Recent Advances in MXene-Based Composites for Their Efficiency in the Degradation of Antibiotics and Water Splitting
Abstract
1. Introduction
2. Mxene and Its Unique Characteristics
2.1. Structural Components
2.1.1. Transition Metal Layers
2.1.2. Carbon/Nitrogen Layers
2.1.3. Layer Thickness
2.1.4. Surface Terminations
2.1.5. Layered Architecture
2.2. Synthetic Methods
3. MXene in the Degradation of Antibiotics
3.1. Degradation of Antiepileptic Drug
3.2. Degradation of Fluoroquinolone
3.3. Degradation of Amoxicillin
3.4. Degradation of Enrofloxacin
3.5. Degradation of Norfloxacin
MXene-Based Membranes | Mechanism | Antibiotics | Reference |
---|---|---|---|
Ti3C2Tx/CNFs | Electrostatic repulsion/sieving | azithromycin | [123] |
Ti3C2Tx | Electrostatic repulsion/molecular sieving | Erythromycin | [124] |
Ti3C2Tx | Electrostatic repulsion/molecular sieving | Penicillin | [124] |
Ti3C2Tx | Electrostatic repulsion/molecular sieving | Rifampicin | [124] |
Ti3C2Tx | Electrostatic repulsion/molecular sieving | Bacitracin | [124] |
Ti3C2Tx | Photocatalytic inactivation | E. coli | [125] |
g-C3N4@MXene | Electrostatic repulsion/molecular sieving | Tetracycline hydrochloride | [126] |
g-C3N4/TiO2/kaolinite | Chemical stripping and self-assembly | ciprofloxacin | [127] |
g-C3N4/C-TiO2 | S-scheme heterojunction | ciprofloxacin | [128] |
sepiolite/g-C3N4/Pd | Photocatalytic mechanism | ciprofloxacin | [129] |
Au@ZnONPs-rGO-gC3N4 | photodegradation mechanism | Ciprofloxacin, Levofloxacin | [130] |
4. MXene in Water Splitting
4.1. Hydrogen Evolution Reaction
MXene-Based Nanocomposites for HER
Electrocatalyst | Electrolyte | Tafel Slope | Overpotential | References |
---|---|---|---|---|
Ti2CTx | 0.5M H2SO4 | 100 mV/dec | 75 mV | [151] |
Ti3C2Tx | 0.5M H2SO4 | 97 mV/dec | 169 mV | [151] |
Pd/Ti3C2Tx–CNT | 0.1M KOH | 50 mV/dec | 158 mV | [152] |
Ru@Ti3C2Tx-Vc | 1M KOH | 32 mV/dec | 35 mV | [153] |
Pt/Ti3C2Tx | 0.5M H2SO4 | 29.7 | 34 | [154] |
Ti3CN(OH)x@MoS2 | 0.5M H2SO4 | 64 | 120 | [155] |
Rh–CoNi LDH/MXene | 1.0M KOH | 43.9 | 74.6 | [156] |
Co-NCNT/Ti3C2Tx | 1.0M KOH | 78 | 190 | [157] |
BiFeO3/Cr2CTx | 1.0 M KOH | 53.3 | 128 | [142] |
WS2@MXene/GO | 1.0M KOH | 58 | 43 | [158] |
Ti3C2Tx: Co | 1.0M KOH | 103.3 | 103.6 | [159] |
4.2. Oxygen Evolution Reaction
MXene-Based Nanocomposites for OER
Electrocatalyst | Tafel slope | Overpotential | References |
---|---|---|---|
IrCo@ac-Ti3C2 | 60 mV/dec | 220 mV | [168] |
Ru–FeOOH@ Ti3C2Tx | 67.7 mV/dec | 230 mV | [169] |
Cr–FeNi LDH/MXene | 54.4 | 232 | [170] |
Co–B@Ti3C2Tx | 53 | 250 | [171] |
Co3O4@Ti3C2Tx | 118 | 300 | [172] |
H2PO2-/FeNiLDH-V2C | 46.5 | 250 | [173] |
CoFe-LDH/Ti3C2 | 50 | 319 | [174] |
NiCo-LDH/Ti3C2Tx/NF | 47.2 | 223 | [175] |
CDs@(PdFeNiCo)Nbx | 62 | 240 | [170] |
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Babin, A.; Vaneeckhaute, C.; Iliuta, M.C. Potential and challenges of bioenergy with carbon capture and storage as a carbon-negative energy source: A review. Biomass Bioenergy 2021, 146, 105968. [Google Scholar] [CrossRef]
- Wang, P.; Yang, Y.; Xue, D.; Ren, L.; Tang, J.; Leung, L.R.; Liao, H. Aerosols overtake greenhouse gases causing a warmer climate and more weather extremes toward carbon neutrality. Nat. Commun. 2023, 14, 7257. [Google Scholar] [CrossRef] [PubMed]
- Safiah Yusmah, M.; Bracken, L.J.; Sahdan, Z.; Norhaslina, H.; Melasutra, M.; Ghaffarianhoseini, A.; Sumiliana, S.; Shereen Farisha, A. Understanding urban flood vulnerability and resilience: A case study of Kuantan, Pahang, Malaysia. Nat. Hazards 2020, 101, 551–571. [Google Scholar] [CrossRef]
- Morrison, T.H.; Adger, W.N.; Agrawal, A.; Brown, K.; Hornsey, M.J.; Hughes, T.P.; Jain, M.; Lemos, M.C.; McHugh, L.H.; O’Neill, S.; et al. Radical interventions for climate-impacted systems. Nat. Clim. Change 2022, 12, 1100–1106. [Google Scholar] [CrossRef]
- Yates, J.; Deeney, M.; Muncke, J.; Carney Almroth, B.; Dignac, M.-F.; Castillo, A.C.; Courtene-Jones, W.; Kadiyala, S.; Kumar, E.; Stoett, P.; et al. Plastics matter in the food system. Commun. Earth Environ. 2025, 6, 176. [Google Scholar] [CrossRef]
- Zhou, S.; Di Paolo, C.; Wu, X.; Shao, Y.; Seiler, T.-B.; Hollert, H. Optimization of screening-level risk assessment and priority selection of emerging pollutants–The case of pharmaceuticals in European surface waters. Environ. Int. 2019, 128, 1–10. [Google Scholar] [CrossRef]
- Kosma, C.I.; Nannou, C.I.; Boti, V.I.; Albanis, T.A. Psychiatrics and selected metabolites in hospital and urban wastewaters: Occurrence, removal, mass loading, seasonal influence and risk assessment. Sci. Total Environ. 2019, 659, 1473–1483. [Google Scholar] [CrossRef]
- Vickers, N.J. Animal communication: When i’m calling you, will you answer too? Curr. Biol. 2017, 27, R713–R715. [Google Scholar] [CrossRef]
- Hofman-Caris, C.; Siegers, W.; van de Merlen, K.; De Man, A.; Hofman, J. Removal of pharmaceuticals from WWTP effluent: Removal of EfOM followed by advanced oxidation. Chem. Eng. J. 2017, 327, 514–521. [Google Scholar] [CrossRef]
- Aukema, K.G.; Escalante, D.E.; Maltby, M.M.; Bera, A.K.; Aksan, A.; Wackett, L.P. In silico identification of bioremediation potential: Carbamazepine and other recalcitrant personal care products. Environ. Sci. Technol. 2017, 51, 880–888. [Google Scholar] [CrossRef]
- Ha, H.; Mahanty, B.; Yoon, S.; Kim, C.-G. Degradation of the long-resistant pharmaceutical compounds carbamazepine and diatrizoate using mixed microbial culture. J. Environ. Sci. Health Part A 2016, 51, 467–471. [Google Scholar] [CrossRef]
- Duan, Y.; Deng, L.; Shi, Z.; Zhu, L.; Li, G. Assembly of graphene on Ag3PO4/AgI for effective degradation of carbamazepine under visible-light irradiation: Mechanism and degradation pathways. Chem. Eng. J. 2019, 359, 1379–1390. [Google Scholar] [CrossRef]
- Fu, Y.; Li, Z.; Liu, Q.; Yang, X.; Tang, H. Construction of carbon nitride and MoS2 quantum dot 2D/0D hybrid photocatalyst: Direct Z-scheme mechanism for improved photocatalytic activity. Chin. J. Catal. 2017, 38, 2160–2170. [Google Scholar] [CrossRef]
- Eswar, N.K.; Singh, S.A.; Madras, G. Photoconductive network structured copper oxide for simultaneous photoelectrocatalytic degradation of antibiotic (tetracycline) and bacteria (E. coli). Chem. Eng. J. 2018, 332, 757–774. [Google Scholar] [CrossRef]
- Li, Z.; Zhu, L.; Wu, W.; Wang, S.; Qiang, L. Highly efficient photocatalysis toward tetracycline under simulated solar-light by Ag+-CDs-Bi2WO6: Synergistic effects of silver ions and carbon dots. Appl. Catal. B Environ. 2016, 192, 277–285. [Google Scholar] [CrossRef]
- Zhu, M.; Kim, S.; Mao, L.; Fujitsuka, M.; Zhang, J.; Wang, X.; Majima, T. Metal-free photocatalyst for H2 evolution in visible to near-infrared region: Black phosphorus/graphitic carbon nitride. J. Am. Chem. Soc. 2017, 139, 13234–13242. [Google Scholar] [CrossRef]
- Mousavi, M.; Habibi-Yangjeh, A.; Pouran, S.R. Review on magnetically separable graphitic carbon nitride-based nanocomposites as promising visible-light-driven photocatalysts. J. Mater. Sci. Mater. Electron. 2018, 29, 1719–1747. [Google Scholar] [CrossRef]
- Akhundi, A.; Habibi-Yangjeh, A. Graphitic carbon nitride nanosheets decorated with CuCr2O4 nanoparticles: Novel photocatalysts with high performances in visible light degradation of water pollutants. J. Colloid Interface Sci. 2017, 504, 697–710. [Google Scholar] [CrossRef]
- Asadzadeh-Khaneghah, S.; Habibi-Yangjeh, A.; Abedi, M. Decoration of carbon dots and AgCl over g-C3N4 nanosheets: Novel photocatalysts with substantially improved activity under visible light. Sep. Purif. Technol. 2018, 199, 64–77. [Google Scholar] [CrossRef]
- Pirhashemi, M.; Habibi-Yangjeh, A. ZnO/NiWO4/Ag2CrO4 nanocomposites with pnn heterojunctions: Highly improved activity for degradations of water contaminants under visible light. Sep. Purif. Technol. 2018, 193, 69–80. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, X.; Zhang, X. Recent progress in TiO2-mediated solar photocatalysis for industrial wastewater treatment. Int. J. Photoenergy 2014, 2014, 607954. [Google Scholar] [CrossRef]
- Wu, C.; Huang, Q. Synthesis of Na-doped ZnO nanowires and their photocatalytic properties. J. Lumin. 2010, 130, 2136–2141. [Google Scholar] [CrossRef]
- Li, X.; Zhang, W.; Li, J.; Jiang, G.; Zhou, Y.; Lee, S.; Dong, F. Transformation pathway and toxic intermediates inhibition of photocatalytic NO removal on designed Bi metal@ defective Bi2O2SiO3. Appl. Catal. B Environ. 2019, 241, 187–195. [Google Scholar] [CrossRef]
- Liao, J.; Cui, W.; Li, J.; Sheng, J.; Wang, H.; Dong, X.a.; Chen, P.; Jiang, G.; Wang, Z.; Dong, F. Nitrogen defect structure and NO+ intermediate promoted photocatalytic NO removal on H2 treated g-C3N4. Chem. Eng. J. 2020, 379, 122282. [Google Scholar] [CrossRef]
- Martin, D.J.; Umezawa, N.; Chen, X.; Ye, J.; Tang, J. Facet engineered Ag3PO4 for efficient water photooxidation. Energy Environ. Sci. 2013, 6, 3380–3386. [Google Scholar] [CrossRef]
- Midilli, A.; Ay, M.; Dincer, I.; Rosen, M.A. On hydrogen and hydrogen energy strategies: I: Current status and needs. Renew. Sustain. Energy Rev. 2005, 9, 255–271. [Google Scholar] [CrossRef]
- Cui, C.; Cheng, R.; Zhang, H.; Zhang, C.; Ma, Y.; Shi, C.; Fan, B.; Wang, H.; Wang, X. Ultrastable MXene@ Pt/SWCNTs’ nanocatalysts for hydrogen evolution reaction. Adv. Funct. Mater. 2020, 30, 2000693. [Google Scholar] [CrossRef]
- An, C.-H.; Kang, W.; Deng, Q.-B.; Hu, N. Pt and Te codoped ultrathin MoS2 nanosheets for enhanced hydrogen evolution reaction with wide pH range. Rare Met. 2022, 41, 378–384. [Google Scholar] [CrossRef]
- Wang, T.; Cao, X.; Jiao, L. Ni2P/NiMoP heterostructure as a bifunctional electrocatalyst for energy-saving hydrogen production. eScience 2021, 1, 69–74. [Google Scholar] [CrossRef]
- Cao, Z.; Zhou, T.; Ma, X.; Shen, Y.; Deng, Q.; Zhang, W.; Zhao, Y. Hydrogen production from urea sewage on NiFe-based porous electrocatalysts. ACS Sustain. Chem. Eng. 2020, 8, 11007–11015. [Google Scholar] [CrossRef]
- Li, Z.; Wang, W.; Qian, Q.; Zhu, Y.; Feng, Y.; Zhang, Y.; Zhang, H.; Cheng, M.; Zhang, G. Magic hybrid structure as multifunctional electrocatalyst surpassing benchmark Pt/C enables practical hydrazine fuel cell integrated with energy-saving H2 production. eScience 2022, 2, 416–427. [Google Scholar] [CrossRef]
- Wu, T.; Sun, M.-Z.; Huang, B.-L. Non-noble metal-based bifunctional electrocatalysts for hydrogen production. Rare Met. 2022, 41, 2169–2183. [Google Scholar] [CrossRef]
- Hussain, S.; Rabani, I.; Vikraman, D.; Feroze, A.; Ali, M.; Seo, Y.-S.; Song, W.; An, K.-S.; Kim, H.-S.; Chun, S.-H.; et al. MoS2@ X2C (X = Mo or W) hybrids for enhanced supercapacitor and hydrogen evolution performances. Chem. Eng. J. 2021, 421, 127843. [Google Scholar] [CrossRef]
- Guo, X.; Wan, X.; Liu, Q.; Li, Y.; Li, W.; Shui, J. Phosphated IrMo bimetallic cluster for efficient hydrogen evolution reaction. eScience 2022, 2, 304–310. [Google Scholar] [CrossRef]
- Zhou, F.; Zhou, Y.; Liu, G.-G.; Wang, C.-T.; Wang, J. Recent advances in nanostructured electrocatalysts for hydrogen evolution reaction. Rare Met. 2021, 40, 3375–3405. [Google Scholar] [CrossRef]
- Ali, A.; Shen, P.K. Recent progress in graphene-based nanostructured electrocatalysts for overall water splitting. Electrochem. Energy Rev. 2020, 3, 370–394. [Google Scholar] [CrossRef]
- Jiao, P.; Ye, D.; Zhu, C.; Wu, S.; Qin, C.; An, C.; Hu, N.; Deng, Q. Non-precious transition metal single-atom catalysts for the oxygen reduction reaction: Progress and prospects. Nanoscale 2022, 14, 14322–14340. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef]
- Sato, S.; White, J. Photodecomposition of water over Pt/TiO2 cata lysts. Chem. Phys. Lett. 1980, 72, 83–86. [Google Scholar] [CrossRef]
- Purabgola, A.; Mayilswamy, N.; Kandasubramanian, B. Graphene based TiO2 composites for photocatalysis and environmental remediation: Synthesis and progress. Environ. Sci. Pollut. Res. 2022, 29, 32305–32325. [Google Scholar] [CrossRef]
- Momeni, M.M.; Ghayeb, Y.; Ghonchegi, Z. Visible light activity of sulfur-doped TiO2 nanostructure photoelectrodes prepared by single-step electrochemical anodizing process. J. Solid State Electrochem. 2015, 19, 1359–1366. [Google Scholar] [CrossRef]
- Hammer, B.; Wendt, S.; Besenbacher, F. Water adsorption on TiO2. Top. Catal. 2010, 53, 423–430. [Google Scholar] [CrossRef]
- Dohnálek, Z.; Lyubinetsky, I.; Rousseau, R. Thermally-driven processes on rutile TiO2 (1 1 0)-(1 × 1): A direct view at the atomic scale. Prog. Surf. Sci. 2010, 85, 161–205. [Google Scholar] [CrossRef]
- Du, X.; Ji, H.; Xu, Y.; Du, S.; Feng, Z.; Dong, B.; Wang, R.; Zhang, F. Covalent organic framework without cocatalyst loading for efficient photocatalytic sacrificial hydrogen production from water. Nat. Commun. 2025, 16, 3024. [Google Scholar] [CrossRef]
- Fatima, J.; Tahir, M.; Rehman, A.; Sagir, M.; Rafique, M.; Assiri, M.A.; Imran, M.; Alzaid, M. Structural, optical, electronic, elastic properties and population inversion of novel 2d carbides and nitrides mxene: A dft study. Mater. Sci. Eng. B 2023, 289, 116230. [Google Scholar] [CrossRef]
- He, Q.; Tian, D.; Jiang, H.; Cao, D.; Wei, S.; Liu, D.; Song, P.; Lin, Y.; Song, L. Achieving efficient alkaline hydrogen evolution reaction over a Ni5P4 catalyst incorporating single-atomic Ru sites. Adv. Mater. 2020, 32, 1906972. [Google Scholar] [CrossRef]
- Li, H.; Tao, S.; Wan, S.; Qiu, G.; Long, Q.; Yu, J.; Cao, S. S-scheme heterojunction of ZnCdS nanospheres and dibenzothiophene modified graphite carbon nitride for enhanced H2 production. Chin. J. Catal. 2023, 46, 167–176. [Google Scholar] [CrossRef]
- Yao, L.; Gu, Q.; Yu, X. Three-dimensional MOFs@ MXene aerogel composite derived MXene threaded hollow carbon confined CoS nanoparticles toward advanced alkali-ion batteries. ACS Nano 2021, 15, 3228–3240. [Google Scholar] [CrossRef]
- Yang, Z.; Jiang, L.; Wang, J.; Liu, F.; He, J.; Liu, A.; Lv, S.; You, R.; Yan, X.; Sun, P.; et al. Flexible resistive NO2 gas sensor of three-dimensional crumpled MXene Ti3C2Tx/ZnO spheres for room temperature application. Sens. Actuators B Chem. 2021, 326, 128828. [Google Scholar] [CrossRef]
- Xiong, Q.-Q.; Muhmood, T.; Zhao, C.-X.; Xu, J.-S.; Yang, X.-F. Synergistic etching and intercalation enables ultrathin Ti3C2T x and Nb2CT x MXene nanosheets. Rare Met. 2023, 42, 1175–1185. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.-E.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Ha, E.; Zhao, G.; Zhou, Y.; Huang, D.; Yue, G.; Hu, L.; Sun, N.; Wang, Y.; Lee, L.Y.S.; et al. Recent advance in MXenes: A promising 2D material for catalysis, sensor and chemical adsorption. Coord. Chem. Rev. 2017, 352, 306–327. [Google Scholar] [CrossRef]
- Zhan, X.; Si, C.; Zhou, J.; Sun, Z. MXene and MXene-based composites: Synthesis, properties and environment-related applications. Nanoscale Horiz. 2020, 5, 235–258. [Google Scholar] [CrossRef]
- Ihsanullah, I. Potential of MXenes in water desalination: Current status and perspectives. Nano-Micro Lett. 2020, 12, 72. [Google Scholar] [CrossRef]
- Ihsanullah, I. MXenes (two-dimensional metal carbides) as emerging nanomaterials for water purification: Progress, challenges and prospects. Chem. Eng. J. 2020, 388, 124340. [Google Scholar] [CrossRef]
- Anasori, B.; Lukatskaya, M.R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. In MXenes; Jenny Stanford Publishing: New Delhi, India, 2023; pp. 677–722. [Google Scholar]
- Zhang, Y.-J.; Lan, J.-H.; Wang, L.; Wu, Q.-Y.; Wang, C.-Z.; Bo, T.; Chai, Z.-F.; Shi, W.-Q. Adsorption of uranyl species on hydroxylated titanium carbide nanosheet: A first-principles study. J. Hazard. Mater. 2016, 308, 402–410. [Google Scholar] [CrossRef]
- Li, L.; Cheng, Q. MXene based nanocomposite films. In Exploration; Wiley Online Library: Hoboken, NJ, USA, 2022. [Google Scholar]
- Lagunas, F.; Kamysbayev, V.; Rui, X.; Filatov, A.; Hu, H.; Klie, R.; Talapin, D. Atomic-Resolution Imaging and Spectroscopy of Functionalized MXene Nanosheets. Microsc. Microanal. 2020, 26 (Suppl. S2), 2328–2330. [Google Scholar] [CrossRef]
- Hussain, I.; Arifeen, W.U.; Khan, S.A.; Aftab, S.; Javed, M.S.; Hussain, S.; Ahmad, M.; Chen, X.; Zhao, J.; Rosaiah, P.; et al. M4X3 MXenes: Application in energy storage devices. Nano-Micro Lett. 2024, 16, 215. [Google Scholar] [CrossRef]
- Jahan, N.; Hussain, S.; Rahman, H.U.; Manzoor, I.; Pandey, S.; Habib, K.; Ali, S.K.; Pandita, R.; Upadhyay, C. Structural, morphological and elemental analysis of selectively etched and exfoliated Ti3AlC2 MAX phase. J. Multidiscip. Appl. Nat. Sci. 2021, 1, 13–17. [Google Scholar] [CrossRef]
- Gogotsi, Y.; Huang, Q. MXenes: Two-dimensional building blocks for future materials and devices. ACS Publ. 2021, 15, 5775–5780. [Google Scholar] [CrossRef]
- Bai, S.; Yang, M.; Jiang, J.; He, X.; Zou, J.; Xiong, Z.; Liao, G.; Liu, S. Recent advances of MXenes as electrocatalysts for hydrogen evolution reaction. Npj 2D Mater. Appl. 2021, 5, 78. [Google Scholar] [CrossRef]
- Huang, W.; Wang, J.; Lai, W.; Guo, M. MXene Surface Architectonics: Bridging Molecular Design to Multifunctional Applications. Molecules 2025, 30, 1929. [Google Scholar] [CrossRef] [PubMed]
- Sukidpaneenid, S.; Chawengkijwanich, C.; Pokhum, C.; Isobe, T.; Opaprakasit, P.; Sreearunothai, P. Multi-function adsorbent-photocatalyst MXene-TiO2 composites for removal of enrofloxacin antibiotic from water. J. Environ. Sci. 2023, 124, 414–428. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, A.; Rasool, K.; Nawaz, M.; Miran, W.; Jang, J.; Moztahida, M.; Mahmoud, K.A.; Lee, D.S. Heterostructural TiO2/Ti3C2Tx (MXene) for photocatalytic degradation of antiepileptic drug carbamazepine. Chem. Eng. J. 2018, 349, 748–755. [Google Scholar] [CrossRef]
- Shuck, C.E.; Ventura-Martinez, K.; Goad, A.; Uzun, S.; Shekhirev, M.; Gogotsi, Y. Safe synthesis of MAX and MXene: Guidelines to reduce risk during synthesis. ACS Chem. Health Saf. 2021, 28, 326–338. [Google Scholar] [CrossRef]
- Hantanasirisakul, K.; Alhabeb, M.; Lipatov, A.; Maleski, K.; Anasori, B.; Salles, P.; Ieosakulrat, C.; Pakawatpanurut, P.; Sinitskii, A.; May, S.J.; et al. Effects of synthesis and processing on optoelectronic properties of titanium carbonitride MXene. Chem. Mater. 2019, 31, 2941–2951. [Google Scholar] [CrossRef]
- Peng, T.; Wang, S.; Xu, Z.; Tang, T.; Zhao, Y. Multifunctional MXene/aramid nanofiber composite films for efficient electromagnetic interference shielding and repeatable early fire detection. ACS Omega 2022, 7, 29161–29170. [Google Scholar] [CrossRef]
- Sahoo, S.; Wickramathilaka, K.Y.; Njeri, E.; Silva, D.; Suib, S.L. A review on transition metal oxides in catalysis. Front. Chem. 2024, 12, 1374878. [Google Scholar] [CrossRef]
- Mozafari, M.; Soroush, M. Surface functionalization of MXenes. Mater. Adv. 2021, 2, 7277–7307. [Google Scholar] [CrossRef]
- Lin, H.; Chen, Y.; Shi, J. Insights into 2D MXenes for versatile biomedical applications: Current advances and challenges ahead. Adv. Sci. 2018, 5, 1800518. [Google Scholar] [CrossRef]
- Biswas, S.; Alegaonkar, P.S. MXene: Evolutions in chemical synthesis and recent advances in applications. Surfaces 2022, 5, 1–34. [Google Scholar]
- Yang, R.; Chen, X.; Ke, W.; Wu, X. Recent research progress in the structure, fabrication, and application of MXene-based heterostructures. Nanomaterials 2022, 12, 1907. [Google Scholar] [CrossRef]
- Shariq, M.; Alshehri, K.; Bouzgarrou, S.M.; Ali, S.K.; Alqurashi, Y.; Hassan, K.; Azooz, R. Progress in development of MXene-based nanocomposites for supercapacitor application-A review. FlatChem 2024, 44, 100609. [Google Scholar] [CrossRef]
- Aghayar, Z.; Malaki, M.; Zhang, Y. MXene-based ink design for printed applications. Nanomaterials 2022, 12, 4346. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Zhao, X.; Ding, Y.; Chen, L.; Wang, X.; Xie, H. Application studies on MXene-based flexible composites. Front. Therm. Eng. 2024, 4, 1440165. [Google Scholar] [CrossRef]
- Wei, Y.; Zhang, P.; Soomro, R.A.; Zhu, Q.; Xu, B. Advances in the synthesis of 2D MXenes. Adv. Mater. 2021, 33, 2103148. [Google Scholar] [CrossRef]
- Arole, K.; Blivin, J.W.; Saha, S.; Holta, D.E.; Zhao, X.; Sarmah, A.; Cao, H.; Radovic, M.; Lutkenhaus, J.L.; Green, M.J. Water-dispersible Ti3C2Tz MXene nanosheets by molten salt etching. iScience 2021, 24, 103403. [Google Scholar] [CrossRef]
- Wang, J.; He, J.; Kan, D.; Chen, K.; Song, M.; Huo, W. MXene film prepared by vacuum-assisted filtration: Properties and applications. Crystals 2022, 12, 1034. [Google Scholar] [CrossRef]
- Hirsch, R.; Ternes, T.; Haberer, K.; Kratz, K.-L. Occurrence of antibiotics in the aquatic environment. Sci. Total Environ. 1999, 225, 109–118. [Google Scholar]
- Ji, Y.; Ferronato, C.; Salvador, A.; Yang, X.; Chovelon, J.-M. Degradation of ciprofloxacin and sulfamethoxazole by ferrous-activated persulfate: Implications for remediation of groundwater contaminated by antibiotics. Sci. Total Environ. 2014, 472, 800–808. [Google Scholar]
- Wolfson, J.S.; Hooper, D.C. Fluoroquinolone antimicrobial agents. Clin. Microbiol. Rev. 1989, 2, 378–424. [Google Scholar] [CrossRef] [PubMed]
- Paul, T.; Dodd, M.C.; Strathmann, T.J. Photolytic and photocatalytic decomposition of aqueous ciprofloxacin: Transformation products and residual antibacterial activity. Water Res. 2010, 44, 3121–3132. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Ji, Y.; Shi, Y.; Chen, J.; Cai, T. Sulfate radical-based oxidation of fluoroquinolone antibiotics: Kinetics, mechanisms and effects of natural water matrices. Water Res. 2016, 106, 507–517. [Google Scholar] [CrossRef] [PubMed]
- Golet, E.M.; Xifra, I.; Siegrist, H.; Alder, A.C.; Giger, W. Environmental exposure assessment of fluoroquinolone antibacterial agents from sewage to soil. Environ. Sci. Technol. 2003, 37, 3243–3249. [Google Scholar] [CrossRef] [PubMed]
- Watkinson, A.; Murby, E.; Costanzo, S. Removal of antibiotics in conventional and advanced wastewater treatment: Implications for environmental discharge and wastewater recycling. Water Res. 2007, 41, 4164–4176. [Google Scholar] [CrossRef]
- Kong, D.; Liang, B.; Yun, H.; Cheng, H.; Ma, J.; Cui, M.; Wang, A.; Ren, N. Cathodic degradation of antibiotics: Characterization and pathway analysis. Water Res. 2015, 72, 281–292. [Google Scholar] [CrossRef]
- Liu, C.; Nanaboina, V.; Korshin, G.V.; Jiang, W. Spectroscopic study of degradation products of ciprofloxacin, norfloxacin and lomefloxacin formed in ozonated wastewater. Water Res. 2012, 46, 5235–5246. [Google Scholar] [CrossRef]
- Alexandrino, D.A.; Mucha, A.P.; Almeida, C.M.R.; Gao, W.; Jia, Z.; Carvalho, M.F. Biodegradation of the veterinary antibiotics enrofloxacin and ceftiofur and associated microbial community dynamics. Sci. Total Environ. 2017, 581, 359–368. [Google Scholar] [CrossRef]
- Barhoumi, N.; Labiadh, L.; Oturan, M.A.; Oturan, N.; Gadri, A.; Ammar, S.; Brillas, E. Electrochemical mineralization of the antibiotic levofloxacin by electro-Fenton-pyrite process. Chemosphere 2015, 141, 250–257. [Google Scholar] [CrossRef]
- Sayed, M.; Ismail, M.; Khan, S.; Tabassum, S.; Khan, H.M. Degradation of ciprofloxacin in water by advanced oxidation process: Kinetics study, influencing parameters and degradation pathways. Environ. Technol. 2016, 37, 590–602. [Google Scholar] [CrossRef]
- Chen, P.; Wang, F.; Chen, Z.-F.; Zhang, Q.; Su, Y.; Shen, L.; Yao, K.; Liu, Y.; Cai, Z.; Lv, W.; et al. Study on the photocatalytic mechanism and detoxicity of gemfibrozil by a sunlight-driven TiO2/carbon dots photocatalyst: The significant roles of reactive oxygen species. Appl. Catal. B Environ. 2017, 204, 250–259. [Google Scholar] [CrossRef]
- Durán-Álvarez, J.C.; Avella, E.; Ramírez-Zamora, R.M.; Zanella, R. Photocatalytic degradation of ciprofloxacin using mono-(Au, Ag and Cu) and bi-(Au–Ag and Au–Cu) metallic nanoparticles supported on TiO2 under UV-C and simulated sunlight. Catal. Today 2016, 266, 175–187. [Google Scholar] [CrossRef]
- Cai, X.; He, J.; Chen, L.; Chen, K.; Li, Y.; Zhang, K.; Jin, Z.; Liu, J.; Wang, C.; Wang, X.; et al. A 2D-g-C3N4 nanosheet as an eco-friendly adsorbent for various environmental pollutants in water. Chemosphere 2017, 171, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.D.; Cho, J.; Kim, I.S.; Vanderford, B.J.; Snyder, S.A. Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters. Water Res. 2007, 41, 1013–1021. [Google Scholar] [CrossRef] [PubMed]
- Botero-Coy, A.M.; Martínez-Pachón, D.; Boix, C.; Rincón, R.J.; Castillo, N.; Arias-Marín, L.; Manrique-Losada, L.; Torres-Palma, R.; Moncayo-Lasso, A.; Hernandez, F. An investigation into the occurrence and removal of pharmaceuticals in Colombian wastewater. Sci. Total Environ. 2018, 642, 842–853. [Google Scholar] [CrossRef]
- Mestre, A.S.; Carvalho, A.P. Photocatalytic degradation of pharmaceuticals carbamazepine, diclofenac, and sulfamethoxazole by semiconductor and carbon materials: A review. Molecules 2019, 24, 3702. [Google Scholar] [CrossRef]
- Yi, X.; Yuan, J.; Tang, H.; Du, Y.; Hassan, B.; Yin, K.; Chen, Y.; Liu, X. Embedding few-layer Ti3C2Tx into alkalized g-C3N4 nanosheets for efficient photocatalytic degradation. J. Colloid Interface Sci. 2020, 571, 297–306. [Google Scholar] [CrossRef]
- Zhou, Y.; Yu, M.; Liang, H.; Chen, J.; Xu, L.; Niu, J. Novel dual-effective Z-scheme heterojunction with g-C3N4, Ti3C2 MXene and black phosphorus for improving visible light-induced degradation of ciprofloxacin. Appl. Catal. B Environ. 2021, 291, 120105. [Google Scholar] [CrossRef]
- Diao, Y.; Yan, M.; Li, X.; Zhou, C.; Peng, B.; Chen, H.; Zhang, H. In-situ grown of g-C3N4/Ti3C2/TiO2 nanotube arrays on Ti meshes for efficient degradation of organic pollutants under visible light irradiation. Colloids Surf. A Physicochem. Eng. Asp. 2020, 594, 124511. [Google Scholar] [CrossRef]
- Cao, Y.; Fang, Y.; Lei, X.; Tan, B.; Hu, X.; Liu, B.; Chen, Q. Fabrication of novel CuFe2O4/MXene hierarchical heterostructures for enhanced photocatalytic degradation of sulfonamides under visible light. J. Hazard. Mater. 2020, 387, 122021. [Google Scholar] [CrossRef]
- Cui, C.; Guo, R.; Xiao, H.; Ren, E.; Song, Q.; Xiang, C.; Lai, X.; Lan, J.; Jiang, S. Bi2WO6/Nb2CTx MXene hybrid nanosheets with enhanced visible-light-driven photocatalytic activity for organic pollutants degradation. Appl. Surf. Sci. 2020, 505, 144595. [Google Scholar] [CrossRef]
- Kuang, P.; Low, J.; Cheng, B.; Yu, J.; Fan, J. MXene-based photocatalysts. J. Mater. Sci. Technol. 2020, 56, 18–44. [Google Scholar] [CrossRef]
- Barsoum, M.W.; El-Raghy, T. The MAX phases: Unique new carbide and nitride materials: Ternary ceramics turn out to be surprisingly soft and machinable, yet also heat-tolerant, strong and lightweight. Am. Sci. 2001, 89, 334–343. [Google Scholar] [CrossRef]
- Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2T x MXene). Chem. Mater. 2017, 29, 7633–7644. [Google Scholar] [CrossRef]
- Nawaz, M.; Miran, W.; Jang, J.; Lee, D.S. One-step hydrothermal synthesis of porous 3D reduced graphene oxide/TiO2 aerogel for carbamazepine photodegradation in aqueous solution. Appl. Catal. B Environ. 2017, 203, 85–95. [Google Scholar] [CrossRef]
- Xu, J.; Li, L.; Guo, C.; Zhang, Y.; Meng, W. Photocatalytic degradation of carbamazepine by tailored BiPO4: Efficiency, intermediates and pathway. Appl. Catal. B Environ. 2013, 130, 285–292. [Google Scholar] [CrossRef]
- Wang, F.; Feng, Y.; Chen, P.; Wang, Y.; Su, Y.; Zhang, Q.; Zeng, Y.; Xie, Z.; Liu, H.; Liu, Y.; et al. Photocatalytic degradation of fluoroquinolone antibiotics using ordered mesoporous g-C3N4 under simulated sunlight irradiation: Kinetics, mechanism, and antibacterial activity elimination. Appl. Catal. B Environ. 2018, 227, 114–122. [Google Scholar] [CrossRef]
- Ahmed, S.; Rasul, M.; Brown, R.; Hashib, M. Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: A short review. J. Environ. Manag. 2011, 92, 311–330. [Google Scholar] [CrossRef]
- Xu, L.; Wang, G.; Ma, F.; Zhao, Y.; Lu, N.; Guo, Y.; Yang, X. Photocatalytic degradation of an aqueous sulfamethoxazole over the metallic silver and Keggin unit codoped titania nanocomposites. Appl. Surf. Sci. 2012, 258, 7039–7046. [Google Scholar] [CrossRef]
- Xu, D.; Ma, Y.; Wang, J.; Chen, W.; Tang, Y.; Li, X.; Li, L. Interfacial engineering of 2D/2D MXene heterostructures: Face-to-face contact for augmented photodegradation of amoxicillin. Chem. Eng. J. 2021, 426, 131246. [Google Scholar] [CrossRef]
- Low, J.; Zhang, L.; Tong, T.; Shen, B.; Yu, J. TiO2/MXene Ti3C2 composite with excellent photocatalytic CO2 reduction activity. J. Catal. 2018, 361, 255–266. [Google Scholar] [CrossRef]
- Fan, Y.; Yuan, Z.; Zou, G.; Zhang, Q.; Liu, B.; Peng, Q. Two-dimensional MXene/A-TiO2 composite with unprecedented catalytic activation for sodium alanate. Catal. Today 2018, 318, 167–174. [Google Scholar] [CrossRef]
- Jun, B.-M.; Jang, M.; Park, C.M.; Han, J.; Yoon, Y. Selective adsorption of Cs+ by MXene (Ti3C2Tx) from model low-level radioactive wastewater. Nucl. Eng. Technol. 2020, 52, 1201–1207. [Google Scholar] [CrossRef]
- Ezelarab, H.A.; Abbas, S.H.; Hassan, H.A.; Abuo-Rahma, G.E.D.A. Recent updates of fluoroquinolones as antibacterial agents. Arch. Pharm. 2018, 351, 1800141. [Google Scholar] [CrossRef] [PubMed]
- Janecko, N.; Pokludova, L.; Blahova, J.; Svobodova, Z.; Literak, I. Implications of fluoroquinolone contamination for the aquatic environment—A review. Environ. Toxicol. Chem. 2016, 35, 2647–2656. [Google Scholar] [CrossRef] [PubMed]
- Pretali, L.; Fasani, E.; Sturini, M. Current advances on the photocatalytic degradation of fluoroquinolones: Photoreaction mechanism and environmental application. Photochem. Photobiol. Sci. 2022, 21, 899–912. [Google Scholar] [CrossRef]
- Sayed, M.; Shah, L.A.; Khan, J.A.; Shah, N.S.; Nisar, J.; Khan, H.M.; Zhang, P.; Khan, A.R. Efficient photocatalytic degradation of norfloxacin in aqueous media by hydrothermally synthesized immobilized TiO2/Ti films with exposed {001} facets. J. Phys. Chem. A 2016, 120, 9916–9931. [Google Scholar] [CrossRef]
- Tang, J.; Wang, R.; Liu, M.; Zhang, Z.; Song, Y.; Xue, S.; Zhao, Z.; Dionysiou, D.D. Construction of novel Z-scheme Ag/FeTiO3/Ag/BiFeO3 photocatalyst with enhanced visible-light-driven photocatalytic performance for degradation of norfloxacin. Chem. Eng. J. 2018, 351, 1056–1066. [Google Scholar] [CrossRef]
- Lv, X.; Yan, D.Y.; Lam, F.L.-Y.; Ng, Y.H.; Yin, S.; An, A.K. Solvothermal synthesis of copper-doped BiOBr microflowers with enhanced adsorption and visible-light driven photocatalytic degradation of norfloxacin. Chem. Eng. J. 2020, 401, 126012. [Google Scholar] [CrossRef]
- Tang, L.; Wang, J.; Zeng, G.; Liu, Y.; Deng, Y.; Zhou, Y.; Tang, J.; Wang, J.; Guo, Z. Enhanced photocatalytic degradation of norfloxacin in aqueous Bi2WO6 dispersions containing nonionic surfactant under visible light irradiation. J. Hazard. Mater. 2016, 306, 295–304. [Google Scholar] [CrossRef]
- Zhang, H.; Zheng, Y.; Zhou, H.; Zhu, S.; Yang, J. Nanocellulose-intercalated MXene NF membrane with enhanced swelling resistance for highly efficient antibiotics separation. Sep. Purif. Technol. 2023, 305, 122425. [Google Scholar] [CrossRef]
- Li, Z.K.; Wei, Y.; Gao, X.; Ding, L.; Lu, Z.; Deng, J.; Yang, X.; Caro, J.; Wang, H. Antibiotics separation with MXene membranes based on regularly stacked high-aspect-ratio nanosheets. Angew. Chem. Int. Ed. 2020, 59, 9751–9756. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Meng, G.; Wang, C.; Chen, H. Photocatalytic inactivation of airborne bacteria in a polyurethane foam reactor loaded with a hybrid of MXene and anatase TiO2 exposing {0 0 1} facets. Chem. Eng. J. 2021, 404, 126526. [Google Scholar] [CrossRef] [PubMed]
- Zeng, G.; He, Z.; Wan, T.; Wang, T.; Yang, Z.; Liu, Y.; Lin, Q.; Wang, Y.; Sengupta, A.; Pu, S. A self-cleaning photocatalytic composite membrane based on g-C3N4@ MXene nanosheets for the removal of dyes and antibiotics from wastewater. Sep. Purif. Technol. 2022, 292, 121037. [Google Scholar] [CrossRef]
- Li, C.; Sun, Z.; Zhang, W.; Yu, C.; Zheng, S. Highly efficient g-C3N4/TiO2/kaolinite composite with novel three-dimensional structure and enhanced visible light responding ability towards ciprofloxacin and S. aureus. Appl. Catal. B Environ. 2018, 220, 272–282. [Google Scholar] [CrossRef]
- Li, R.; Chen, A.; Deng, Q.; Zhong, Y.; Kong, L.; Yang, R. Well-designed MXene-derived Carbon-doped TiO2 coupled porous g-C3N4 to enhance the degradation of ciprofloxacin hydrochloride under visible light irradiation. Sep. Purif. Technol. 2022, 295, 121254. [Google Scholar] [CrossRef]
- Chuaicham, C.; Pawar, R.R.; Karthikeyan, S.; Ohtani, B.; Sasaki, K. Fabrication and characterization of ternary sepiolite/g-C3N4/Pd composites for improvement of photocatalytic degradation of ciprofloxacin under visible light irradiation. J. Colloid Interface Sci. 2020, 577, 397–405. [Google Scholar] [CrossRef]
- Machín, A.; Fontánez, K.; Duconge, J.; Cotto, M.C.; Petrescu, F.I.; Morant, C.; Márquez, F. Photocatalytic degradation of fluoroquinolone antibiotics in solution by Au@ ZnO-rGO-gC3N4 composites. Catalysts 2022, 12, 166. [Google Scholar] [CrossRef]
- Madhushree, R.; Kr, S.D. Structural investigation of Cr2CTx/NiFe2O4 MXene composite as a bifunctional electrocatalyst for water splitting. Surf. Interfaces 2024, 52, 104849. [Google Scholar]
- Sajid, I.H.; Iqbal, M.Z.; Rizwan, S. Recent advances in the role of MXene based hybrid architectures as electrocatalysts for water splitting. RSC Adv. 2024, 14, 6823–6847. [Google Scholar] [CrossRef]
- Chatenet, M.; Pollet, B.G.; Dekel, D.R.; Dionigi, F.; Deseure, J.; Millet, P.; Braatz, R.D.; Bazant, M.Z.; Eikerling, M.; Staffell, I.; et al. Water electrolysis: From textbook knowledge to the latest scientific strategies and industrial developments. Chem. Soc. Rev. 2022, 51, 4583–4762. [Google Scholar] [CrossRef]
- Lasia, A. Mechanism and kinetics of the hydrogen evolution reaction. Int. J. Hydrogen Energy 2019, 44, 19484–19518. [Google Scholar] [CrossRef]
- Wang, J.; Xu, F.; Jin, H.; Chen, Y.; Wang, Y. Non-noble metal-based carbon composites in hydrogen evolution reaction: Fundamentals to applications. Adv. Mater. 2017, 29, 1605838. [Google Scholar] [CrossRef] [PubMed]
- Lv, Z.; Liu, D.; Tian, W.; Dang, J. Designed synthesis of WC-based nanocomposites as low-cost, efficient and stable electrocatalysts for the hydrogen evolution reaction. CrystEngComm 2020, 22, 4580–4590. [Google Scholar] [CrossRef]
- Lakshmi, K.S.; Vedhanarayanan, B.; Lin, T.-W. Electrocatalytic hydrogen and oxygen evolution reactions: Role of two-dimensional layered materials and their composites. Electrochim. Acta 2023, 447, 142119. [Google Scholar] [CrossRef]
- Wei, Y.; Soomro, R.A.; Xie, X.; Xu, B. Design of efficient electrocatalysts for hydrogen evolution reaction based on 2D MXenes. J. Energy Chem. 2021, 55, 244–255. [Google Scholar] [CrossRef]
- Zhai, Y.; Ren, X.; Yan, J.; Liu, S. High density and unit activity integrated in amorphous catalysts for electrochemical water splitting. Small Struct. 2021, 2, 2000096. [Google Scholar] [CrossRef]
- Yuan, W.; Cheng, L.; An, Y.; Wu, H.; Yao, N.; Fan, X.; Guo, X. MXene nanofibers as highly active catalysts for hydrogen evolution reaction. ACS Sustain. Chem. Eng. 2018, 6, 8976–8982. [Google Scholar] [CrossRef]
- Huang, J.-J.; Liu, X.-Q.; Meng, F.-F.; He, L.-Q.; Wang, J.-X.; Wu, J.-C.; Lu, X.-H.; Tong, Y.-X.; Fang, P.-P. A facile method to produce MoSe2/MXene hybrid nanoflowers with enhanced electrocatalytic activity for hydrogen evolution. J. Electroanal. Chem. 2020, 856, 113727. [Google Scholar] [CrossRef]
- Reghunath, B.S.; KR, S.D.; Rajasekaran, S.; Saravanakumar, B.; William, J.J.; Pinheiro, D. Hierarchical BiFeO3/Cr2CTx MXene composite as a multifunctional catalyst for hydrogen evolution reaction and as an electrode material for energy storage devices. Electrochim. Acta 2023, 461, 142685. [Google Scholar] [CrossRef]
- Seh, Z.W.; Fredrickson, K.D.; Anasori, B.; Kibsgaard, J.; Strickler, A.L.; Lukatskaya, M.R.; Gogotsi, Y.; Jaramillo, T.F.; Vojvodic, A. Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Lett. 2016, 1, 589–594. [Google Scholar] [CrossRef]
- Intikhab, S.; Natu, V.; Li, J.; Li, Y.; Tao, Q.; Rosen, J.; Barsoum, M.W.; Snyder, J. Stoichiometry and surface structure dependence of hydrogen evolution reaction activity and stability of MoxC MXenes. J. Catal. 2019, 371, 325–332. [Google Scholar] [CrossRef]
- Thalji, M.R.; Mahmoudi, F.; Bachas, L.G.; Park, C. MXene-based electrocatalysts for water splitting: Material design surface modulation, and catalytic performance. Int. J. Mol. Sci. 2025, 26, 8019. [Google Scholar] [CrossRef]
- Raj, K.; Jhala, R.; Sujai, S.; Pattanayak, B.; Singh, J.; Kumar, P.; Kaladhar, M.; Singh, R.; Bisht, Y.; Gautam, A. A comprehensive review on the MXene-based catalysts for hydrogen generation via water splitting process. J. Mol. 2025, 1349, 143534. [Google Scholar]
- Talas, S.A.; Kolubah, P.D.; Khairova, R.; Alqahtani, M.; El-Hout, S.; Alissa, F.M.; El-Demellawi, J.K.; Castaño, P.; Mohamed, H.O. MXene-based electrocatalysis for CO2 reduction: Advances, challenges, and perspectives. Mater. Horiz. 2025, 1–35. [Google Scholar] [CrossRef]
- Cheng, Y.-W.; Dai, J.-H.; Zhang, Y.-M.; Song, Y. Transition metal modification and carbon vacancy promoted Cr2CO2 (MXenes): A new opportunity for a highly active catalyst for the hydrogen evolution reaction. J. Mater. Chem. A 2018, 6, 20956–20965. [Google Scholar] [CrossRef]
- Djire, A.; Zhang, H.; Liu, J.; Miller, E.M.; Neale, N.R. Electrocatalytic and optoelectronic characteristics of the two-dimensional titanium nitride Ti4N3Tx MXene. ACS Appl. Mater. Interfaces 2019, 11, 11812–11823. [Google Scholar] [CrossRef]
- Ma, S.; Xu, Z.; Jia, Z.; Chen, L.; Zhu, H.; Chen, Y.; Guo, X.; Du, M. Facile fabrication of carbon fiber skeleton structure of MoS2 supported on 2D MXene composite with highly efficient and stable hydrogen evolution reaction. Compos. Sci. Technol. 2022, 222, 109380. [Google Scholar] [CrossRef]
- Li, S.; Tuo, P.; Xie, J.; Zhang, X.; Xu, J.; Bao, J.; Pan, B.; Xie, Y. Ultrathin MXene nanosheets with rich fluorine termination groups realizing efficient electrocatalytic hydrogen evolution. Nano Energy 2018, 47, 512–518. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, R.; Xiao, T.; Chang, Z.; Fang, Z.; Zhu, Z.; Xu, C.; Wang, L.; Cheng, J. The High-Performance Bifunctional Catalyst Pd/Ti3C2Tx–Carbon Nanotube for Oxygen Reduction Reaction and Hydrogen Evolution Reaction in Alkaline Medium. Energy Technol. 2020, 8, 2000306. [Google Scholar] [CrossRef]
- Wang, X.; Ding, J.; Song, W.; Yang, X.; Zhang, T.; Huang, Z.; Wang, H.; Han, X.; Hu, W. Cation vacancy clusters in Ti3C2Tx MXene induce ultra-strong interaction with noble metal clusters for efficient electrocatalytic hydrogen evolution. Adv. Energy Mater. 2023, 13, 2300148. [Google Scholar] [CrossRef]
- Wu, Y.; Wei, W.; Yu, R.; Xia, L.; Hong, X.; Zhu, J.; Li, J.; Lv, L.; Chen, W.; Zhao, Y.; et al. Anchoring sub-nanometer Pt clusters on crumpled paper-like MXene enables high hydrogen evolution mass activity. Adv. Funct. Mater. 2022, 32, 2110910. [Google Scholar] [CrossRef]
- Jiang, J.; Li, F.; Bai, S.; Wang, Y.; Xiang, K.; Wang, H.; Zou, J.; Hsu, J.-P. Carbonitride MXene Ti3CN (OH) x@ MoS2 hybrids as efficient electrocatalyst for enhanced hydrogen evolution. Nano Res. 2023, 16, 4656–4663. [Google Scholar] [CrossRef]
- Yan, L.; Song, D.; Liang, J.; Li, X.; Li, H.; Liu, Q. Fabrication of highly efficient Rh-doped cobalt–nickel-layered double hydroxide/MXene-based electrocatalyst with rich oxygen vacancies for hydrogen evolution. J. Colloid Interface Sci. 2023, 640, 338–347. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, X.; Chu, Z.; Wang, Q.; Cao, Y.; Li, J.; Lei, W.; Cao, J.; Si, W. Construction of Co-decorated 3D nitrogen doped-carbon nanotube/Ti3C2Tx-MXene as efficient hydrogen evolution electrocatalyst. Int. J. Hydrogen Energy 2023, 48, 15053–15064. [Google Scholar] [CrossRef]
- Hussain, S.; Vikraman, D.; Sheikh, Z.A.; Mehran, M.T.; Shahzad, F.; Batoo, K.M.; Kim, H.-S.; Kim, D.-K.; Ali, M.; Jung, J. WS2-embedded MXene/GO hybrid nanosheets as electrodes for asymmetric supercapacitors and hydrogen evolution reactions. Chem. Eng. J. 2023, 452, 139523. [Google Scholar] [CrossRef]
- Luo, R.; Li, R.; Jiang, C.; Qi, R.; Liu, M.; Luo, C.; Lin, H.; Huang, R.; Peng, H. Facile synthesis of cobalt modified 2D titanium carbide with enhanced hydrogen evolution performance in alkaline media. Int. J. Hydrogen Energy 2021, 46, 32536–32545. [Google Scholar] [CrossRef]
- Doyle, R.L.; Godwin, I.J.; Brandon, M.P.; Lyons, M.E. Redox and electrochemical water splitting catalytic properties of hydrated metal oxide modified electrodes. Phys. Chem. Chem. Phys. 2013, 15, 13737–13783. [Google Scholar] [CrossRef]
- Xu, H.; Yuan, J.; He, G.; Chen, H. Current and future trends for spinel-type electrocatalysts in electrocatalytic oxygen evolution reaction. Coord. Chem. Rev. 2023, 475, 214869. [Google Scholar] [CrossRef]
- Xie, Y.; Yu, H.; Deng, L.; Amin, R.; Yu, D.; Fetohi, A.E.; Maximov, M.Y.; Li, L.; El-Khatib, K.; Peng, S. Anchoring stable FeS2 nanoparticles on MXene nanosheets via interface engineering for efficient water splitting. Inorg. Chem. Front. 2022, 9, 662–669. [Google Scholar] [CrossRef]
- Han, S.; Chen, Y.; Hao, Y.; Xie, Y.; Xie, D.; Chen, Y.; Xiong, Y.; He, Z.; Hu, F.; Li, L.; et al. Multi-dimensional hierarchical CoS2@ MXene as trifunctional electrocatalysts for zinc-air batteries and overall water splitting. Development 2020, 17, 18. [Google Scholar] [CrossRef]
- Li, Y.; Du, Q.-X.; Cui, J.; Chen, X.; Yang, H.-W.; Qian, H. Identifying the intrinsic active site in bimetallic Co3S4/Ni3S2 feathers on MXene nanosheets as a heterostructure for efficient oxygen evolution reaction. Inorg. Chem. Front. 2023, 10, 184–191. [Google Scholar] [CrossRef]
- Zou, H.; He, B.; Kuang, P.; Yu, J.; Fan, K. Metal–organic framework-derived nickel–cobalt sulfide on ultrathin mxene nanosheets for electrocatalytic oxygen evolution. ACS Appl. Mater. Interfaces 2018, 10, 22311–22319. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Zhu, T.; Chen, Q.; Peng, W.; Li, Y.; Zhang, F.; Fan, X. FeP-CoP Nanocubes In Situ Grown on Ti3C2T x MXene as Efficient Electrocatalysts for the Oxygen Evolution Reaction. Ind. Eng. Chem. Res. 2022, 61, 10837–10845. [Google Scholar] [CrossRef]
- Li, N.; Han, J.; Yao, K.; Han, M.; Wang, Z.; Liu, Y.; Liu, L.; Liang, H. Synergistic phosphorized NiFeCo and MXene interaction inspired the formation of high-valence metal sites for efficient oxygen evolution. J. Mater. Sci. Technol. 2022, 106, 90–97. [Google Scholar] [CrossRef]
- Le, T.A.; Tran, N.Q.; Hong, Y.; Kim, M.; Lee, H. Porosity-engineering of MXene as a support material for a highly efficient electrocatalyst toward overall water splitting. ChemSusChem 2020, 13, 945–955. [Google Scholar] [CrossRef]
- Zhang, B.; Shan, J.; Wang, X.; Hu, Y.; Li, Y. Ru/Rh cation doping and oxygen-vacancy engineering of FeOOH nanoarrays@ Ti3C2Tx MXene heterojunction for highly efficient and stable electrocatalytic oxygen evolution. Small 2022, 18, 2200173. [Google Scholar] [CrossRef]
- Yan, F.; Ding, J.; Hu, L.; Li, S.; Zhang, S.; Wang, M.; He, L.; Du, M. Solution Plasma-Assisted Multivariate Metal Nanoalloys Encapsulated with Carbon Dots for Efficient Oxygen Evolution Reaction. ChemCatChem 2023, 15, e202300115. [Google Scholar] [CrossRef]
- Zhang, Y. Application of MXene-Based Composites for Hydrogen Production by Water Electrolysis. Ph.D. Thesis, Université de Lille, Lille, France, 2024. [Google Scholar]
- Li, S.; Fan, J.; Xiao, G.; Gao, S.; Cui, K.; Chao, Z. Multifunctional Co3O4/Ti3C2Tx MXene nanocomposites for integrated all solid-state asymmetric supercapacitors and energy-saving electrochemical systems of H2 production by urea and alcohols electrolysis. Int. J. Hydrogen Energy 2022, 47, 22663–22679. [Google Scholar] [CrossRef]
- Chen, Y.; Yao, H.; Kong, F.; Tian, H.; Meng, G.; Wang, S.; Mao, X.; Cui, X.; Hou, X.; Shi, J. V2C MXene synergistically coupling FeNi LDH nanosheets for boosting oxygen evolution reaction. Appl. Catal. B Environ. 2021, 297, 120474. [Google Scholar] [CrossRef]
- Hao, C.; Wu, Y.; An, Y.; Cui, B.; Lin, J.; Li, X.; Wang, D.; Jiang, M.; Cheng, Z.; Hu, S. Interface-coupling of CoFe-LDH on MXene as high-performance oxygen evolution catalyst. Mater. Today Energy 2019, 12, 453–462. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Z.; Xiang, Q.; Chen, R.; Wu, D.; Li, G.; Wang, L. A three-dimensional flower-like NiCo-layered double hydroxide grown on nickel foam with an MXene coating for enhanced oxygen evolution reaction electrocatalysis. RSC Adv. 2021, 11, 12392–12397. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Irfan, S.; Khan, S.B.; Lardhi, S.; AlFaify, S. Recent Advances in MXene-Based Composites for Their Efficiency in the Degradation of Antibiotics and Water Splitting. Molecules 2025, 30, 3712. https://doi.org/10.3390/molecules30183712
Irfan S, Khan SB, Lardhi S, AlFaify S. Recent Advances in MXene-Based Composites for Their Efficiency in the Degradation of Antibiotics and Water Splitting. Molecules. 2025; 30(18):3712. https://doi.org/10.3390/molecules30183712
Chicago/Turabian StyleIrfan, Syed, Sadaf Bashir Khan, Sheikha Lardhi, and S. AlFaify. 2025. "Recent Advances in MXene-Based Composites for Their Efficiency in the Degradation of Antibiotics and Water Splitting" Molecules 30, no. 18: 3712. https://doi.org/10.3390/molecules30183712
APA StyleIrfan, S., Khan, S. B., Lardhi, S., & AlFaify, S. (2025). Recent Advances in MXene-Based Composites for Their Efficiency in the Degradation of Antibiotics and Water Splitting. Molecules, 30(18), 3712. https://doi.org/10.3390/molecules30183712