossRef]
- Tomiczak, K.; Mikuła, A.; Niedziela, A.; Wójcik-Lewandowska, A.; Domżalska, L.; Rybczyński, J.J. Somatic Embryogenesis in the Family Gentianaceae and Its Biotechnological Application. Front. Plant Sci. 2019, 10, 762. [Google Scholar] [CrossRef] [PubMed]
- Mihai, R.A.; Melo Heras, E.J.; Pinto Valdiviezo, E.A.; Espinoza Caiza, I.A.; Cubi Insuaste, N.S.; Mejía, J.P.; Catana, R.D.; Moldoveanu, M.M.; Florescu, L.I. Somatic Embryogenesis of Representative Medicinal Trees in South America-Current Status. Forests 2023, 14, 2066. [Google Scholar] [CrossRef]
- Lee, J.W.; Kwon, N.; Kim, J.U.; Bang, K.H.; Jung, S.M.; Lee, S.W.; Kim, D.H.; Kim, Y.C.; Jo, I.H.; Park, Y.D. In Vitro Micropropagation of Commercial Ginseng Cultivars (Panax ginseng Meyer) via Somatic Embryogenesis Compared to Traditional Seed Production. Horticulturae 2023, 9, 435. [Google Scholar] [CrossRef]
- Cheng, Y.; Liu, H.; Tong, X.; Liu, Z.; Zhang, X.; Jiang, X.; Yu, X. Somatic embryogenesis and triterpenoid saponin production in Aralia elata (Miq.) Seem. Sci. Hortic. 2021, 285, 110162. [Google Scholar] [CrossRef]
- Yang, G.; Huang, L.J.; Jiang, D.; Huang, J.; Cui, C.; Li, N. Development of indirect somatic embryogenesis and plant regeneration system with immature embryos of the cultivated traditional Chinese medicinal herb Polygonatum cyrtonema. Ind. Crops Prod. 2024, 214, 118557. [Google Scholar] [CrossRef]
- Duta-Cornescu, G.; Constantin, N.; Pojoga, D.-M.; Nicuta, D.; Simon-Gruita, A. Somaclonal Variation—Advantage or Disadvantage in Micropropagation of the Medicinal Plants. Int. J. Mol. Sci. 2023, 24, 838. [Google Scholar] [CrossRef]
- Tram, T.T.N.; Yen, T.P.; Anh, T.T.; Tung, H.T.; Ngan, H.T.M.; Nhut, D.T.; Nong, S. Somatic Embryogenesis of Polyscias fruticosa L. Harms via Culturing Ex Vitro Leaf Explant. Vietnam. J. Biotechnol. 2020, 18, 497–506. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F.A. Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. 1962, 15, 474–497. [Google Scholar] [CrossRef]
- Gamborg, O.L.; Miller, R.A.; Ojima, K. Nutrient Requirements of Suspension Cultures of Soybean Root Cells. Exp. Cell Res. 1968, 50, 151–158. [Google Scholar] [CrossRef]
- Jiang, X.L.; Piao, X.C.; Gao, R.; Jin, M.Y.; Jiang, J.; Jin, X.H.; Lian, M.L. Improvement of bioactive compound accumulation in adventitious root cultures of an endangered plant species, Oplopanax elatus. Acta Physiol. Plant. 2017, 39, 226. [Google Scholar] [CrossRef]
- Linh, N.T.N.; Cuong, L.K.; Tam, H.T.; Tung, H.T.; Luan, V.Q.; Hien, V.T.; Loc, N.H.; Nhut, D.T. Improvement of bioactive saponin accumulation in adventitious root cultures of Panax vietnamensis via culture periods and elicitation. Plant Cell Tissue Organ Cult. 2019, 137, 101–113. [Google Scholar] [CrossRef]
- Gao, X.; Zhu, C.; Jia, W.; Gao, W.; Qiu, M.; Zhang, Y.; Xiao, P. Induction and characterization of adventitious roots directly from the explants of Panax notoginseng. Biotechnol. Lett. 2005, 27, 1771–1775. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.J.; Park, S.Y.; Paek, K.Y. Enhancement strategies of bioactive compound production in adventitious root cultures of Eleutherococcus koreanum Nakai subjected to methyl jasmonate and salicylic acid elicitation through airlift bioreactors. Plant Cell Tissue Organ Cult. 2015, 120, 1–10. [Google Scholar] [CrossRef]
- Rout, G.R. Effect of Auxins on Adventitious Root Development from Single Node Cuttings of Camellia sinensis (L.) Kuntze and Associated Biochemical Changes. Plant Growth Regul. 2006, 48, 111–117. [Google Scholar] [CrossRef]
- Zhao, Y.; Guo, W.H.; Sun, X.Y.; Li, K.H.; Liu, K.J.; Wang, J.; Wang, Y.; Tan, X.; You, X.L. A Culture system for the stable and high-efficiency proliferation of adventitious roots of Panax notoginseng and ginsenoside accumulation. Ind. Crops Prod. 2020, 157, 112882. [Google Scholar] [CrossRef]
- Ling, A.P.K.; Chin, M.F.; Hussein, S. Adventitious Root Production of Centella asiatica in Response to Plant Growth Regulators and Sucrose Concentrations. Med. Aromat. Plant Sci. Biotechnol. 2009, 3, 36–41. [Google Scholar]
- Sarropoulou, V.; Sarrou, E.; Angeli, A.; Martens, S.; Maloupa, E.; Grigoriadou, K. Developing an in vitro elicitation strategy for specialized secondary metabolites production in adventitious root cultures of Primula veris subsp. veris. Ind. Crops Prod. 2023, 197, 116618. [Google Scholar] [CrossRef]
- Marsik, P.; Langhansova, L.; Dvorakova, M.; Cigler, P.; Hruby, M.; Vanek, T. Increased Ginsenosides Production by Elicitation of In Vitro Cultivated Panax Ginseng Adventitious Roots. Med. Aromat. Plants 2014, 3, 147. [Google Scholar]
- Adil, M.; Younas, Z.; Ahmad, I.; Al Rohily, K.M.; Mashwani, Z.-u.-R. Elicitation of Withania somnifera adventitious roots: In-vitro cultures for enhanced secondary metabolites synthesis. Hortic. Environ. Biotechnol. 2025, 66, 587–597. [Google Scholar] [CrossRef]
- Koffuor, G.A.; Boye, A.; Ofori-Amoah, J.; Kyei, S.; Abokyi, S.; Nyarko, R.A.; Bangfu, R.N. Anti-inflammatory and safety assessment of Polyscias fruticosa (L.) Harms (Araliaceae) leaf extract in ovalbumin-induced asthma. J. Phytopharmacol. 2014, 3, 337–342. [Google Scholar] [CrossRef]
- Luyen, N.T.; Dang, N.H.; Binh, P.T.X.; Hai, N.T.; Dat, N.T. Hypoglycemic property of triterpenoid saponin PFS isolated from Polyscias fruticosa leaves. An. Acad. Bras. Cienc. 2018, 90, 2881–2886. [Google Scholar] [CrossRef] [PubMed]
- Khoang, L.T.; Huyen, H.T.T.; Chung, H.V.; Duy, L.X.; Toan, T.Q.; Bich, H.T.; Minh, P.T.H.; Pham, D.T.N.; Hien, T.T. Optimization of Total Saponin Extraction from Polyscias fruticosa Roots Using the Ultrasonic-Assisted Method and Response Surface Methodology. Processes 2022, 10, 2034. [Google Scholar] [CrossRef]
- Quoc, L.P.T.; Anh, H.N.Q. Ultrasound-Assisted Extraction of Phenolic Compounds from Polyscias fruticosa (L.) Harms Root. Sci. Notes Kazan Univ. Ser. Nat. Sci. 2023, 165, 58–67. [Google Scholar] [CrossRef]
- Lộc, P.V.; Luân, N.T.; Ngân, L.T.; An, V.T.X. A Study on Adventitious Root Formation of Ming Aralia (Polyscias Fruticosa L. Harms) by in Vitro Culture. Univ. Danang-J. Sci. Technol. 2014, 3, 106–108. [Google Scholar]
- Khalafalla, M.M. Plant Cell Suspension Culture for Plant Secondary Metabolite Production: Current Status, Constraints, and Future Solutions. Pol. J. Environ. Stud. 2025, XX, 1–14. [Google Scholar] [CrossRef]
- Yue, W.; Ming, Q.L.; Lin, B.; Rahman, K.; Zheng, C.J.; Han, T.; Qin, L.P. Medicinal plant cell suspension cultures: Pharmaceutical applications and high-yielding strategies for the desired secondary metabolites. Crit. Rev. Biotechnol. 2016, 36, 215–232. [Google Scholar] [CrossRef]
- Ochoa-Villarreal, M.; Howat, S.; Hong, S.M.; Jang, M.O.; Jin, Y.W.; Lee, E.K.; Loake, G.J. Plant cell culture strategies for the production of natural products. BMB Rep. 2016, 49, 149–158. [Google Scholar] [CrossRef]
- Pandya, D.; Mankad, A.; Pandya, H. Comparative Phytoremediation Capacity of In-vivo and In-vitro Produced Plants of Polyscias fruticosa (L.) Harm. Res. J. Agric. Sci. 2020, 11, 1420–1422. [Google Scholar]
- Bildziukevich, U.; Wimmerová, M.; Wimmer, Z. Saponins of Selected Triterpenoids as Potential Therapeutic Agents: A Review. Pharmaceuticals 2023, 16, 386. [Google Scholar] [CrossRef]
- Parveen, A.; Farooq, M.A.; Kyunn, W.W. A New Oleanane Type Saponin from the Aerial Parts of Nigella sativa with Anti-Oxidant and Anti-Diabetic Potential. Molecules 2020, 25, 2171. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Li, H.; Hu, K.; Xu, Q.; Wen, X.; Cheng, K.; Chen, C.; Yuan, H.; Dai, L.; Sun, H. Synthesis and anti-inflammatory activity of saponin derivatives of δ-oleanolic acid. Eur. J. Med. Chem. 2021, 209, 112932. [Google Scholar] [CrossRef]
- Adekunle, Y.A.; Samuel, B.B.; Nahar, L.; Fatokun, A.A.; Sarker, S.D. Cytotoxic triterpenoid saponins from the root of Olax subscorpioidea Oliv. (Olacaceae). Phytochemistry 2023, 215, 113853. [Google Scholar] [CrossRef]
- Chaboud, A.; Rougny, A.; Proliac, A.; Raynaud, J.; Cabalion, P. A new triterpenoid saponin from Polyscias fruticosa. Pharmazie 1995, 50, 371. [Google Scholar]
- Patkhullaeva, M.; Mzhel’skaya, L.G.; Abubakirov, N.K. Triterpene glycosides of Ladyginia bucharica V. The structure of ladyginoside E. Chem Nat Compd. 1973, 9, 771–772. [Google Scholar] [CrossRef]
- Borel, C.; Gupta, M.P.; Hostettmann, K. Molluscicidal saponins from Swartzia simplex. Phytochemistry 1987, 26, 2685–2689. [Google Scholar] [CrossRef]
- Chuyen, H.V. Extraction of saponins, total soluble solids and antioxidant activity from Polyscias fruticosa roots. Food Res. 2023, 7, 42–47. [Google Scholar] [CrossRef]
- Wang, H.; Qi, J.; Li, L.; Wu, T.; Wang, Y.; Wang, X.; Ning, Q. Inhibitory effects of Chikusetsusaponin IVa on lipopolysaccharide-induced proinflammatory responses in THP-1 Cells. Int. J. Immunopathol. Pharmacol. 2015, 28, 308–317. [Google Scholar] [CrossRef]
- Liu, Q.; Ma, Y.; Fan, H.; Li, J.; Tang, J.; Wang, T.; Fan, Y.; Su, J.; Lei, H. Protective Effect of Chikusetsu Saponin IVa on Hydrogen Peroxide Induced Injury of IPEC-J2 Cells. Nat. Prod. Commun. 2024, 19, 1–11. [Google Scholar]
- Wang, X.J.; Xie, Q.; Liu, Y.; Jiang, S.; Li, W.; Li, B.; Wang, W.; Liu, C.X. Panax japonicus and chikusetsusaponins: A review of diverse biological activities and pharmacology mechanism. Chin. Herb. Med. 2021, 13, 64–77. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, T.; Cui, J.; Jia, N.; Wu, Y.; Xi, M.; Wen, A. Chikusetsu saponin IVa regulates glucose uptake and fatty acid oxidation: Implications in antihyperglycemic and hypolipidemic effects. J. Pharm. Pharmacol. 2015, 67, 997–1007. [Google Scholar] [CrossRef]
- Sayed, S.M.A.; Alseekh, S.; Siems, K.; Fernie, A.R.; Luyten, W.; Schmitz-Linneweber, C.; Saul, N. Identification of a Hydroxygallic Acid Derivative, Zingibroside R1 and a Sterol Lipid as Potential Active Ingredients of Cuscuta chinensis Extract That Has Neuroprotective and Antioxidant Effects in Aged Caenorhabditis elegans. Nutrients 2022, 14, 4199. [Google Scholar] [CrossRef]
- Hasegawa, H.; Matsumiya, S.; Uchiyama, M.; Kurokawa, T.; Inouye, Y.; Kasai, R.; Ishibashi, S.; Yamasaki, K. Inhibitory effect of some triterpenoid saponins on glucose transport in tumor cells and its application to in vitro cytotoxic and antiviral activities. Planta Med. 1994, 60, 240–243. [Google Scholar] [CrossRef]
- Lagunin, A.; Povydysh, M.; Ivkin, D.; Luzhanin, V.; Krasnova, M.; Okovityi, S.; Nosov, A.; Titova, M.; Tomilova, S.; Filimonov, D.; et al. Antihypoxic Action of Panax japonicus, Tribulus terrestris and Dioscorea deltoidea Cell Cultures: In Silico and Animal Studies. Mol. Inform. 2020, 39, e2000093. [Google Scholar] [CrossRef]
- Le, T.H.; Tran, H.C.; Nguyen, H.A.; Nguyen, T.N.T.; Nga, H.T.T. Effects of storage conditions on polyphenol and triterpenoid saponin content and the antioxidant capacity of ethanolic extract from leaves of Polyscias fruticosa (L.) Harms. J. Sci. Technol. Food 2020, 3, 47–53. [Google Scholar]
- Wang, Y.; Zhang, H.; Ri, H.C.; An, Z.; Wang, X.; Zhou, J.N.; Zheng, D.; Wu, H.; Wang, P.; Yang, J.; et al. Deletion and tandem duplications of biosynthetic genes drive the diversity of triterpenoids in Aralia elata. Nat. Commun. 2022, 13, 2224. [Google Scholar] [CrossRef] [PubMed]
- Kiełkiewicz, R.M.; Obrębski, M.; Śliwińska, A.A.; Równicki, M.; Kawka, M.; Sykłowska-Baranek, K.; Granica, S. Detailed qualitative and quantitative UHPLC-DAD-ESI-MS3 analysis of Aralia spinosa L. (Araliaceae) phytochemical profile to evaluate its potential as novel plant material for bioactive compounds acquisition using in vitro culture. Ind. Crops Prod. 2024, 219, 119123. [Google Scholar] [CrossRef]
- Yao, L.; Lu, J.; Wang, J.; Gao, W.Y. Advances in biosynthesis of triterpenoid saponins in medicinalplants. Chin. J. Nat. Med. 2020, 18, 417–424. [Google Scholar] [PubMed]
- Moses, T.; Papadopoulou, K.K.; Osbourn, A. Metabolic and functional diversity of saponins, biosynthetic intermediates and semi-synthetic derivatives. Crit. Rev. Biochem. Mol. Biol. 2014, 49, 439–462. [Google Scholar] [CrossRef]
- Biswas, T.; Dwivedi, U.N. Plant triterpenoid saponins: Biosynthesis, in vitro production, and pharmacological relevance. Protoplasma 2019, 256, 1463–1486. [Google Scholar] [CrossRef]
- Kakkar, S.; Bais, S. A Review on Protocatechuic Acid and Its Pharmacological Potential. ISRN Pharmacol. 2014, 2014, 952943. [Google Scholar] [CrossRef] [PubMed]
- Adefegha, S.A.; Oboh, G.; Ejakpovi, I.I.; Oyeleye, S.I. Antioxidant and antidiabetic effects of gallic and protocatechuic acids: A structure–function perspective. Comp. Clin. Path. 2015, 24, 1579–1585. [Google Scholar] [CrossRef]
- Cadena-Iñiguez, J.; Santiago-Osorio, E.; Sánchez-Flores, N.; Salazar-Aguilar, S.; Soto-Hernández, R.M.; Riviello-Flores, M.d.l.L.; Macías-Zaragoza, V.M.; Aguiñiga-Sánchez, I. The Cancer-Protective Potential of Protocatechuic Acid: A Narrative Review. Molecules 2024, 29, 1439. [Google Scholar] [CrossRef]
- Nguyen, N.Q.; Nguyen, M.T.; Nguyen, V.T.; Le, V.M.; Trieu, L.H.; Le, X.T.; Khang, T.V.; Giang, N.T.L.; Thach, N.Q.; Hung, T.T. The effects of different extraction conditions on the polyphenol, flavonoids components and antioxidant activity of Polyscias fruticosa roots. IOP Conf. Ser. Mater. Sci. Eng. 2020, 736, 02206799. [Google Scholar] [CrossRef]
- Rahman, M.; Rahaman, S.; Islam, R.; Rahman, F.; Mithi, F.M.; Alqahtani, T.; Almikhlafi, M.A.; Alghamdi, S.Q.; Alruwaili, A.S.; Hossain, S.; et al. Role of Phenolic Compounds in Human Disease : Current Knowledge and Future Prospects. Molecules 2022, 27, 233. [Google Scholar] [CrossRef]
- Le Roy, J.; Huss, B.; Creach, A.; Hawkins, S.; Neutelings, G. Glycosylation Is a Major Regulator of Phenylpropanoid Availability and Biological Activity in Plants. Front. Plant Sci. 2016, 7, 735. [Google Scholar] [CrossRef]
- Choi, J.; Shin, K.M.; Park, H.J.; Jung, H.J.; Kim, H.J.; Lee, Y.S.; Rew, J.H.; Lee, K.T. Anti-inflammatory and antinociceptive effects of sinapyl alcohol and Its glucoside syringin. Planta Med. 2004, 70, 1027–1032. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Cui, S.; Xie, Y. Synthesis and Antibacterial Properties of Oligomeric Dehydrogenation Polymer from Lignin Precursors. Molecules 2022, 27, 1466. [Google Scholar] [CrossRef] [PubMed]
- Mawea, F.; Indrayati, A.; Rahmawati, I. Review: Antibacterial Activity of Polyscias fruticosa and Molecular Mechanism of Active Compounds. Int. J. Health Med. Curr. Res. 2021, 6, 2062–2087. [Google Scholar]
- Kim, M.; Shin, S.; Ryu, D.; Cho, E.; Yoo, J.; Park, D.; Jung, E. Evaluating the Sun Protection Factor of Cosmetic Formulations Containing Afzelin. Chem. Pharm. Bull. 2021, 69, 1039–1044. [Google Scholar] [CrossRef] [PubMed]
- Xia, L.; Xu, X.; Li, M.; Zhang, X.; Cao, F. Afzelin induces immunogenic cell death against lung cancer by targeting NQO2. BMC Complement. Med. Ther. 2023, 23, 381. [Google Scholar] [CrossRef]
- Akter, M.; Parvin, M.S.; Hasan, M.M.; Rahman, M.A.A.; Islam, M.E. Anti-tumor and antioxidant activity of kaempferol-3-O-alpha-L-rhamnoside (Afzelin) isolated from Pithecellobium dulce leaves. BMC Complement. Med. Ther. 2022, 22, 169. [Google Scholar] [CrossRef]
- Wang, C.; Liu, B.; Dan, W.; Wei, Y.; Li, M.; Guo, C.; Zhang, Y.; Xie, H. Liquiritigenin inhibits the migration, invasion, and EMT of prostate cancer through activating ER Stress. Arch. Biochem. Biophys. 2024, 761, 110184. [Google Scholar] [CrossRef]
- Lee, D.; Kim, J.Y.; Qi, Y.; Park, S.; Lee, H.L.; Yamabe, N.; Kim, H.; Jang, D.S.; Kang, K.S. Phytochemicals from the flowers of Prunus persica (L.) Batsch: Anti-adipogenic effect of mandelamide on 3T3-L1 preadipocytes. Bioorganic Med. Chem. Lett. 2021, 49, 128326. [Google Scholar] [CrossRef] [PubMed]
- Qiao, S.; Zhao, R.; He, S.; Fu, X.; An, J.; Xia, T. Quercitrin attenuates the progression of osteoarthritis via inhibiting NF-κB signaling pathways and enhancing glucose transport capacity. Exp. Cell Res. 2023, 433, 113854. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Yang, Y.; Quan, Y.; Guo, M. Liquiritigenin Induces Cell Cycle Arrest and Apoptosis in Lung Squamous Cell Carcinoma. Cell Biochem. Biophys. 2024, 82, 1397–1407. [Google Scholar] [CrossRef]
- Meng, X.; Xia, C.; Wu, H.; Gu, Q.; Li, P. Metabolism of quercitrin in the colon and its beneficial regulatory effects on gut microbiota. J. Sci. Food Agric. 2024, 104, 9255–9264. [Google Scholar] [CrossRef]
- Xie, J.; Chen, X.; Tan, Y.; Li, W.; Yin, C.; Zhong, T.; Su, D.; Sun, J.; Tian, H.; Huang, W. Anti-Hyperlipidemic Components of the Leaves of Synsepalum dulcificum (Miracle Fruit). Plant Foods Hum. Nutr. 2024, 79, 451–459. [Google Scholar] [CrossRef]
- Hong, Z.; Wang, J.; Hu, B.; Tu, X.; Yang, J.; Sun, W.; Duan, X. Esculetin inhibits liver cancer by targeting glucose-6-phosphate isomerase mediated glycolysis. Biomed. Pharmacother. 2025, 188, 118118. [Google Scholar] [CrossRef]
- Wang, G.; Li, Z.; Ni, W.; Ye, H.; Liu, Y.; Chen, L.; Wang, L.; Liu, C.; Chen, J.; Wang, X.; et al. A small molecule esculetin accelerates postprandial lipid clearance involving activation of C/EBPβ and CD36-mediated phagocytosis by adipose tissue macrophages. Theranostics 2025, 15, 5910–5930. [Google Scholar] [CrossRef]
- Kim, A.T.; Park, Y. Esculetin Inhibits Fat Accumulation Through Insulin/Insulin-like Growth Factor- and AMP-Activated Protein Kinase-Dependent Pathways in Caenorhabditis elegans. Nutrients 2025, 17, 1565. [Google Scholar] [CrossRef] [PubMed]
- Qu, Z.; Zeng, J.; Zeng, L.; Li, X.; Zhang, F. Esculetin triggers ferroptosis via inhibition of the Nrf2-XCT/GPx4 axis in hepatocellular carcinoma. Chin. J. Nat. Med. 2025, 23, 443–456. [Google Scholar] [CrossRef]
- Espíndola, K.M.M.; Ferreira, R.G.; Narvaez, L.E.M.; Silva Rosario, R.A.C.; Da Silva, M.A.H.; Silva, B.A.G.; Oliveira Vieira, A.P.; Chagas Monteiro, M. Chemical and Pharmacological Aspects of Caffeic Acid and Its Activity in Hepatocarcinoma. Front. Oncol. 2019, 9, 3–5. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, A.C.; Falcão, A.; Alves, G.; Silva, L.R.; Flores-Félix, J.D. Antioxidant activity of the main phenolics found in red fruits: An in vitro and in silico study. Food Chem. 2024, 452, 139459. [Google Scholar] [CrossRef]
- Wu, T.Y.; Chen, C.C.; Lin, J.Y. Anti-inflammatory in vitro activities of eleven selected caffeic acid derivatives based on a combination of pro-/anti-inflammatory cytokine secretions and principal component analysis—A comprehensive evaluation. Food Chem. 2024, 458, 140201. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.A.; Park, H.J.; Chung, H.J.; Kim, W.K.; Lee, S.K. Antitumor Activity of 2-Hydroxycinnamaldehyde for Human Colon Cancer Cells through Suppression of Β-Catenin Signaling. J. Nat. Prod. 2013, 76, 1278–1284. [Google Scholar] [CrossRef]
- Nguyen, H.A.; Kim, S.A. 2′-Hydroxycinnamaldehyde induces apoptosis through HSF1-mediated BAG3 expression. Int. J. Oncol. 2017, 50, 283–289. [Google Scholar] [CrossRef]
- Lee, S.H.; Lee, C.W.; Lee, J.W.; Choi, M.S.; Son, D.J.; Chung, Y.B.; Lee, C.K.; Oh, K.W.; Moon, D.C.; Kwon, B.M.; et al. Induction of apoptotic cell death by 2′-hydroxycinnamaldehyde is involved with ERK-dependent inactivation of NF-kappaB in TNF-alpha-treated SW620 colon cancer cells. Biochem. Pharmacol. 2005, 70, 1147–1157. [Google Scholar] [CrossRef]
- Yang, X.W.; Li, Y.L.; Li, S.M.; Shen, Y.H.; Tian, J.M.; Zhu, Z.J.; Feng, L.; Wu, L.; Lin, S.; Wang, N.; et al. Mono- and sesquiterpenoids, flavonoids, lignans, and other miscellaneous compounds of Abies georgei. Planta Med. 2011, 77, 742–748. [Google Scholar] [CrossRef]
- Yao, L.; Han, C.; Chen, G.; Song, X.; Chang, Y.; Zang, W. A new asymmetric diamide from the seed cake of Jatropha curcas L. Fitoterapia 2012, 83, 1318–1321. [Google Scholar] [CrossRef]
- Rogowska, A.; Szakiel, A. The Role of Sterols in Plant Response to Abiotic Stress. Phytochem. Rev. 2020, 19, 1525–1538. [Google Scholar] [CrossRef]
- Morgan, L.V.; Petry, F.; Scatolin, M.; de Oliveira, P.V.; Alves, B.O.; Zilli, G.A.L.; Volfe, C.R.B.; Oltramari, A.R.; de Oliveira, D.; Scapinello, J.; et al. Investigation of the anti-inflammatory effects of stigmasterol in mice: Insight into its mechanism of action. Behav. Pharmacol. 2021, 32, 640–651. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.T.; Huynh, D.T.; Quach, N.M. One Unsual Sterol From Polyscias fruticosa (L.) Harms (Araliaceace). J. Innov. Sustain. Dev. 2017, 07, 33–36. [Google Scholar]
- Bakrim, S.; Benkhaira, N.; Bourais, I.; Benali, T.; Lee, L.H.; El Omari, N.; Sheikh, R.A.; Goh, K.W.; Ming, L.C.; Bouyahya, A. Health Benefits and Pharmacological Properties of Stigmasterol. Antioxidants 2022, 11, 1912. [Google Scholar] [CrossRef]
- Li, J.; Zheng, X.; Qi, J. Research Progress on the Therapeutic Mechanisms of Stigmasterol for Multiple Diseases. Molecules 2025, 30, 1874. [Google Scholar] [CrossRef] [PubMed]
- Percot, A.; Yalcin, A.; Aysel, V.; Erduǧan, H.; Dural, B.; Güven, K.C. Loliolide in marine algae. Nat. Prod. Res. 2009, 23, 460–465. [Google Scholar] [CrossRef] [PubMed]
- Ge, L.; Dai, C.L.; Ma, S.Y.; Liang, G.X.; Yang, K.D. Chemical Constituents from the Leaves of Camellia ptilosperma and Their Cytotoxicity. Chem. Nat. Compd. 2024, 60, 639–643. [Google Scholar] [CrossRef]
- Kim, H.S.; Wang, L.; Fernando, I.P.S.; Kim, M.; Jeon, Y.J.; Ahn, G. Antioxidant Efficacy of (−)-loliolide isolated from Sargassum horneri against AAPH-induced oxidative damage in Vero cells and zebrafish models in vivo. J. Appl. Phycol. 2020, 32, 3341–3348. [Google Scholar] [CrossRef]
- Murata, M.; Nakai, Y.; Kawazu, K.; Ishizaka, M.; Kajiwara, H.; Abe, H.; Takeuchi, K.; Ichinose, Y.; Mitsuhara, I.; Mochizuki, A.; et al. Loliolide, a Carotenoid Metabolite, Is a Potential Endogenous Inducer of Herbivore Resistance. Plant Physiol. 2019, 179, 1822–1833. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.R.; Bae, S.; Kim, J.Y.; Lee, J.; Cho, D.H.; Kim, H.S.; An, I.S.; An, S. Monoterpenoid Loliolide Regulates Hair Follicle Inductivity of Human Dermal Papilla Cells by Activating the Akt/β-Catenin Signaling Pathway. J. Microbiol. Biotechnol. 2019, 29, 1830–1840. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Cheon, J.; Kirindage, K.G.I.S.; Jayasinghe, A.M.K.; Han, E.J.; Park, S.M.; Ahn, G.; Cha, S.H. Loliolide combats glutamate-induced neurotoxicity by oxidative stress through MAPK/Nrf2 pathway in hippocampal neuronal cells. Algal Res. 2025, 85, 103866. [Google Scholar] [CrossRef]
- Shi, D.; Song, X.; Guo, Y.; Xu, J.; Liu, Y.; Zhang, J.; Cui, C.A.; Jin, D.Q. Alismol, a Sesquiterpenoid Isolated from Vladimiria souliei, Suppresses Proinflammatory Mediators in Lipopolysaccharide-Stimulated Microglia. J. Mol. Neurosci. 2017, 62, 106–113. [Google Scholar] [CrossRef]
- Feng, L.; Liu, T.T.; Huo, X.K.; Tian, X.G.; Wang, C.; Lv, X.; Ning, J.; Zhao, W.Y.; Zhang, B.J.; Sun, C.P.; et al. Alisma genus: Phytochemical constituents, biosynthesis, and biological activities. Phytother. Res. 2021, 35, 1872–1886. [Google Scholar] [CrossRef]
- Kim, K.H.; Kim, S.; Kwun, M.J.; Lee, J.Y.; Oh, S.R.; Choi, J.Y.; Joo, M. Alismol Purified from the Tuber of Alisma orientale Relieves Acute Lung Injury in Mice via Nrf2 Activation. Int. J. Mol. Sci. 2023, 24, 15573. [Google Scholar] [CrossRef]
- Kouame, C.; Ouattara, Z.A.; Kambire, D.A.; Monteil, M.; Mamyrbekova, J.A.; Bighelli, A.; Tomi, F.; Lecouvey, M.; Bekro, Y.A. Chemical Composition and Biological Activity of Guarea cedrata (A. Chev.) Pellegr. Leaf and Root Bark Essential Oil. Int. J. Biochem. Res. Rev. 2022, 31, 27–35. [Google Scholar] [CrossRef]
- Thinh, B.B.; Thanh, V.Q.; Hanh, D.H.; Thin, D.B.; Doudkin, R.V. Chemical Composition and Antioxidant Activity of Essential Oil from Fruit of Schisandra perulata. Chem. Nat. Compd. 2022, 58, 763–765. [Google Scholar] [CrossRef]
- Li, Y.; Tan, W.L.; Guo, K.; Gao, X.W.; Wei, J.; Yi, D.; Zhang, C.; Wang, Q. Synthesis and Biological Evaluation of Falcarinol-Type Analogues as Potential Calcium Channel Blockers. J. Nat. Prod. 2021, 84, 2138–2148. [Google Scholar] [CrossRef]
- Kim, T.W.; Ko, S.G. A Novel PPARγ Modulator Falcarindiol Mediates ER Stress-Mediated Apoptosis by Regulating NOX4 and Overcomes Radioresistance in Breast Cancer. Antioxidants 2024, 13, 1533. [Google Scholar] [CrossRef]
- Patial, P.K.; Cannoo, D.S. Evaluation of volatile compounds, phenolic acids, antioxidant potential and DFT study of essential oils from different parts of Araucaria columnaris (G. Forst.) Hook. from India. Food Chem. Toxicol. 2020, 141, 111376. [Google Scholar] [CrossRef]
- Doungchawee, J.; Kulsing, C.; Suekaew, N.; Na Pombejra, S.; Chavasiri, W.; Plabutong, N.; Thammahong, A.; Khotavivattana, T. Volatile Chemical Composition, Antibacterial and Antifungal Activities of Extracts from Different Parts of Globba schomburgkii Hook.F. Chem. Biodivers. 2019, 16, e1900057. [Google Scholar] [CrossRef] [PubMed]
- Rontani, J.F.; Bonin, P.C.; Volkman, J.K. Biodegradation of free phytol by bacterial communities Isolated from marine sediments under aerobic and denitrifying conditions. Appl. Environ. Microbiol. 1999, 65, 5484–5492. [Google Scholar] [CrossRef] [PubMed]
- Osman, W.; Shantier, S.; Mohamed, M. Evaluation of Anti-Inflammatory Activity and Identification of a Monoterpenoidhydroxylactone (-)-loliolide from Tribulus terrestris L.: In vivo and In silico Approaches. Hacettepe Univ. J. Fac. Pharm. 2024, 44, 131–142. [Google Scholar]
- Chen, M.; Ghelfi, M.; Poon, J.F.; Jeon, N.; Boccalon, N.; Rubsamen, M.; Valentino, S.; Mehta, V.; Stamper, M.; Tariq, H.; et al. Antioxidant-independent activities of alpha-tocopherol. J. Biol. Chem. 2025, 301, 108327. [Google Scholar] [CrossRef]
- Jiang, Q. Metabolism of natural forms of vitamin E and biological actions of vitamin E metabolites. Free Radic. Biol. Med. 2022, 179, 375–387. [Google Scholar] [CrossRef]
- Alfurayhi, R.; Huang, L.; Brandt, K. Pathways Affected by Falcarinol-Type Polyacetylenes and Implications for Their Anti-Inflammatory Function and Potential in Cancer Chemoprevention. Foods 2023, 12, 1192. [Google Scholar] [CrossRef] [PubMed]
- Gurkok, G.; Altanlar, N.; Suzen, S. Investigation of antimicrobial activities of indole-3-aldehyde hydrazide/hydrazone derivatives. Chemotherapy 2009, 55, 15–19. [Google Scholar] [CrossRef]
- Marques, T.M.; Wall, R.; O’Sullivan, O.; Fitzgerald, G.F.; Cotter, P.D.; O’Toole, P.W.; Ross, R.P.; Stanton, C. Dietary trans-10, cis-12-conjugated linoleic acid alters fatty acid metabolism and microbiota composition in mice. Br. J. Nutr. 2015, 113, 728–738. [Google Scholar] [CrossRef]
- Murphy, E.F.; Hooiveld, G.J.; Müller, M.; Calogero, R.A.; Cashman, K.D. The Effect of trans-10, cis-12 conjugated linoleic acid on gene expression profiles related to lipid metabolism in human intestinal-like Caco-2 cells. Genes Nutr. 2009, 4, 103–112. [Google Scholar] [CrossRef]
- Herrera-Valencia, V.A.; Us-Vázquez, R.A.; Larqué-Saavedra, F.A.; Cárdenas-Chávez, D.L.; Montalvo-Rodríguez, R. Naturally occurring fatty acid methyl esters and ethyl esters in the green microalga Chlamydomonas reinhardtii. Ann. Microbiol. 2012, 62, 865–870. [Google Scholar] [CrossRef]
- Jaudszus, A.; Foerster, M.; Kroegel, C.; Wolf, I.; Jahreis, G. Cis-9,trans-11-CLA exerts anti-inflammatory effects in human bronchial epithelial cells and eosinophils: Comparison to trans-10,cis-12-CLA and to linoleic acid. Biochim. Biophys. Acta 2005, 1737, 111–118. [Google Scholar] [CrossRef]
- Ko, Y.; Choi, H.S.; Kim, S.; Yun, B.; Lee, D. Anti-Inflammatory Effects of (9Z,11E)-13-Oxooctadeca-9,11-dienoic Acid (13-KODE) Derived from Salicornia herbacea L. on Lipopolysaccharide-Stimulated Murine Macrophage via NF-KB and MAPK Inhibition and Nrf2/HO-1 Signaling Activation. Antioxidants 2022, 11, 180. [Google Scholar] [CrossRef]
- Pehlić, M.; Dumančić, S.; Radan, M.; Galić, J.; Gruica, B.; Marijan, S.; Vulić, M. Untargeted Urinary Volatilomics Reveals Hexadecanal as a Potential Biomarker for Preeclampsia. Int. J. Mol. Sci. 2024, 25, 12371. [Google Scholar] [CrossRef]
- Liu, K.; Chen, Q.; Liu, Y.; Zhou, X.; Wang, X. Isolation and Biological Activities of Decanal, Linalool, Valencene, and Octanal from Sweet Orange Oil. J. Food Sci. 2012, 77, C1156–C1161. [Google Scholar] [CrossRef]
- Shaikh, H.Y.; Niazi, S.K.; Bepari, A.; Cordero, M.A.W.; Sheereen, S.; Hussain, S.A.; Rudrappa, M.; Nagaraja, S.K.; Agadi, S.N. Biological Characterization of Cleome felina L.f. Extracts for Phytochemical, Antimicrobial, and Hepatoprotective Activities in Wister Albino Rats. Antibiotics 2023, 12, 1506. [Google Scholar] [CrossRef]
- Zelante, T.; Iannitti, R.G.; Fallarino, F.; Gargaro, M.; De Luca, A.; Moretti, S.; Bartoli, A.; Romani, L. Tryptophan Feeding of the IDO1-AhR Axis in Host-Microbial Symbiosis. Front. Immunol. 2014, 5, 640. [Google Scholar] [CrossRef] [PubMed]
- Puccetti, M.; Pariano, M.; Borghi, M.; Barola, C.; Moretti, S.; Galarini, R.; Mosci, P.; Ricci, M.; Costantini, C.; Giovagnoli, S. Enteric formulated indole-3-carboxaldehyde targets the aryl hydrocarbon receptor for protection in a murine model of metabolic syndrome. Int. J. Pharm. 2021, 602, 120610. [Google Scholar] [CrossRef] [PubMed]
- Nasrollahi, S.; Ghoreishi, S.M.; Ebrahimabadi, A.H.; Khoobi, A. Gas chromatography-mass spectrometry analysis and antimicrobial, antioxidant and anti-cancer activities of essential oils and extracts of Stachys schtschegleevii plant as biological macromolecules. Int. J. Biol. Macromol. 2019, 128, 718–723. [Google Scholar] [CrossRef]
- Rajizadeh, M.A.; Najafipour, H.; Bejeshk, M.A. An Updated Comprehensive Review of Plants and Herbal Compounds with Antiasthmatic Effect. Evid.-Based Complement. Altern. Med. 2024, 2024, 5373117. [Google Scholar] [CrossRef] [PubMed]
- Taur, D.J.; Patil, R.Y. Some medicinal plants with antiasthmatic potential: A current status. Asian Pac. J. Trop. Biomed. 2011, 1, 413–418. [Google Scholar] [CrossRef] [PubMed]
- Boye, A.; Osei-Owusu, A.K.; Koffuor, G.A.; Barku, V.Y.A.; Asiamah, E.A.; Asante, E. Assessment of Polyscias fruticosa (L.) Harm (Araliaceae) leaf extract on male fertility in rats. J. Intercult. Ethnopharmacol. 2018, 7, 45–56. [Google Scholar] [CrossRef]
- Singh, V.K.; Sahu, M.K. Antidiabetic Medicinal Plants Having Insulin Mimetic Property: A Review. Kenkyu J. Pharm. Pract. Health Care 2018, 60, 56–60. [Google Scholar]
- Ardalani, H.; Hejazi Amiri, F.; Hadipanah, A.; Kongstad, K.T. Potential antidiabetic phytochemicals in plant roots: A review of in vivo studies. J. Diabetes Metab. Disord. 2021, 20, 1837–1854. [Google Scholar] [CrossRef]
- Verma, N.; Raghuvanshi, D.S.; Singh, R.V. Recent advances in the chemistry and biology of oleanolic acid and its derivatives. Eur. J. Med. Chem. 2024, 276, 116619. [Google Scholar] [CrossRef]
- Guo, T.; Wu, S.; Guo, S.; Bai, L.; Liu, Q.; Bai, N. Synthesis and Evaluation of a Series of Oleanolic Acid Saponins as α-Glucosidase and α-Amylase Inhibitors. Arch. Pharm. 2015, 348, 615–628. [Google Scholar] [CrossRef] [PubMed]
- Le, Q.U.; Lay, H.L.; Le, T.T. A Science Opinion on Polyscias fruticosa And Morus alba L. Combination: Better Anti-Diabetic and Late Complication Inhibitory Properties? Curr. Res. Diabetes Obes. J. 2019, 10, 555798. [Google Scholar] [CrossRef]
- Zhang, X.; Shi, C.; Wang, Z.; Dai, J.; Guan, C.; Sheng, J.; Tao, L.; Tian, Y. Separation, Purification, Structural Characterization, and In Vitro Hypoglycemic Activity of Polysaccharides from Panax notoginseng Leaves. Molecules 2025, 30, 830. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.T.A.; Selvaraj, B.; Vu, H.T.; Nguyen, Q.N.S.; Oanh, L.H.; Lee, H.; Tran, Q.L.; Oanh, V.T.; Jung, S.H.; Thuong, P.T.; et al. The Ethanol Extract of Polyscias scutellaria (EEPS) Shows Anti-Inflammatory Signaling Pathway Against LPS-Induced Inflammation in RAW 264.7 Macrophages. Nat. Prod. Commun. 2025, 20, 1–15. [Google Scholar] [CrossRef]
- Zouine, N.; El Ghachtouli, N.; El Abed, S.; Ibnsouda Koraichi, S. A comprehensive review on medicinal plant extracts as antibacterial agents: Factors, mechanism insights and future prospects. Sci. Afr. 2024, 26, e02395. [Google Scholar] [CrossRef]
- Moura, M.V.N.; Mesquita da Conceição Bahia, G.; Gonçalves Correa, M.; Araujo Sarges, M.A.; Lobão, T.A.; Sanches, E.M.; Oliveira, K.R.H.M.; Herculano, A.M.; Bahia, C.P. Neuroprotective effects of crude extracts, compounds, and isolated molecules obtained from plants in the central nervous system injuries: A systematic review. Front. Neurosci. 2023, 17, 1249685. [Google Scholar] [CrossRef]
- Gonelimali, F.D.; Lin, J.; Miao, W.; Xuan, J.; Charles, F.; Chen, M.; Hatab, S.R. Antimicrobial Properties and Mechanism of Action of Some Plant Extracts Against Food Pathogens and Spoilage Microorganisms. Front. Microbiol. 2018, 9, 1639. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Piao, H.; Zang, H. A Comprehensive Review of Traditional Medicinal Uses, Geographical Distribution, Botanical Characterization, Phytochemistry, and Pharmacology of Aralia continentalis Kitag. Molecules 2024, 29, 3529. [Google Scholar] [CrossRef]
- Wajima, T.; Kinugawa, R.; Yamada, T.; Ikoshi, H.; Noguchi, N. Panax Notoginseng Extract Possesses Significant Antibacterial Activity Against Pathogenic Streptococci. Pharmacology 2019, 103, 221–227. [Google Scholar] [CrossRef]
- Wang, L.; Huang, Y.; Yin, G.; Wang, J.; Wang, P.; Chen, Z.Y.; Wang, T.; Ren, G. Antimicrobial activities of Asian ginseng, American ginseng, and notoginseng. Phytother. Res. 2020, 34, 1226–1236. [Google Scholar] [CrossRef]
- Divakar, M.C.; Nikethen, G.S.; Yuvaraj, S.; Sumitha, E. Investigations on the Anti-Neoplastic Ability of Polyscias fruticosa (L) Harms Root CuNPs on Neuroblastoma Cell Lines. NVEO 2021, 8, 13697–13702. [Google Scholar]
- Divakar, M.C.; Nikethen, G.S. Screening of the Anti-Proliferative Activity of Polyscias fruticosa (L) Harms Leaf AgNPs on Lung Cancer Cell Line. J. Popul. Ther. Clin. Pharmacol. 2024, 29, 304–310. [Google Scholar]
- Divakar, M.C.; Nikethen, G.S.; Jeffrin, J.; Kaviarasan, R.; Dino, K.A.; Vishwapal, S.S.; Nivedha, K.; Ravindran, S.; Minu, G. Evaluation of the Cytotoxic and Anti-Cancer Activities of Polyscias fruticosa (L) Harms Root Phytosome on Neuroblastoma Cell Line. J. Popul. Ther. Clin. 2024, 31, 22–29. [Google Scholar]
- Akbaribazm, M.; Goodarzi, N.; Rahimi, M. Female infertility and herbal medicine: An overview of the new findings. Food Sci. Nutr. 2021, 9, 5869–5882. [Google Scholar] [CrossRef] [PubMed]
- Boye, A.; Mensah, L.; Barku, V.; Acheampong, D.; Asiamah, E. Maternal toxicity and post-implantation assessments in rats gestationally exposed to Polyscias fruticosa leaf extract. J. Complement. Med. Res. 2018, 7, 178–189. [Google Scholar] [CrossRef]
- Swathi Krishna, S.; Kuriakose, B.B.; Lakshmi, P.K. Effects of phytoestrogens on reproductive organ health. Arch. Pharm. Res. 2022, 45, 849–864. [Google Scholar] [CrossRef] [PubMed]
- Erkhembaatar, M.; Choi, E.J.; Lee, H.Y.; Lee, C.H.; Lee, Y.R.; Kim, M.S. Attenuated RANKL-induced cytotoxicity by Portulaca oleracea ethanol extract enhances RANKL-mediated osteoclastogenesis. BMC Complement. Altern. Med. 2015, 15, 226. [Google Scholar] [CrossRef]
- Seo, Y.S.; Lim, H.I.; Seo, J.Y.; Kang, K.R.; Kim, D.K.; Lee, H.H.; Oh, D.S.; Kim, J.S. The Ethanol Extracts of Osmanthus fragrans Leaves Ameliorate the Bone Loss via the Inhibition of Osteoclastogenesis in Osteoporosis. Plants 2023, 12, 253. [Google Scholar] [CrossRef] [PubMed]
- Phromnoi, K.; Yodkeeree, S.; Pintha, K.; Mapoung, S.; Suttajit, M.; Saenjum, C.; Dejkriengkraikul, P. Anti-Osteoporosis Effect of Perilla frutescens Leaf Hexane Fraction through Regulating Osteoclast and Osteoblast Differentiation. Molecules 2022, 27, 824. [Google Scholar] [CrossRef] [PubMed]
- Obrębski, M. Created with BioRender.com. 2025. Available online: https://BioRender.com/r2qnh1h (accessed on 18 August 2025).
No. | Trivial Name | Systematic Name | Molecular Formula | Molecular Weight [g/mol] | Plant Source | Identification Method | Ref. |
---|---|---|---|---|---|---|---|
1 | - | 3-O-[β-D-galactopyranosyl-(1→2)-β-D-glucuronopyranosyl] oleanolic acid | C42H66O14 | 794.44 | Leaves | FAB, MS (negative) | [69] |
2 | - | 3-O-[α-L-rhamnopyranosyl-(1→4)-β-D-glucuronopyranosyl]28-O-β-D-glucopyranosyl oleanolic acid | C48H76O19 | 940 | Leaves (yellow variety) | FAB, MS (negative) | [5] |
3 | Polyscioside A | 3-O-(β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyl-(1→4)-β-D-glucuronopyranosyl) oleanolic acid | C48H76O19 | 956.49 | Leaves, roots | HR FAB-MS (negative), NMR | [3] |
4 | Polyscioside B | 3-O-[α-L-arabinopyranosyl-(1→4)-β-D-glucopyranosyl-(1→2)-β-D-glucuronopyranosyl] oleanolic acid | C47H74O18 | 926.47 | Roots | HR FAB-MS (negative), NMR | [3] |
5 | Polyscioside C | 3-O-[β-D-galactopyranosyl-(1→2)-β-D-glucopyranosyl-(1→3)-β-D-glucuronopyranosyl] oleanolic acid | C48H76O19 | 956.49 | Roots | HR-FAB-MS (negative), NMR | [3] |
6 | Polyscioside D | 3-O-[β-D-glucopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→4)]-β-D-glucuronopyranosyl]- oleanolic acid 28-O-β-D-glucopyranosyl ester | C54H86O24 | 1118.54 | Leaves, roots | HR FAB-MS (negative), NMR | [3] |
7 | Polyscioside E | 3-O-[α-L-arabinopyranosyl-(1→4)-[β-D-glucopyranosyl-(1→2)]-β-D-glucuronopyranosyl]oleanolic acid 28-O-β-D-glucopyranosyl ester | C53H84O23 | 1088.53 | Roots | HR FAB-MS (negative), NMR | [3] |
8 | Polyscioside F | 3-O-[β-D-galactopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→3)]-β-D-glucuronopyranosyl] oleanolic acid 28-O-β-D-glucopyranosyl ester | C54H86O24 | 1118.54 | Leaves | HR FAB-MS (negative), NMR | [3] |
9 | Polyscioside G | 3-O-[β-D-glucopyranosyl-(1→4)-β-D-glucuronopyranosyl]oleanolic acid 28-O-α-L-rhamnopyranosyl-(1→3)-β-D-glucopyranosyl ester | C54H86O23 | 1102.55 | Leaves | HR FAB-MS (negative), NMR | [3] |
10 | Polyscioside H | 3-O-[β-D-glucopyranosyl-(1→4)-β-D-glucopyranosyl-(1→2)-β-D-glucuronopyranosyl] oleanolic acid 28-O-α-L-rhamnopyranosyl-(1→3)-β-D-glucopyranosyl ester | C60H96O28 | 1264.65 | Leaves | HR FAB-MS (negative), NMR | [3] |
11 | Ladyginoside A (calendulaglycoside E) | 3-O-[β-D-glucopyranosyl (1-4)-β-D-glucuronopyranosyl] oleanolic acid | C42H66O14 | 794.44 | Leaves, cell suspension culture | UPLC-ESI-MS | [3] |
12 | Zingibroside R1 | 3-O-[β-D-glucopyranosyl (1-2)-β-D-glucuronopyranosyl] oleanolic acid | C42H66O14 | 794.44 | Leaves | NMR, MS | [3] |
13 | Saponin PFS | 3-O-[β-D-glucopyranosyl-(1→4)-β-D-glucuronopyranosyl] oleanolic acid 28-O-β-D-glucopyranosyl ester | C48H76O19 | 956.49 | Leaves, root, cell suspension culture | HR-ESI-MS (negative) | [3,57] |
14 | - | oleanolic acid-28-O-β-D-glucopyranosyl-D-glucopyranosyl-rhamnopyranoside | 926 | Leaves, roots | ESI-MS, NMR | [6] | |
15 | - | 3-O-α-L-arabinopyranosyl-oleanolic acid-28-O-β-D-glucopyranosyl-D-glucopyranosyl-rhamnopyranoside | 1058 | Leaves, roots | ESI-MS, NMR | [6] | |
16 | Polyscioside I | 3-O-[β-D-glucopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→4)]-β-D-glucuronopyranosyl] oleanolic acid 28-O-β-D-glucopyranosyl-(1→2)-β-D-galactopyranosyl ester | C60H97O29 | 1280.61 | Leaves | HR ESI-MS, NMR | [14] |
17 | Polyscioside J | 3-O-[β-D-glucopyranosyl-(1→4)]-β-D-(6-O-methyl)glucuronopyranosyl] oleanolic acid 28-O-β-D-glucopyranosyl ester | C49H78O19 | 970.50 | Leaves | HR ESI-MS (negative) | [7] |
18 | Polyscioside K | 3-O-[β-D-glucopyranosyl-(1→4), β-D-glucopyranosyl-(1→2)]-β-D-(6-O-methyl)glucuronopyranosyl] oleanolic acid | C49H78O19 | 970.50 | Leaves | HR-ESI-MS (negative) | [7] |
19 | Chikusetsusaponin IVa | 3-O-[β-D-glucuronopyranosyl] oleanolic acid 28-O-β-D-glucopyranosyl ester | C42H66O14 | 794.44 | Leaves | NMR, MS | [7] |
No. | Compound Name | Compound Class | Molecular Formula | Exact Mass | Plant Source | Extraction Method | Ref. |
---|---|---|---|---|---|---|---|
20 | Kaempferol-3-rhamnoside/afzelin/kaempferol-3-O-alpha-L-rhamnoside | Flavonoids | C21H20O10 | 432.10 | Leaves | EtOH (95%), maceration 72 h, 25 °C, EtOAc/n-hexane fraction | [8] |
21 | Quercetin-3-rhamnoside/quercitrin/quercetin 3-L-rhamnoside | Flavonoids | C21H20O11 | 448.10 | Leaves | EtOH (95%), maceration 72 h, 25 °C, EtOAc/n-hexane fraction | [8] |
22 | Esculetin/ aesculetin | Phenolic compounds | C9H6O4 | 286.24 | Leaves | EtOH (95%), maceration 72 h, 25 °C, EtOAc/n-hexane fraction | [8] |
23 | Liquiritigenin/ 7-hydroxy-2-(4-hydroxy-phenyl)-chroman-4-one | Flavanones | C15H12O4 | 256.07 | Leaves | EtOH (95%), maceration 72 h, 25 °C, EtOAc/n-hexane fraction | [8] |
24 | (E)-3,4-dihydroxycinnamic Acid/ caffeic acid | Phenolic acids | C9H8O4 | 180.04 | Leaves | EtOH (95%), maceration 72 h, 25 °C, EtOAc/n-hexane fraction | [8] |
25 | 4-hydroxycinnamaldehyde | Phenolic compounds | C9H8O2 | 148.05 | Leaves | EtOH (95%), maceration 72 h, 25 °C, EtOAc/n-hexane fraction | [8] |
26 | (E)-isoferulaldehyde/ 3-hydroxy-4-methoxycinnamaldehyde | Phenolic compounds | C10H10O3 | 178.06 | Leaves | EtOH (95%), maceration 72 h, 25 °C, EtOAc/n-hexane fraction | [8] |
27 | Protocatechuic acid/ 3,4-dihydroxybenzoic acid | Phenolic acids | C7H6O4 | 154.02 | Roots | EtOH 95%, maceration at RT Et2O fraction | [21] |
28 | Politoic acid/ (E)-2-(4-((E)-2-carboxyvinyl)-2-methoxyphenoxy)-3-(4-hydroxyphenyl)acrylic acid | Phenolic acids | C18H16O7 | 344.32 | Roots | EtOH 95%, maceration at RT, Et2O fraction | [21] |
29 | 8-O-4-dehydrodiferulic acid | Phenolic acids | C20H18O8 | 386.35 | Roots | EtOH 95%, maceration at RT, Et2O fraction | [21] |
30 | 8-O-4/8-O-4-dehydrotriferulic acid | Phenolic acids | C30H26O12 | 578.52 | Roots | EtOH 95%, maceration at RT, Et2O fraction | [21] |
31 | 1′-hydroxyeugenol/ 4-(1-hydroxy-allyl)-2-methoxy-phenol | Polyphenols | C10H12O3 | 180.07 | Leaves | UAE EtOH (95%), n-hexane/DCM (PFLD) 1 h, 30 °C | [10] |
32 | 2,6-dimethoxy-4-vinylphenol/ 4-ethenyl-2,6-dimethoxyphenol | Polyphenols | C10H12O3 | 180.07 | Leaves | UAE EtOH (95%), n-hexane/DCM (PFLD) 1 h, 30 °C | [10] |
33 | 2,6-dimethoxyphenol/ syringol/ pyrogallol 1,3-dimethyl ether | Polyphenols | C8H10O3 | 154.06 | Leaves | UAE EtOH (95%), n-hexane/DCM (PFLD) 1 h, 30 °C) | [10] |
34 | 4-vinylphenol/ 4-hydroxystyrene/ | Polyphenols | C8H8O | 120.05 | Leaves | UAE EtOH (95%), n-hexane/DCM (PFLD) 1 h, 30 °C | [10] |
35 | vanillin/ 4-hydroxy-3-methoxybenzaldehyde/ vanillaldehyde | Polyphenols | C8H8O3 | 152.04 | Leaves | UAE EtOH (95%), n-hexane/DCM (PFLD) 1 h, 30 °C | [10] |
36 | 2-methoxy-4-vinylphenol/ 4-vinylguaiacol/ p-vinylguaiacol | Polyphenols | C9H10O2 | 150.06 | Leaves | UAE EtOH (95%), n-hexane/DCM (PFLD) 1 h, 30 °C | [10] |
37 | 4-allyl-2,6-dimethoxyphenol/ methoxyeugenol/ 4-allylsyringol | Polyphenols | C11H14O3 | 194.09 | Leaves | UAE EtOH (95%), n-hexane/DCM (PFLD) 1 h, 30 °C | [10] |
38 | 1,2-bis(4-hydroxy-3-methoxyphenyl)ethylene | Polyphenols | C16H16O4 | 272.10 | Leaves | UAE EtOH (95%), n-hexane/DCM (PFLD) 1 h, 30 °C | [10] |
39 | Sinapyl alcohol/ 4-(3-hydroxyprop-1-en-1-yl)-2,6-dimethoxyphenol | Phenylpropanoid (lignin precursor) | C11H14O4 | 210.08 | Leaves | UAE EtOH (95%), n-hexane/DCM (PFLD) 1 h, 30 °C | [10] |
No. | Compound Name | Type | Molecular Formula | Plant Source | Extraction Method | Identification Method | Ref. |
---|---|---|---|---|---|---|---|
40 | Stigmasterol | Phytosterol | C29H48O | leaves | UAE EtOH (95%), n-hexane/DCM (PFLD) 1 h, 30 °C | GC-MS | [4,10] |
41 | (3β,5α)-Stigmasta-7,16-dien-3-ol | Sterol derivative | C29H48O | leaves | UAE EtOH (95%), n-hexane/DCM (PFLD) 1 h, 30 °C | GC-MS | [10] |
42 | 22-dehydro-24-isopropylcholesterol | Atypical sterol | C30H48O | roots | Petroleum ether/diethyl ether (1:1) | X-ray crystallography | [118] |
No. | Compound Name | Class of Compounds | Molecular Formula | Plant Source | Identification Method | Ref. |
---|---|---|---|---|---|---|
43 | Limonene | Monoterpene | C10H16 | Leaves | GC-MS | [9] |
44 | (Z)-Hex-3-en-1-yl acetate | Monoterpene | C8H14O2 | Leaves | GC-MS | [9] |
45 | 1-hexanol | Monoterpene | C6H14O | Leaves | GC-MS | [9] |
46 | (Z)-Hex-3-en-l-ol | Monoterpenoid | C6H12 O | Leaves | GC-MS | [9] |
47 | 3-bornanone oxime | Oxygenated Monoterpenes | C10H17NO | Leaves | GC-MS | [10] |
48 | Actinidiolide | Norisoprenoid lactone | C11H16O2 | Leaves | GC-MS | [10] |
49 | Loliolide | Norisoprenoid lactone | C11H16O3 | Leaves | GC-MS | [10] |
50 | ®-1-(7,7-dimethyl-1,3,4,5,6,7-hexahydroisobenzofuran-1α-yl)-2-propanol | Monoterpenoid derivative (furan) | C13H22O2 | Leaves | GC-MS | [10] |
51 | (E)-γ-bisabolene | Sesquiterpene | C15H24 | Leaves | GC-MS | [9] |
52 | α-bergamotene | Sesquiterpene | C15H24 | Leaves | GC-MS | [9,10] |
53 | α-cubebene | Sesquiterpene | C15H24 | Leaves | GC-MS | [9] |
54 | α-ylangene | Sesquiterpene | C15H24 | Leaves | GC-MS | [9,10] |
55 | Germacrene D | Sesquiterpene | C15H24 | Leaves | GC-MS | [9,10] |
56 | Germacrene B | Sesquiterpene | C15H24 | Leaves | GC-MS | [9] |
57 | β-caryphyllene | Sesquiterpene | C15H24 | Leaves | GC-MS | [9] |
58 | β-elemene | Sesquiterpene | C15H24 | Leaves | GC-MS | [9] |
59 | δ-elemene | Sesquiterpene | C15H24 | Leaves | GC-MS | [9] |
60 | γ-elemene | Sesquiterpene | C15H24 | Leaves | GC-MS | [9] |
61 | α-copaene | Sesquiterpene | C15H24 | Leaves | GC-MS | [9,10] |
62 | Aromadedrene | Sesquiterpene | C15H24 | Leaves | GC-MS | [9,10] |
63 | α-humulene | Sesquiterpene | C15H24 | Leaves | GC-MS | [9] |
64 | δ-cadinene | Sesquiterpene | C15H24 | Leaves | GC-MS | [9] |
65 | α-ylangene | Sesquiterpene | C15H24 | Leaves | GC-MS | [9,10] |
66 | α-copaene | Sesquiterpene | C15H24 | Leaves | GC-MS | [9,10] |
67 | β-bourbonene | Sesquiterpene | C15H24 | Leaves | GC-MS | [9] |
68 | β-cubebene | Sesquiterpene | C15H24 | Leaves | GC-MS | [9] |
69 | β-gurjunene | Sesquiterpene | C15H24 | Leaves | GC-MS | [9,10] |
70 | Calacorene | Sesquiterpene | C15H24 | Leaves | GC-MS | [9] |
71 | γ-cadinene | Sesquiterpene | C15H24 | Leaves | GC-MS | [10] |
72 | Caryophyllene oxide | Oxygenated sesquiterpene | C15H24O | Leaves | GC-MS | [10] |
73 | Calamenene | Oxygenated sesquiterpene | C15H22O | Leaves | GC-MS | [9] |
74 | Alismol | Oxygenated sesquiterpene | C15H26O | Leaves | GC-MS | [10] |
75 | Opposita-4(15),7(11)-dien-1β-ol | Oxygenated sesquiterpene | C15H24O | Leaves | GC-MS | [10] |
76 | Alloisolongifolene alcohol | Oxygenated sesquiterpene | C15H24O | Leaves | GC-MS | [10] |
77 | (4S,5R)-5-hydroxycaryophyll-8(13)-ene-4,12-epoxide | Oxygenated sesquiterpene | C15H24O2 | Leaves | GC-MS | [10] |
78 | Alismoxide | Oxygenated sesquiterpene | C15H24O2 | Leaves | GC-MS | [10] |
79 | β-Oplopenone | Oxygenated sesquiterpene | C15H22O | Leaves | GC-MS | [10] |
80 | Neoclovene oxide | Oxygenated sesquiterpene | C15H22O | Leaves | GC-MS | [10] |
81 | (−)-isolongifolol methyl ether | Oxygenated sesquiterpene (ether) | C16H28O | Leaves | GC-MS | [10] |
82 | Ledol | Oxygenated sesquiterpene | C15H22O | Leaves | GC-MS | [10] |
83 | Caryophyllenol II | Oxygenated sesquiterpene | C15H24O | Leaves | GC-MS | [10] |
84 | 6,10,14-trimethylpentadecan-2-one | Aliphatic ketone | C18H36O | Leaves | GC-MS | [10] |
85 | Neophytadiene | Diterpenoid hydrocarbon | C20H38 | Leaves | GC-MS | [10] |
86 | Phytol | Diterpenoid alcohol | C20H40O | Leaves | GC-MS | [10] |
87 | (Z)-1,3-Phytadiene | acyclic diterpene | C20H38 | Leaves | GC-MS | [10] |
No. | Compound Name | Class of Compound | Molecular Formula | Plant Source | Identification Method | Ref. |
---|---|---|---|---|---|---|
88 | δ-tocopherol | Tocol (Vitamin E) | C27H46O2 | Leaves | GC-MS | [10] |
89 | β-tocopherol | Tocol (Vitamin E) | C28H48O2 | Leaves | GC-MS | [10] |
90 | DL-α-tocopherol | Tocol (Vitamin E) | C29H50O2 | Leaves | GC-MS | [10] |
91 | α-tocopherol | Tocol (Vitamin E) | C29H50O2 | Leaves | GC-MS | [10] |
No. | Compound Name | Class of Compounds | Molecular Formula | Plant Source | Identification Method | Ref. |
---|---|---|---|---|---|---|
92 | Falcarinol (panaxynol) | C17 polyacetylene; monoacetylene alcohol | C17H24O | Roots, leaves | GC-MS, NMR | [4,10,11] |
93 | Heptadeca-1,8- diene-4,6-diyne- 3-ol-10-one | C17 polyacetylene; diacetylene diol | C17H22O2 | Roots, leaves | GC-MS, NMR | [4,11] |
94 | Heptadeca-1,8-diene-4,6-diyne-3,10-diol/ (seselidiol) | C17 polyacetylene; diacetylene alcohol-ketone | C17H24O2 | Roots, leaves | GC-MS, NMR | [4,11] |
95 | Hexadeca-5,7,9,11-tetrayne-1,16-diol | C17 polyacetylene; polyacetylene diol | C16H18O2 | Leaves | GC-MS | [10] |
No. | Compound Name | Type | Molecular Formula | Molecular Weight (g/mol) | Plant Source | Identification Method | Ref. |
---|---|---|---|---|---|---|---|
96 | 9,11-octadecadienoic acid | CLA isomer | C18H32O2 | 280.24 | Leaves | GC-MS | [10] |
97 | 10-trans,12-cis-linoleic acid | CLA isomer | C18H32O2 | 280.24 | Leaves | GC-MS | [10] |
98 | 2-linoleoylglycerol | Monoacylglycerol (MAG) | C21H38O4 | 354.27 | Leaves | GC-MS | [10] |
99 | Linoleic acid | Polyunsaturated fatty acid (PUFA) | C18H32O2 | 280.24 | Leaves | GC-MS | [10] |
100 | Linolenic acid | Polyunsaturated fatty acid (PUFA) | C18H30O2 | 278.22 | Leaves | GC-MS | [10] |
101 | Lionoelaidic acid | Polyunsaturated fatty acid (PUFA) | C18H30O2 | Leaves | GC-MS | [10] | |
102 | Palmitic acid | Saturated fatty acid (SFA) | C16H32O2 | 256.24 | Leaves | GC-MS | [10] |
103 | Stearic acid | Saturated fatty acid (SFA) | C18H36O2 | 284.27 | Leaves | GC-MS | [10] |
104 | Methyl linoleate | Fatty acid methyl ester (FAME) | C19H34O2 | 294.25 | Leaves | GC-MS | [10] |
105 | Ethyl palmitate | Fatty acid ethyl ester (FAEE) | C18H36O2 | 284.27 | Leaves | GC-MS | [10] |
106 | Myristic acid | Saturated fatty acid (SFA) | C14H28O2 | 228.20 | Leaves | GC-MS | [10] |
107 | Octanoic acid | Fatty acid ester | C8H16O2 | 144.12 | Leaves | GC-MS | [10] |
108 | 2-palmitoylglycerol | Monoacylglycerol (MAG) | C19H38O4 | 330.28 | Leaves | GC-MS | [10] |
109 | Diisobutyl adipate | Aliphatic diester of a dicarboxylic acid | C14H26O4 | 298.51 | Leaves | GC-MS | [10] |
No. | Compound Name | Type | Molecular Formula | Molecular Weight (g/mol) | Plant Source | Identification Method | Ref. |
---|---|---|---|---|---|---|---|
110 | 3-hydroxy-4,5-dimethylfuran-2(5H)-one | Furanone-type lactone (oxygenated heterocycle) | C6H8O3 | 128.05 | Leaves | GC-MS | [10] |
111 | Octanal | Aliphatic aldehyde | C8H16O | 128.12 | Leaves | GC-MS | [10] |
112 | Hexadecanal | Long-chain saturated aliphatic aldehyde | C16H32O | 240.25 | Leaves | GC-MS | [10] |
113 | 3-methylene-7,11-dimethyl-1-dodecene | Branched unsaturated hydrocarbon | C15H28 | 208.22 | Leaves | GC-MS | [10] |
114 | Linoleyl alcohol | Long-chain unsaturated fatty alcohol | C18H34O2 | 266.26 | Leaves | GC-MS | [10] |
No. | Compound Name | Type | Molecular Formula | Molecular Weight (g/mol) | Plant Source | Identification Method | Ref. |
---|---|---|---|---|---|---|---|
115 | 4-ethoxy-4-oxobutanoic acid | Carboxylic acid derivative (β-ketoester-type compound) | C6H10O4 | 146.06 | Leaves | GC-MS | [10] |
116 | 2,3-dihydrothiophene | Sulfur-containing heterocyclic compound | C4H6S | 86.02 | Leaves | GC-MS | [10] |
117 | Malic acid | Dicarboxylic acid (α-hydroxy acid) | C4H6O5 | 134.02 | Leaves | GC-MS | [10] |
118 | Levoglucosan | Carbohydrate derivative (1,6-anhydro sugar) | C6H10O5 | 162.05 | Leaves | GC-MS | [10] |
119 | 4,3′-difluoro-4′-methoxybiphenyl | Halogenated aromatic hydrocarbon (fluoroalkylated biphenyl) | C13H10F2O | 220.07 | Leaves | GC-MS | [10] |
120 | Indole-3-carboxaldehyde | Indole derivative (aromatic heterocyclic aldehyde) | C9H7NO | 145.05 | Leaves | GC-MS | [10] |
121 | 4,6,6-trimethyl-2-(3-methylbuta-1,3-dienyl)-3-oxatricyclo[5.1.0.0(2,4)]octane | Oxygenated polycyclic hydrocarbon (tricyclic ether–terpenoid-like compound) | C15H22O | 218.16 | Leaves | GC-MS | [10] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Śliwińska, A.A.; Tomiczak, K. Advancing the Potential of Polyscias fruticosa as a Source of Bioactive Compounds: Biotechnological and Pharmacological Perspectives. Molecules 2025, 30, 3460. https://doi.org/10.3390/molecules30173460
Śliwińska AA, Tomiczak K. Advancing the Potential of Polyscias fruticosa as a Source of Bioactive Compounds: Biotechnological and Pharmacological Perspectives. Molecules. 2025; 30(17):3460. https://doi.org/10.3390/molecules30173460
Chicago/Turabian StyleŚliwińska, Anita A., and Karolina Tomiczak. 2025. "Advancing the Potential of Polyscias fruticosa as a Source of Bioactive Compounds: Biotechnological and Pharmacological Perspectives" Molecules 30, no. 17: 3460. https://doi.org/10.3390/molecules30173460
APA StyleŚliwińska, A. A., & Tomiczak, K. (2025). Advancing the Potential of Polyscias fruticosa as a Source of Bioactive Compounds: Biotechnological and Pharmacological Perspectives. Molecules, 30(17), 3460. https://doi.org/10.3390/molecules30173460