Critical Review Regarding the Application of Plant Extracts as Eco-Friendly Corrosion Inhibitors—A Sustainable Interdisciplinary Approach
Abstract
1. Introduction
2. Plant Extracts—A Brief Overlook, from Extraction to Application
2.1. Extraction Methods
2.2. Factors That Influence Phytochemical-Based Anti-Corrosion Treatments
2.2.1. Temperature
2.2.2. Concentration of Plant Extract
2.2.3. Immersion Time
2.2.4. Composition and Molecules from Plant Extract Responsible for the Anti-Corrosive Effect
2.2.5. pH of the Environment
2.3. Plants Extract with Anti-Corrosive Properties in Industrial Applications
2.3.1. Marine Infrastructure
2.3.2. Oil and Gas Industry
2.3.3. Reinforced Concrete Structures
2.4. Plants Extracts with Anti-Corrosive Properties in Other Types of Applications (Medical, Food, Water Treatment)
2.5. Plants Extract with Anti-Corrosive Properties in Cultural Heritage Protection
2.6. Benchmarking Plant Extracts vs. Conventional Synthetic Inhibitors
3. Challenges and Future Perspectives in Scaling Up and Applying Plant Extracts with Anti-Corrosive Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
NaDES | Natural deep eutectic solvents |
PLE | Pressurized liquid extraction |
MAE | Microwave-assisted extraction |
HD | Hydro-distillation |
UAE | Ultrasound-assisted extraction |
HVED | High-voltage electric discharge extraction |
PEF | Pulsed electric field |
SFE | Supercritical fluid extraction |
US | Ultrasound |
CAGR | Compound annual growth rate |
References
- Zhang, Q.H.; Hou, B.S.; Li, Y.Y.; Zhu, G.Y.; Liu, H.F.; Zhang, G.A. Effective corrosion inhibition of mild steel by eco-friendly thiourea functionalized glucosamine derivatives in acidic solution. J. Colloid Interface Sci. 2021, 585, 355–367. [Google Scholar] [CrossRef] [PubMed]
- Sheydaei, M. The Use of Plant Extracts as Green Corrosion Inhibitors: A Review. Surfaces 2024, 7, 380–403. [Google Scholar] [CrossRef]
- Thacker, H.; Ram, V. Green corrosion inhibitors derived from plant extracts and drugs for mild steel in acid media: A review. Results Surf. Interf. 2025, 18, 100364. [Google Scholar] [CrossRef]
- Sun, X.; Zhao, W.; Wan, R.; Lu, G.; Wang, Z.; Gong, Z.; Guo, L.; Marzouki, R.; Luo, M.; Cao, Y.; et al. Roxburgh pear leaf extract as a sustainable anti-corrosion effect for copper in 0.5 M H2SO4 solution. J. Mol. Struct. 2025, 1346, 143238. [Google Scholar] [CrossRef]
- Ali, A.E.; Badr, G.E.; Fouda, A.S. Citrus sinensis extract as a green inhibitor for the corrosion of carbon steel in sulphuric acid solution. Biointerface Res. Appl. Chem. 2021, 11, 14007–14020. [Google Scholar] [CrossRef]
- Wan, R.; Zhao, W.; Sun, X.; Wang, Z.; Gong, Z.; Guo, L.; Marzouki, R.; Luo, M.; Li, A.; Ma, Y.; et al. N, S-carbon quantum dots as a green corrosion inhibitor for brine heaters in multistage flash desalination systems. Sustain. Mater. Technol. 2025, 45, e01531. [Google Scholar] [CrossRef]
- Tan, B.; Liu, Y.; Zhao, W.; Gong, Z.; Li, X.; Li, W.; Li, X.; Guo, L.; Zhang, W.; Zhao, S.; et al. Insight into anti-corrosion mechanism of copper in 0.5 M sulfuric acid solution via microwave-assisted synthesis of carbon quantum dots as novel inhibitors, Sustainable Materials and Technologies. Sustain. Mater. Technol. 2025, 43, e01305. [Google Scholar] [CrossRef]
- Messast, S.; Abderrahmane, S.; Bouasla, N.; Youbi, A.; Chemam, R.; Moussaoui, K.; Abderrahim, K. Corrosion inhibiting effects of biosynthesized ZnO nanoparticles by the extract of Plectranthus amboinicus leaves. Inorg. Chem. Commun. 2024, 168, 112836. [Google Scholar] [CrossRef]
- Singh, P.; Dave, P.N. Sustainable technology for cultural heritage preservation: The role of green corrosion inhibitors. Sci. Total Environ. 2025, 975, 179301. [Google Scholar] [CrossRef]
- D’Andrea, M.; Richard, S.; Long, J.C., Jr.; Sciorilli, F. Emergency Actions for the Documentation, Stabilization, and Consolidation of the Early Bronze Age Fortifications at Khirbat Iskandar, Jordan. Heritage 2024, 7, 2088–2117. [Google Scholar] [CrossRef]
- Fierascu, R.C.; Fierascu, I.; Avramescu, S.M.; Sieniawska, E. Recovery of Natural Antioxidants from Agro-Industrial Side Streams through Advanced Extraction Techniques. Molecules 2019, 24, 4212. [Google Scholar] [CrossRef]
- Usman, I.; Sana, S.; Afzaal, M.; Imran, A.; Jaffar, H.M.; Sukhera, S.; Munir, M.; Asghar, A.; Urugo, M.M. Phytochemicals in plant food waste: Innovative insight and implications. J. Agric. Food Res. 2025, 20, 101779. [Google Scholar] [CrossRef]
- Pinelo, M.; Rubilar, M.; Jerez, M.; Sineiro, J.; Núñez, M.J. Effect of solvent, temperature, and solvent-to-solid ratio on the total phenolic content and antiradical activity of extracts from different components of grape pomace. J. Agric. Food Chem. 2005, 53, 2111–2117. [Google Scholar] [CrossRef] [PubMed]
- Bitwell, C.; Indra, S.S.; Luke, C.; Kakoma, M.K. A review of modern and conventional extraction techniques and their applications for extracting phytochemicals from plants. Sci. Afr. 2023, 19, e01585. [Google Scholar] [CrossRef]
- Mollica, A.; Zengin, G.; Stefanucci, A.; Ferrante, C.; Menghini, L.; Orlando, G.; Brunetti, L.; Locatelli, M.; Dimmito, M.P.; Novellino, E.; et al. Nutraceutical potential of Corylus avellana daily supplements for obesity and related dysmetabolism. J. Funct. Foods 2018, 47, 562–574. [Google Scholar] [CrossRef]
- Singh, J. Maceration, percolation and infusion techniques for the extraction of medicinal and aromatic plants. In Extraction Technologies for Medicinal and Aromatic Plants; Handa, S.S., Khanuja, S.P.S., Longo, G., Rakesh, D.D., Eds.; International Centre for Science and High Technology: Trieste, Italy, 2008; pp. 67–74. [Google Scholar]
- Renard, C. Bioactives in fruit and vegetables and their extraction processes: State of the art and perspectives. In Proceedings of the Bio2actives 2017, Quimper, France, 6–7 July 2017. [Google Scholar]
- Jha, A.K.; Sit, N. Extraction of bioactive compounds from plant materials using combination of various novel methods: A review. Trends. Food Sci. Technol. 2022, 119, 579–591. [Google Scholar] [CrossRef]
- Picot-Allain, C.; Mahomoodally, M.F.; Ak, G.; Zengin, G. Conventional versus green extraction techniques—A comparative perspective. Curr. Opin. Food Sci. 2021, 40, 144–156. [Google Scholar] [CrossRef]
- Khandare, R.D.; Tomke, P.D.; Rathod, V.K. Kinetic modeling and process intensification of ultrasound-assisted extraction of d-limonene using citrus industry waste. CEP:PI 2020, 159, 108181. [Google Scholar] [CrossRef]
- Santos, K.A.; Klein, E.J.; Fiorese, M.L.; Palú, F.; da Silva, C.; da Silva, E.A. Extraction of Morus alba leaves using supercritical CO2 and ultrasound-assisted solvent: Evaluation of β-sitosterol content. J. Supercrit. Fluids 2020, 159, 104752. [Google Scholar] [CrossRef]
- Redondo, D.; Venturini, M.E.; Luengo, E.; Raso, J.; Arias, E. Pulsed electric fields as a green technology for the extraction of bioactive compounds from thinned peach by-products. Innov. Food Sci. Emerg. Technol. 2018, 45, 335–343. [Google Scholar] [CrossRef]
- Hebert, M.; Mhemdi, H.; Vorobiev, E. Selective and eco-friendly recovery of glucosinolates from mustard seeds (Brassica juncea) using process optimization and innovative pretreatment (high voltage electrical discharges). Food Bioprod. Process. 2020, 124, 11–23. [Google Scholar] [CrossRef]
- Alexandre, E.M.C.; Araújo, P.; Duarte, M.F.; de Freitas, V.; Pintado, M.; Saraiva, J.A. High-pressure assisted extraction of bioactive compounds from industrial fermented fig by-product. J. Food Sci. Technol. 2017, 54, 2519–2531. [Google Scholar] [CrossRef] [PubMed]
- Belwal, T.; Chemat, F.; Venskutonis, P.R.; Cravotto, G.; Jaiswal, D.K.; Bhatt, I.D.; Devkota, H.P.; Luo, Z. Recent advances in scaling-up of non-conventional extraction techniques: Learning from successes and failures. TrAC—Trends Anal. Chem. 2020, 127, 115895. [Google Scholar] [CrossRef]
- da Cunha Rodrigues, L.; Bodini, R.B.; Caneppele, F.d.L.; Dacanal, G.C.; Crevelin, E.J.; de Moraes, L.A.B.; de Oliveira, A.L. Pressurized Liquid Extraction (PLE) in an Intermittent Process as an Alternative for Obtaining Passion Fruit (Passiflora edulis) Leaf Hydroalcoholic Extract (Tincture). Processes 2023, 11, 2308. [Google Scholar] [CrossRef]
- Ferreira, W.S.; Viganó, J.; Veggi, P.C. Economic assessment of emerging extraction techniques: Hybridization of high-pressure extraction and low-frequency ultrasound to produce piceatannol-rich extract from passion fruit bagasse. CEP:PI 2022, 174, 108850. [Google Scholar] [CrossRef]
- Clodoveo, M.L.; Moramarco, V.; Paduano, A.; Sacchi, R.; Di Palmo, T.; Crupi, P.; Corbo, F.F.R.; Pesce, V.; Distaso, E.; Tamburrano, P.; et al. Engineering design and prototype development of a full scale ultrasound system for virgin olive oil by means of numerical and experimental analysis. Ultrason. Sonochem. 2017, 37, 169–181. [Google Scholar] [CrossRef]
- de Melo, M.M.R.; Domingues, R.M.A.; Sova, M.; Lack, E.; Seidlitz, H.; Lang, F., Jr.; Silvestre, A.J.D.; Silva, C.M. Scale-up studies of the supercritical fluid extraction of triterpenic acids from Eucalyptus globulus bark. J. Supercrit. Fluids 2014, 95, 44–50. [Google Scholar] [CrossRef]
- Chan, C.H.; Yusoff, R.; Ngoh, G.C. Modeling and prediction of extraction profile for microwave-assisted extraction based on absorbed microwave energy. Food Chem. 2013, 140, 147–153. [Google Scholar] [CrossRef]
- Périno, S.; Pierson, J.T.; Ruiz, K.; Cravotto, G.; Chemat, F. Laboratory to pilot scale: Microwave extraction for polyphenols lettuce. Food Chem. 2016, 204, 108–114. [Google Scholar] [CrossRef]
- Belwal, T.; Huang, H.; Li, L.; Duan, Z.; Zhang, X.; Aalim, H.; Luo, Z. Optimization Model for Ultrasonic-Assisted and Scale-up Extraction of Anthocyanins from Pyrus communis ‘Starkrimson’ Fruit Peel. Food Chem. 2019, 297, 124993. [Google Scholar] [CrossRef]
- Trigueros, E.; Ramos, C.; Alonso-Riaño, P.; Beltrán, S.; Sanz, M.T. Subcritical Water Treatment for Valorization of the Red Algae Residue after Agar Extraction: Scale-Up from Laboratory to Pilot Plant. Ind. Eng. Chem. Res. 2023, 62, 3503–3514. [Google Scholar] [CrossRef]
- Knez, Ž.; Markočič, E.; Leitgeb, M.; Primožič, M.; Knez Hrnčič, M.; Škerget, M. Industrial applications of supercritical fluids: A review. Energy 2014, 77, 235–243. [Google Scholar] [CrossRef]
- Mediani, A.; Kamal, N.; Lee, S.Y.; Abas, F.; Farag, M.A. Green Extraction Methods for Isolation of Bioactive Substances from Coffee Seed and Spent. Sep. Purif. Rev. 2022, 52, 24–42. [Google Scholar] [CrossRef]
- Rodríguez, Ó.; Bona, S.; Stäbler, A.; Rodríguez-Turienzo, L. Ultrasound-Assisted Extraction of Polyphenols from Olive Pomace: Scale Up from Laboratory to Pilot Scenario. Processes 2022, 10, 2481. [Google Scholar] [CrossRef]
- Martins, R.; Barbosa, A.; Advinha, B.; Sales, H.; Pontes, R.; Nunes, J. Green Extraction Techniques of Bioactive Compounds: A State-of-the-Art Review. Processes 2023, 11, 2255. [Google Scholar] [CrossRef]
- Aydi, A.; Zibetti, A.W.; Al-Khazaal, A.Z.; Eladeb, A.; Adberraba, M.; Barth, D. Supercritical CO2 Extraction of Extracted Oil from Pistacia lentiscus L.: Mathematical Modeling, Economic Evaluation and Scale-Up. Molecules 2020, 25, 199. [Google Scholar] [CrossRef]
- Zabot, G.L. Chapter 11—Decaffeination using supercritical carbon dioxide. In Green Sustainable Process for Chemical and Environmental Engineering and Science; Inamuddin Asiri, A.M., Isloor, A.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Chapter 11; pp. 255–278. [Google Scholar] [CrossRef]
- Attard, T.M.; McElroy, C.R.; Hunt, A.J. Economic Assessment of Supercritical CO2 Extraction of Waxes as Part of a Maize Stover Biorefinery. Int. J. Mol. Sci. 2015, 16, 17546–17564. [Google Scholar] [CrossRef]
- Radoiu, M.; Kaur, H.; Bakowska-Barczak, A.; Splinter, S. Microwave-Assisted Industrial Scale Cannabis Extraction. Technologies 2020, 8, 45. [Google Scholar] [CrossRef]
- Şahin, S.; Samli, R.; Tan, A.S.B.; Barba, F.J.; Chemat, F.; Cravotto, G.; Lorenzo, J.M. Solvent-Free Microwave-Assisted Extraction of Polyphenols from Olive Tree Leaves: Antioxidant and Antimicrobial Properties. Molecules 2017, 22, 1056. [Google Scholar] [CrossRef]
- Palos-Hernández, A.; González-Paramás, A.M.; Santos-Buelga, C. Latest Advances in Green Extraction of Polyphenols from Plants, Foods and Food By-Products. Molecules 2025, 30, 55. [Google Scholar] [CrossRef]
- Shen, L.; Pang, S.; Zhong, M.; Sun, Y.; Qayum, A.; Liu, Y.; Rashid, A.; Xu, B.; Liang, Q.; Ma, H.; et al. A comprehensive review of ultrasonic assisted extraction (UAE) for bioactive components: Principles, advantages, equipment, and combined technologies. Ultrason. Sonochem. 2023, 101, 106646. [Google Scholar] [CrossRef]
- Cauduro, V.H.; Gohlke, G.; da Silva, N.W.; Cruz, A.G.; Flores, E.M.M. A review on scale-up approaches for ultrasound-assisted extraction of natural products. Curr. Opin. Chem. Eng. 2025, 48, 101120. [Google Scholar] [CrossRef]
- Ye, G.; Li, J.; Wang, J.; Ju, T.; Zhou, Z.; Wang, J.; Zhao, H.; Zhou, Y.; Lu, W. Advantages of ultrasonic-assisted extraction over hot water extraction for polysaccharides from waste stems of Rubia cordifolia L.: A comprehensive comparison of efficiency, structure, and bioactivity. Ultrason. Sonochem. 2025, 120, 107502. [Google Scholar] [CrossRef] [PubMed]
- Pronyk, C.; Mazza, G. Design and scale-up of pressurized fluid extractors for food and bioproducts. J. Food Eng. 2009, 95, 215–226. [Google Scholar] [CrossRef]
- Barp, L.; Višnjevec, A.M.; Moret, S. Pressurized Liquid Extraction: A Powerful Tool to Implement Extraction and Purification of Food Contaminants. Foods 2023, 12, 2017. [Google Scholar] [CrossRef]
- Chipaca-Domingos, H.S.; Ferreres, F.; Fornari, T.; Gil-Izquierdo, A.; Pessela, B.C.; Villanueva-Bermejo, D. Pressurized Liquid Extraction for the Production of Extracts with Antioxidant Activity from Borututu (Cochlospermum angolense Welw.). Foods 2023, 12, 1186. [Google Scholar] [CrossRef]
- Tamalmani, K.; Husin, H. Review on Corrosion Inhibitors for Oil and Gas Corrosion Issues. Appl. Sci. 2020, 10, 3389. [Google Scholar] [CrossRef]
- Zaffora, A.; Di Franco, F.; Santamaria, M. Corrosion of stainless steel in food and pharmaceutical industry. Curr. Opin. Electrochem. 2021, 29, 100760. [Google Scholar] [CrossRef]
- Thoume, A.; Irhal, I.N.; Benzbria, N.; Left, D.; Achagar, R.; Elmakssoudi, A.; Dkir, M.; Azzi, M.; Bourhim, N.; Zertoubi, M. In vitro and in silico antibacterial and anti-corrosive properties of Persea americana leaves extract as an environmentally friendly corrosion inhibitor for carbon steel in a hydrochloric acid medium. Colloids Surf. A Physicochem. Eng. Asp. 2023, 674, 131848. [Google Scholar] [CrossRef]
- Alrefaee, S.H.; Rhee, K.Y.; Verma, C.; Quraishi, M.A.; Ebenso, E.E. Challenges and advantages of using plant extract as inhibitors in modern corrosion inhibition systems: Recent advancements. J. Mol. Liq. 2021, 321, 114666. [Google Scholar] [CrossRef]
- Deyab, M.A.; Mohsen, Q.; Bloise, E.; Lazzoi, M.R.; Mele, G. Experimental and theoretical evaluations on Oleuropein as a natural origin corrosion inhibitor for copper in acidic environment. Sci. Rep. 2022, 12, 7579. [Google Scholar] [CrossRef] [PubMed]
- Kusumaningrum, I.; Soenoko, R.; Siswanto, E.; Gapsari, F. Investigation of Artocarpus heteropyllus peel extract as non-toxic corrosion inhibitor for pure copper protection in nitric acid. Case Stud. Chem. Environ. Eng. 2022, 6, 100223. [Google Scholar] [CrossRef]
- Al-Amiery, A.A.; Mohamad, A.B.; Kadhum, A.A.H.; Shaker, L.M.; Isahak, W.N.R.W.; Takriff, M.S. Experimental and theoretical study on the corrosion inhibition of mild steel by nonanedioic acid derivative in hydrochloric acid solution. Sci. Rep. 2022, 12, 4705. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, M.P.S.; do Nascimento, C.C.F.; dos Santos, D.M.L.; Pereira Junior, C.J.C. Evaluation of Palm Oil Corrosion Inhibition Through Image Analysis in Copper Pipes Used in Air Conditioning Systems. J. Bio. Tribo. Corros. 2025, 11, 40. [Google Scholar] [CrossRef]
- Tan, B.; Liu, Y.; Gong, Z.; Zhang, X.; Chen, J.W.; Guo, L.; Xiong, J.; Liu, J.; Marzouki, R.; Li, W. Pyracantha fortuneana alcohol extracts as biodegradable corrosion inhibitors for copper in H2SO4 media. J. Mol. Liq. 2024, 397, 124117. [Google Scholar] [CrossRef]
- Gu, T.; Xu, Z.; Zheng, X.; Fu, A.; Zhang, F.; Al-Zaqri, N.; Chen, J.W.; Tan, B.; Li, W. Lycium barbarum leaf extract as biodegradable corrosion inhibitor for copper in sulfuric acid medium. Ind. Crops Prod. 2023, 20, 117181. [Google Scholar] [CrossRef]
- Quraishi, M.A.; Singh, A.; Singh, V.K.; Yadav, D.K.; Singh, A.K. Green approach to corrosion inhibition of mild steel in hydrochloric acid and sulphuric acid solutions by the extract of Murraya koenigii leaves. Mater. Chem. Phys. 2010, 122, 114–122. [Google Scholar] [CrossRef]
- Tian, H.; Li, W.; Hou, B. Novel application of a hormone biosynthetic inhibitor for the corrosion resistance enhancement of copper in synthetic seawater. Corr. Sci. 2011, 53, 3435–3445. [Google Scholar] [CrossRef]
- Kalkhambkar, A.G.; Rajappa, S.K.; Manjanna, J.; Malimath, G.H. Saussurea obvallatta leaves extract as a potential eco-friendly corrosion inhibitor for mild steel in 1 M HCl. Inorg. Chem. Commun. 2022, 143, 109799. [Google Scholar] [CrossRef]
- Prifiharni, S.; Mashanafie, G.; Priyotomo, G.; Royani, A.; Ridhova, A.; Elya, B.; Wahyuadi, J. Extract sarampa wood (Xylocarpus moluccensis) as an eco-friendly corrosion inhibitor for mild steel in HCl 1M. J. Indian Chem. Soc. 2022, 99, 100520. [Google Scholar] [CrossRef]
- Ofuyekpone, O.D.; Utu, O.G.; Onyekpe, B.O.; Adediran, A.A. Effect of inhibitor concentration on the potency of Stylosanthes gracilis extract as corrosion inhibitor for AISI 304l in sulphuric acid solution. Sci. Afr. 2021, 11, e00714. [Google Scholar] [CrossRef]
- Ghehsareh, Z.; Sayah, T.; Moharramnejad, M.; Rahimitabar, A.; Ehsani, A. Green guardians: A comprehensive review of environmentally friendly corrosion inhibitors from plant extract to ionic-liquids in industrial applications. Prog. Org. Coat. 2025, 201, 109146. [Google Scholar] [CrossRef]
- Parangusan, H.; Sliem, M.H.; Abdullah, A.M.; Elhaddad, M.; Al-Thani, N.; Bhadra, J. Plant extract as green corrosion inhibitors for carbon steel substrate in different environments: A systematic review. Int. J. Electrochem. Sci. 2025, 20, 100919. [Google Scholar] [CrossRef]
- Shang, Z.; Zhu, J. Overview on plant extracts as green corrosion inhibitors in the oil and gas fields. J. Mater. Res. Technol. 2021, 15, 5078–5094. [Google Scholar] [CrossRef]
- Kumar, H.; Yadav, V.; Anu; Saha, S.K.; Kang, N. Adsorption and inhibition mechanism of efficient and environment friendly corrosion inhibitor for mild steel: Experimental and theoretical study. J. Mol. Liq. 2021, 338, 116634. [Google Scholar] [CrossRef]
- Toorani, M.; Aliofkhazraei, M.; Mahdavian, M.; Naderi, R. Superior corrosion protection and adhesion strength of epoxy coating applied on AZ31 magnesium alloy pre-treated by PEO/Silane with inorganic and organic corrosion inhibitors. Corros. Sci. 2021, 178, 109065. [Google Scholar] [CrossRef]
- Qiang, Y.; Guo, L.; Li, H.; Lan, X. Fabrication of environmentally friendly Losartan potassium film for corrosion inhibition of mild steel in HCl medium. Chem. Eng. J. 2021, 406, 126863. [Google Scholar] [CrossRef]
- Răuță, D.-I.; Matei, E.; Avramescu, S.-M. Recent Development of Corrosion Inhibitors: Types, Mechanisms, Electrochemical Behavior, Efficiency, and Environmental Impact. Technologies 2025, 13, 103. [Google Scholar] [CrossRef]
- Sesia, R.; Spriano, S.; Sangermano, M.; Ferraris, S. Natural Polyphenols and the Corrosion Protection of Steel: Recent Advances and Future Perspectives for Green and Promising Strategies. Metals 2023, 13, 1070. [Google Scholar] [CrossRef]
- Belghiti, M.E.; Echihi, S.; Mahsoune, A.; Karzazi, Y.; Aboulmouhajir, A.; Dafali, A.; Bahadur, I. Piperine derivatives as green corrosion inhibitors on iron surface; DFT, Monte Carlo dynamics study and complexation modes. J. Mol. Liq. 2018, 261, 62–75. [Google Scholar] [CrossRef]
- Ouakki, M.; Galai, M.; Rbaa, M.; Abousalem, A.S.; Lakhrissi, B.; Rifi, E.H.; Cherkaoui, M. Quantum chemical and experimental evaluation of the inhibitory action of two imidazole derivatives on mild steel corrosion in sulphuric acid medium. Heliyon 2019, 5, e02759. [Google Scholar] [CrossRef]
- Dibetsoe, M.; Olasunkanmi, L.O.; Fayemi, O.E.; Yesudass, S.; Ramaganthan, B.; Bahadur, I.; Adekunle, A.S.; Kabanda, M.M.; Ebenso, E.E. Some Phthalocyanine and Naphthalocyanine Derivatives as Corrosion Inhibitors for Aluminium in Acidic Medium: Experimental, Quantum Chemical Calculations, QSAR Studies and Synergistic Effect of Iodide Ions. Molecules 2015, 20, 15701–15734. [Google Scholar] [CrossRef] [PubMed]
- Nesane, T.; Madala, N.E.; Kabanda, M.M.; Murulana, L.C. Experimental and theoretical studies on the inhibitory potential of Lippia javanica leaf extract for aluminium corrosion in 1M HCl medium. J. Adhes. Sci. Technol. 2023, 37, 3517–3551. [Google Scholar] [CrossRef]
- Ramezanzadeh, M.; Bahlakeh, G.; Sanaei, Z.; Ramezanzadeh, B. Corrosion inhibition of mild steel in 1 M HCl solution by ethanolic extract of eco-friendly Mangifera indica (mango) leaves: Electrochemical, molecular dynamics, Monte Carlo and ab initio study. Appl. Surf. Sci. 2019, 463, 1058–1107. [Google Scholar] [CrossRef]
- Ahmed, R.K.; Zhang, S. Atriplex leucoclada extract: A promising eco-friendly anticorrosive agent for copper in aqueous media. J. Ind. Eng. Chem. 2021, 99, 334–343. [Google Scholar] [CrossRef]
- Yousif, Q.A.; Malhotra, S.S.; Bedair, M.A.; Ansari, A.; Hadi, A.K. Safflower plant extract as a sustainable corrosion inhibitor for carbon steel in acidic media: A combined electrochemical and computational study. RSC Adv. 2025, 15, 21006–21025. [Google Scholar] [CrossRef]
- Maizia, R.; Djermoune, A.; Amoura, A.; Zaabar, A.; Thomas, A.; Dib, A.; Martemianov, S. Bidens aurea aiton plant extract as a green and sustainable corrosion inhibitor for carbon steel X42 in hydrochloric acidic medium: Experimental and computational studies. Mater. Chem. Phys. 2025, 339, 130740. [Google Scholar] [CrossRef]
- Joshi, V.; Bachhar, V.; Singh, P.; Duseja, M.; Haldhar, R.; Katin, K.P.; Berdimurodov, E.; Shukla, R.K. Rheological and anticorrosion study of Piper chaba extract and coating for mild steel in 2M H2SO4. Colloids Surf. A 2025, 708, 135989. [Google Scholar] [CrossRef]
- Kartal, A.; Yıldız, R.; Döner, A.; Baran, M.F. Thorough examination of Polygonum aviculare L. plant leaf extract as a green corrosion inhibitor for mild steel in 1M HCl: Synthesis, characterization, observations from surface analysis, experimental and DFT studies. Inorg. Chem. Commun. 2025, 176, 114241. [Google Scholar] [CrossRef]
- Parmar, B.; Desai, P.S.; Prajapati, K. Bili leaf extract: Green corrosion inhibitor for zinc in hydrochloric acid-experimental and theoretical study. J. Indian Chem. Soc. 2024, 101, 101221. [Google Scholar] [CrossRef]
- Al Jahdaly, B.A.; Maghraby, Y.R.; Ibrahim, A.H.; Shouier, K.R.; Alturki, A.M.; El-Shabasy, R.M. Role of green chemistry in sustainable corrosion inhibition: A review on recent developments. Mater. Today Sustain. 2022, 20, 100242. [Google Scholar] [CrossRef]
- Khadraoui, A.; Khelifa, A.; Hachama, K.; Boutoumi, H.; Hammouti, B. Synergistic effect of potassium iodide in controlling the corrosion of steel in acid medium by Mentha pulegium extract. Res. Chem. Intermed. 2015, 41, 7973–7980. [Google Scholar] [CrossRef]
- Bahlakeh, G.; Ramezanzadeh, M.; Ramezanzadeh, B. Experimental and theoretical studies of the synergistic inhibition effects between the plant leaves extract (PLE) and zinc salt (ZS) in corrosion control of carbon steel in chloride solution. J. Mol. Liq. 2017, 248, 854–870. [Google Scholar] [CrossRef]
- Mungwari, C.P.; Obadele, B.A.; King’ondu, C.K. Phytochemicals as green and sustainable corrosion inhibitors for mild steel and aluminium: Review. Results Surf. Interf. 2025, 18, 100374. [Google Scholar] [CrossRef]
- Gapsari, F.; Setyarini, P.; Utaminingrum, F.; Sulaiman, A.; Haidar, M.; Julian, T. Melaleuca leaves extract as eco-friendly inhibitor for low carbon steel in sulfuric acid. Case Stud. Chem. Environ. Eng. 2024, 9, 100657. [Google Scholar] [CrossRef]
- Magni, M.; Postiglione, E.; Marzorati, S.; Verotta, L.; Trasatti, S.P. Green Corrosion Inhibitors from Agri-Food Wastes: The Case of Punica granatum Extract and Its Constituent Ellagic Acid. A Validation Study. Processes 2020, 8, 272. [Google Scholar] [CrossRef]
- Al-Amiery, A.; Isahak, W.N.R.W.; Al-Azzawi, W.K. Sustainable corrosion Inhibitors: A key step towards environmentally responsible corrosion control. Ain Shams Eng. J. 2024, 15, 102672. [Google Scholar] [CrossRef]
- Fernandes, F.D.; Ferreira, L.M.; Da Silva, M.L.C.P. Application of Psidium guajava L. leaf extract as a green corrosion inhibitor in biodiesel: Biofilm formation and encrustation. Appl. Surf. Sci. Adv. 2021, 6, 100185. [Google Scholar] [CrossRef]
- Firoozi, A.A.; Firoozi, A.A.; Oyejobi, D.O.; Avudaiappan, S.; Flores, E.S. Enhanced durability and environmental sustainability in marine infrastructure: Innovations in anti-corrosive coating technologies. Results Eng. 2025, 26, 105144. [Google Scholar] [CrossRef]
- Tantawy, A.H.; Soliman, K.A.; Abd El-Lateef, H.M. Novel synthesized cationic surfactants based on natural Piper nigrum as sustainable-green inhibitors for steel pipeline corrosion in CO2-3.5%NaCl: DFT, Monte Carlo simulations and experimental approaches. J. Clean. Prod. 2020, 250, 119510. [Google Scholar] [CrossRef]
- Keshk, A.A.; Elsayed, N.H.; Almutairi, F.M.; Al-Anazi, M.; Said, S.; Althurwi, H.M.; Albalawi, R.K.; El-Aassar, M.R. Effect of green and sustainable extracted fucoidan polysaccharide as a corrosion inhibitor in 3.5% NaCl. Biomass Conv. Bioref. 2024, 14, 28219–28232. [Google Scholar] [CrossRef]
- Njoku, D.I.; Oguzie, E.E.; Li, Y. Characterization, electrochemical and theoretical study of the anticorrosion properties of Moringa oleifera extract. J. Mol. Liq. 2017, 237, 247–256. [Google Scholar] [CrossRef]
- Alao, A.O.; Popoola, A.P.; Dada, M.O.; Sanni, O. Utilization of green inhibitors as a sustainable corrosion control method for steel in petrochemical industries: A review. Front. Energy Res. 2023, 10, 1063315. [Google Scholar] [CrossRef]
- Dalmora, G.P.V.; Filho, E.P.B.; Conterato, A.A.M.; Roso, W.S.; Pereira, C.E.; Dettmer, A. Methods of corrosion prevention for steel in marine environments: A review. Results Surf. Interf. 2025, 18, 100430. [Google Scholar] [CrossRef]
- Arukalam, I.O.; Madu, I.O.; Ishidi, E.Y. High performance characteristics of Lupinus arboreus gum extract as self-healing and corrosion inhibition agent in epoxy-based coating. Prog. Org. Coat. 2021, 151, 106095. [Google Scholar] [CrossRef]
- Obot, I.B.; Onyeachu, I.B.; Umoren, S.A.; Quraishi, M.A.; Sorour, A.A.; Chen, T.; Aljeaban, N.; Wang, Q. High temperature sweet corrosion and inhibition in the oil and gas industry: Progress, challenges and future perspectives. J. Pet. Eng. 2020, 185, 106469. [Google Scholar] [CrossRef]
- Santosa, P.I.; Nik, W.B.W.; Pradityana, A.; Khosfirah, F.; Rizal, M.S.; Widiyono, E.; Subiyanto, H.; Husodo, N.; Safa’at, A.; Ash Shidieqqy, R.H.; et al. The effect of sunflower seed shell extract (Helianthus annus) as an organic inhibitor on carbon steel in 1 M HCl. Chem. Environ. Eng. CSCEE 2025, 11, 101141. [Google Scholar] [CrossRef]
- Umoren, S.A.; Obot, I.B.; Madhankumar, A.; Gasem, Z.M. Performance evaluation of pectin as ecofriendly corrosion inhibitor for X60 pipeline steel in acid medium: Experimental and theoretical approaches. Carbohydr. Polym. 2015, 124, 280–291. [Google Scholar] [CrossRef]
- de Souza Morais, W.R.; da Silva, J.S.; Queiroz, N.M.P.; de Paiva e Silva Zanta, C.L.; Ribeiro, A.S.; Tonholo, J. Green Corrosion Inhibitors Based on Plant Extracts for Metals and Alloys in Corrosive Environment: A Technological and Scientific Prospection. Appl. Sci. 2023, 13, 7482. [Google Scholar] [CrossRef]
- Brenna, A.; Bolzoni, F.; Pedeferri, M.P.; Ormellese, M. Corrosion inhibitors for reinforced concrete structures: A study of binary mixtures. Int. J. Corros. Scale Inhib. 2017, 6, 59–69. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, G.; Ye, H.; Zeng, Q.; Zhang, Z.; Tian, Z.; Jin, X.; Jin, N.; Chen, Z.; Wang, J. Corrosion of steel rebar in concrete induced by chloride ions under natural environments. Constr. Build. Mater. 2023, 369, 130504. [Google Scholar] [CrossRef]
- Ann, K.Y.; Jung, H.; Kim, H.; Kim, S.; Moon, H.Y. Effect of calcium nitrite-based corrosion inhibitor in preventing corrosion of embedded steel in concrete. Cem. Concr. Res. 2006, 36, 530–535. [Google Scholar] [CrossRef]
- Wang, W.; Song, Z.; Guo, M.; Jiang, L.; Xiao, B.; Jiang, Q.; Chu, H.; Liu, Y.; Zhang, Y.; Xu, N. Employing ginger extract as an eco-friendly corrosion inhibitor in cementitious material. Constr. Build. Mater. 2019, 228, 116713. [Google Scholar] [CrossRef]
- Yang, H.M.; Singh, J.K.; Jang, H.O. Ginger powder as sustainable and eco-friendly corrosion inhibitor for the protection of steel reinforcement bars. Case Stud. Constr. Mater. 2024, 21, e03821. [Google Scholar] [CrossRef]
- Valdez-Salas, B.; Vazquez-Delgado, R.; Salvador-Carlos, J.; Beltran-Partida, E.; Salinas-Martinez, R.; Cheng, N.; Curiel-Alvarez, M. Azadirachta indica Leaf Extract as Green Corrosion Inhibitor for Reinforced Concrete Structures: Corrosion Effectiveness against Commercial Corrosion Inhibitors and Concrete Integrity. Materials 2021, 14, 3326. [Google Scholar] [CrossRef]
- Sotniczuk, A.; Heise, S.; Topolski, K.; Garbacz, H.; Boccaccini, A.R. Chitosan/bioactive glass coatings as a protective layer against corrosion of nanocrystalline titanium under simulated inflammation. Mater. Lett. 2020, 264, 127284. [Google Scholar] [CrossRef]
- Sheit, H.M.K.; Mohan, K.S.; Srinivasan, P.; Muthu, S.E.; Dinesh, A.; Rajeswari, B.; Priya, L.S.; Gnanasekaran, L.; Iqbal, M. Anti-corrosive efficiency of salvadora persica plant stick powder on SS 316L orthodontic wire in artificial saliva. Results Chem. 2024, 12, 101894. [Google Scholar] [CrossRef]
- Yadav, A.; Kumar, H.; Kumar, P.; Rani, G.; Maken, S. Syzygium cumini leaf extract mediated green synthesis of ZnO nanoparticles: A sustained release for anticancer, antimicrobial, antioxidant, and anti-corrosive applications. J. Mol. Struct. 2025, 1325, 141017. [Google Scholar] [CrossRef]
- Cai, Y.; Luo, X.; Maclean, M.; Qin, Y.; Duxbury, M.; Ding, F. A single-step fabrication approach for development of antimicrobial surfaces. J. Mater. Process. Technol. 2019, 271, 249–260. [Google Scholar] [CrossRef]
- Demetrescu, I.; Pirvu, C.; Mitran, V. Effect of nano-topographical features of, Ti/TiO2 electrode surface on cell response and electrochemical stability in artificial saliva. Bioelectrochemistry 2010, 79, 122–129. [Google Scholar] [CrossRef]
- Sharma, A.; Kaur, J.; Saxena, A. Celastrus paniculatus seeds as a green corrosion inhibitor for stainless steel in H2SO4 acidic solution. J. Indian Chem. Soc. 2024, 101, 101172. [Google Scholar] [CrossRef]
- Gallia, M.C.; Bachmeier, E.; Ferrari, A.; Queralt, I.; Mazzeo, M.A.; Bongiovanni, G.A. Pehuén (Araucaria araucana) seed residues are a valuable source of natural antioxidants with nutraceutical, chemoprotective and metal corrosion-inhibiting properties. Bioorganic Chem. 2020, 104, 104175. [Google Scholar] [CrossRef] [PubMed]
- Soltani, N.; Tavakkoli, N.; Khayatkashani, M.; Jalali, M.R.; Mosavizade, A. Green approach to corrosion inhibition of 304 stainless steel in hydrochloric acid solution by the extract of Salvia officinalis leaves. Corros. Sci. 2012, 62, 122–135. [Google Scholar] [CrossRef]
- Deng, S.; Li, X. Inhibition by Jasminum nudiflorum Lindl. leaves extract of the corrosion of aluminium in HCl solution. Corros. Sci. 2012, 64, 253–262. [Google Scholar] [CrossRef]
- Abuelela, A.M.; Kaur, J.; Saxena, A.; Bedair, M.A.; Verma, D.K.; Berdimurodov, E. Electrochemical and DFT studies of Terminalia bellerica fruit extract as an eco-friendly inhibitor for the corrosion of steel. Sci. Rep. 2023, 13, 19367. [Google Scholar] [CrossRef]
- Kundu, S.; Sheetal, A.; Thakur, S.; Kumar, V.; Pani, B.; Singh, M.; Singh, A.K. A critical review on nano ferrites pioneering a paradigm shift in corrosion inhibition towards different metal/alloys in diverse corrosive environments. J. Environ. Chem. Eng. 2025, 13, 115277. [Google Scholar] [CrossRef]
- Ahamad, I.; Prasad, R.; Quraishi, M.A. Adsorption and inhibitive properties of some new Mannich bases of Isatin derivatives on corrosion of mild steel in acidic media. Corros. Sci. 2010, 52, 1472–1481. [Google Scholar] [CrossRef]
- Zakeri, A.; Bahmani, E.; Aghdam, A.S.R. Plant extracts as sustainable and green corrosion inhibitors for protection of ferrous metals in corrosive media: A mini review. Corros. Sci. 2022, 5, 25–38. [Google Scholar] [CrossRef]
- Khan, M.A.A.; Irfan, O.M.; Djavanroodi, F.; Asad, M. Development of Sustainable Inhibitors for Corrosion Control. Sustainability 2022, 14, 9502. [Google Scholar] [CrossRef]
- González-Parra, J.R.; Di Turo, F. The Use of Plant Extracts as Sustainable Corrosion Inhibitors for Cultural Heritage Alloys: A Mini-Review. Sustainability 2024, 16, 1868. [Google Scholar] [CrossRef]
- Giuliani, C.; Pascucci, M.; Riccucci, C.; Messina, E.; Salzano de Luna, M.; Lavorgna, M.; Ingo, G.M.; Di Carlo, G. Chitosan-Based Coatings for Corrosion Protection of Copper-Based Alloys: A Promising More Sustainable Approach for Cultural Heritage Applications. Prog. Org. Coat. 2018, 122, 138–146. [Google Scholar] [CrossRef]
- Salzano de Luna, M.; Buonocore, G.G.; Giuliani, C.; Messina, E.; Di Carlo, G.; Lavorgna, M.; Ambrosio, L.; Ingo, G.M. Long-Lasting Efficacy of Coatings for Bronze Artwork Conservation: The Key Role of Layered Double Hydroxide Nanocarriers in Protecting Corrosion Inhibitors from Photodegradation. Angew. Chem. Int. Ed. Engl. 2018, 57, 7380–7384. [Google Scholar] [CrossRef] [PubMed]
- Fierascu, R.C.; Dumitriu, I.; Ion, M.L.; Catangiu, A.; Ion, R.M. Surface and analytical techniques study of Romanian coins. Eur. J. Sci. Theol. 2009, 5, 25–34. [Google Scholar]
- Grassini, S.; Angelini, E.; Mao, Y.; Novakovic, J.; Vassiliou, P. Aesthetic coatings for silver based alloys with improved protection efficiency. Prog. Org. Coat. 2011, 72, 131–137. [Google Scholar] [CrossRef]
- Marquardt, A.E.; Breitung, E.M.; Drayman-Weisser, T.; Gates, G.; Phaneuf, R.J. Protecting silver cultural heritage objects with atomic layer deposited corrosion barriers. Herit. Sci. 2015, 3, 37. [Google Scholar] [CrossRef]
- Ashkenazi, D.; Nusbaum, I.; Shacham-Diamand, Y.; Cvikel, D.; Kahanov, Y.; Inberg, A. A method of conserving ancient iron artefacts retrieved from shipwrecks using a combination of silane self-assembled monolayers and wax coating. Corros. Sci. 2017, 123, 88–102. [Google Scholar] [CrossRef]
- Sadat-Shojai, M.; Ershad-Langroudi, A. Polymeric coatings for protection of historic monuments: Opportunities and challenges. J. Appl. Polym. Sci. 2009, 112, 2535–2551. [Google Scholar] [CrossRef]
- Molina, T.M.; Cano, E.; Ramírez-Barat, B. Protective coatings for metallic heritage conservation: A review. J. Cult. Herit. 2023, 62, 99–113. [Google Scholar] [CrossRef]
- Casaletto, M.P.; Figà, V.; Privitera, A.; Bruno, M.; Napolitano, A.; Piacente, S. Inhibition of corten steel corrosion by “green” extracts of Brassica campestris. Corros. Sci. 2018, 136, 91–105. [Google Scholar] [CrossRef]
- Pandya, A.; Singh, J.K.; Singh, D.D.N. An Eco-Friendly Method to Stabilize Unstable Rusts. In Proceedings of the ICOM-CC Metal 2016, New Delhi, India, 26–30 September 2016; Menon, R., Chemello, C., Pandya, A., Eds.; ICOM: Oslo, Norway, 2016; pp. 136–143. [Google Scholar]
- Elshahawi, A.; Rifai, M.; Hamid, Z.A. Corrosion inhibition of bronze alloy by Jatropha extract in neutral media for application on archaeological bronze artefacts. Egypt. J. Chem. 2022, 65, 869–878. [Google Scholar] [CrossRef]
- Pourzarghan, V.; Fazeli, B. The use of Robinia pseudoacacia L. fruit extract as a natural corrosion inhibitor in the protection of copper-based objects. Herit. Sci. 2021, 9, 75. [Google Scholar] [CrossRef]
- Obi-Egbedi, N.O.; Obot, I.B.; Umoren, S.A. Spondias mombin L. as a green corrosion inhibitor for aluminium in sulphuric acid: Correlation between inhibitive effect and electronic properties of extracts’ major constituents using density functional theory. Arab. J. Chem. 2012, 5, 361–373. [Google Scholar] [CrossRef]
- Tan, B.; Lan, W.; Zhang, S.; Deng, H.; Qiang, Y.; Fu, A.; Ran, Y.; Xiong, J.; Marzouki, R.; Li, W. Passiflora edulia Sims leaves extract as renewable and degradable inhibitor for copper in sulfuric acid solution. Colloids Surf. A Physicochem. Eng. Asp. 2022, 645, 128892. [Google Scholar] [CrossRef]
- Halambek, J.; Berković, K.; Vorkapić-Furač, J. Laurus nobilis L. oil as green corrosion inhibitor for aluminium and AA5754 aluminium alloy in 3% NaCl solution. Mater. Chem. Phys. 2013, 137, 788–795. [Google Scholar] [CrossRef]
- Luo, Q.; Zhang, J.R.; Li, H.B.; Wu, D.T.; Geng, F.; Corke, H.; Wei, X.L.; Gan, R.Y. Green extraction of antioxidant polyphenols from green tea (Camellia sinensis). Antioxidants 2020, 9, 785. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.T.; Manh, T.D.; Panaitescu, C.; Pham, T.T.; Vu, N.S.H.; Hoai, N.T.; Van, N.P.; Dang, N.N. Self-formation of the protective film on mild steel surface in hydrochloric acid medium containing Papaya resin extract. Colloids Surf. A Physicochem. Eng. Asp. 2024, 690, 133689. [Google Scholar] [CrossRef]
- Qiang, Y.; Zhang, S.; Tan, B.; Chen, S. Evaluation of Ginkgo leaf extract as an eco-friendly corrosion inhibitor of X70 steel in HCl solution. Corros. Sci. 2018, 133, 6–16. [Google Scholar] [CrossRef]
- Chen, S.; Chen, S.; Liu, Y.; Zhang, H.; Wu, Y.; Yan, Y. Exploration of Metaplexis hemsleyana leaves extract as an eco-friendly corrosion inhibitor for Q420-steel in HCl media. Int. J. Electrochem. Sci. 2025, 20, 101088. [Google Scholar] [CrossRef]
- Luo, W.; Lin, Q.; Ran, X.; Li, W.; Tan, B.; Fu, A.; Zhang, S. A new pyridazine derivative synthesized as an efficient corrosion inhibitor for copper in sulfuric acid medium: Experimental and theoretical calculation studies. J. Mol. Liq. 2021, 341, 117370. [Google Scholar] [CrossRef]
- Ong, G.; Kasi, R.; Subramaniam, R. A review on plant extracts as natural additives in coating applications. Prog. Org. Coat. 2021, 151, 106091. [Google Scholar] [CrossRef]
- Al-Amiery, A.A.; Isahak, W.N.R.W.; Al-Azzawi, W.K. Corrosion Inhibitors: Natural and Synthetic Organic Inhibitors. Lubricants 2023, 11, 174. [Google Scholar] [CrossRef]
- Sholokhova, A.; Varžinskas, V.; Rutkaitė, R. Valorization of Agro-waste in Bio-based and Biodegradable Polymer Composites: A Comprehensive Review with Emphasis on Europe Perspective. Waste Biomass Valorization 2025, 16, 1537–1571. [Google Scholar] [CrossRef]
- Gaur, V.K.; Sharma, P.; Sirohi, R.; Awasthi, M.K.; Dussap, C.-G.; Pandey, A. Assessing the impact of industrial waste on environment and mitigation strategies: A comprehensive review. J. Hazard Mater. 2020, 398, 123019. [Google Scholar] [CrossRef]
- TMR. Transparency market research. Anthocyanin Market: Growth Favored by Rigorous R&D Investments by Players. 2019. Available online: https://www.transparencymarketresearch.com/anthocyanin-market.html (accessed on 23 August 2025).
- Demichelis, F.; Lenzuni, M.; Converti, A.; Del Borghi, A.; Freyria, F.S.; Gagliano, E.; Mancini, M.; Toscano, G.; Mazzoni, E.; Reguzzi, M.C.; et al. Agro-food waste conversion into valuable products in the Italian scenario: Current practices and innovative approaches. J. Environ. Chem. Eng. 2025, 13, 115458. [Google Scholar] [CrossRef]
- Sharma, S.; Sharma, U.; Sharma, N.; Singh Rana, V.; Thakur, S.; Kumar, A.; Kumar, R. Exploring the valorization of fruit bio-waste for sustainable utilization in agro-food industries: A Comprehensive Review. Food Biosci. 2025, 63, 105768. [Google Scholar] [CrossRef]
- Han, Z.; Li, C.; Liu, G. Recent advances in the extraction, purification and analytical techniques for flavonoids from plants: Taking hawthorn as an example. J. Food Compos. Anal. 2025, 141, 107372. [Google Scholar] [CrossRef]
- Baskar, P.; Annadurai, S.; Panneerselvam, S.; Prabakaran, M.; Kim, J. An Outline of Employing Metals and Alloys in Corrosive Settings with Ecologically Acceptable Corrosion Inhibitors. Surfaces 2023, 6, 380–409. [Google Scholar] [CrossRef]
- Nayak, A.; Bhushan, B. An overview of the recent trends on the waste valorization techniques for food wastes. J. Environ. Manag. 2019, 233, 352–370. [Google Scholar] [CrossRef]
- Gupta, A. Recent advancement in sugarcane bagasse-based anti-corrosive coatings. Mater. Today Commun. 2025, 45, 112364. [Google Scholar] [CrossRef]
- Chauhan, D.S.; Quraishi, M.A.; Qurashi, A. Recent trends in environmentally sustainable Sweet corrosion inhibitors. J. Mol. Liq. 2021, 326, 115117. [Google Scholar] [CrossRef]
Category of Extraction Method | Extraction Method | Advantages | Drawbacks | Reference |
---|---|---|---|---|
Classic | Maceration, infusion, percolation, decoction | No special equipment needed; low investments costs; Possibility to extract active compounds at low temperatures | After extraction, large amounts of vegetal and solvent wastes are obtained | [14,15,16,17] |
Hydro-distillation (HD) | Less extraction time and solvent | Large amounts of waste; not applicable for many types of raw material; strict control of temperature in order to not damage thermolabile compounds | [17] | |
Soxhlet | No special equipment needed; efficient extraction due to the interaction of the desired component with the solvent | Time consuming | [18] | |
Modern | Microwave-assisted extraction (MAE) | Reduced time of extraction; small amounts of used solvents | Expensive equipment comparative to classic extraction techniques Increased extraction efficiency only for polar solvents | [19] |
Ultrasound-assisted extraction (UAE) | Reduced time of extraction | Some pre-treatments are needed for increased extraction yields | [20] | |
Supercritical fluid extraction (SFE) | Low extraction temperature favorable for thermolabile compounds; high extraction yields | High costs | [21] | |
Pulsed electric fields (PEF) | High extraction yields; reduced time of extraction; small amounts of used solvents | Expensive equipment; suitable for some types of raw materials | [22] | |
High-voltage electric discharge extraction (HVED) | High extraction yields; reduced time of extraction | Expensive equipment; suitable for some types of raw materials | [23] | |
Pressurized liquid extraction (PLE) | High extraction yields; reduced time of extraction; increased extraction yields | Expensive equipment | [24] | |
Combined methods | The above-described methods can also be combined, presenting the advantages of main methods or improved properties | [18] |
Vegetal Material | Parameters of Extraction Method at Laboratory Scale | Parameters of Extraction Method at Pilot or Industrial Scale | Reference |
---|---|---|---|
Passiflora edulis Sims leaves | Pressurized liquid extraction 70% ethanol, 100 °C, 5 cycles and 6 min of static time; solvent mass/feed mass ratio-4.25; extraction volume 34 mL | Pressurized liquid extraction Pilot scale; 80 °C, 2 cycles and 6 min of static time; solvent mass/feed mass ratio-4.25; extraction volume 2000 mL; | [26] |
Passiflora edulis bagasse | Supercritical fluid extraction (SFE) solvent mass/feed mass ratio—80; T—40 °C; P-35 MPa; extraction vessel volume—5.44 × 10−5 m3; time—more than 200 min | SFE + PLE solvent mass/feed mass ratio—constant; T—75 °C volume—50 L, 200 L, and 500 L; time 90 min | [27] |
Pressurized liquid extraction (PLE) solvent mass/feed mass ratio—5 to 300; solvent ethanol 75%; T—65 and 75 °C; P—10 MPa; extraction vessel volume 2.95 × 10−4 m3; time—more than 200 min | SFE + PLE-US solvent mass/feed mass ratio—constant; volume—50 L, 200 L, and 500 L; time—60 min; T—75 °C | ||
Eucalyptus globulus bark | Supercritical fluid extraction Volume—0.5 L; P—200 bar and T—40 °C; solvent CO2 | Supercritical fluid extraction Volume—5 L and 80 L; P—200 bar and T—40 °C; cosolvent ethanol—2.5 and 5% | [29] |
Theobroma cacao L. leaves | Soxhlet extraction Mass—2 g dried sample; volume—200 mL; time 12 h | Microwave-assisted extraction Solvent 85% aqueous EtOH; volume—500 mL | [30] |
Lettuce sativa | Microwave hydro-diffusion and gravity (MHG) Mass—300 g; volume—4 L; power—550 W | Microwave hydro-diffusion and gravity m—4 kg; volume—150 L; power—4000 W | [31] |
Pyrus communis peels | Ultrasonic-assisted extraction 20 KHz frequency; volume—50 mL; power 60 W | Ultrasonic-assisted extraction Volume—150; 450; 3000 mL; power 600 W | [32] |
Gelidium sesquipedale | Subcritical water treatment volume—500 mL; T—175 °C; time—130 min; P—50 bar | Subcritical water treatment Volume—5000 mL; T—185 °C; time—76 min; P—50 bar | [33] |
Extraction Method | Typical Industrial Application | Capital Cost (Approx.) | Operational Cost Drivers | Reported Benefits | Limitations/Challenges | Reference |
---|---|---|---|---|---|---|
Supercritical CO2 extraction (SFE) | Extraction of essential oils and bioactives (e.g., from Pistacia lentiscus, maize, coffee) | Manufacturing cost (COM) for Pistacia lentiscus extract: USD 814–1000 per kg for pilot scale (yield ~0.30%) COM for maize stover wax: EUR 88.89/kg, potentially reduced to EUR 4.56–10.87/kg if residual biomass is used to generate electricity | High utility costs (electricity), CO2 recycling, equipment depreciation | Solvent-free, high-purity extracts; co-generation from residues reduces total cost; scalable from pilot to industrial | High initial manufacturing cost per kg extract when yields are low; economic viability depends heavily on biomass valorization and energy integration | [38,39,40] |
Microwave-assisted extraction (MAE) | Extraction of polyphenols, pectin, and essential oils from plant biomass, including food processing by-products (e.g., olive leaves, tomato pomace) | ~USD 50,000 for commercial MAE vessel | Electricity for microwave generators, solvent handling | Shorter extraction time (~1/3 of conventional hydro-distillation), lower energy usage (≈25% of conventional) for essential oil; significantly higher yields and reduced ecological footprint (≈50% lower environmental impact) for pectin | Scale limited to ~100 kg biomass; solvent dielectric properties and penetration affect efficiency | [41,42,43] |
Ultrasound-assisted extraction (UAE) | Polyphenols, flavonoids, pectin, oils, and polysaccharides from agri-food by-products (e.g., olive pomace, orange peel, coffee silverskin, rapeseed oil, medicinal plants) | Pilot-scale reactors: flow cells (up to 250 L) or probe systems (3–100 L). Investment cost moderate (lower than SFE), but depends on reactor design and multiple transducers | Electricity for ultrasound transducers (100 W–3 kW), cooling systems for temperature control, mechanical agitation for uniform cavitation | Compared to conventional methods, ↑ yield (30–77% higher), ↓ extraction time (-70–76%), ↓ energy use (−88%), ↓ CO2 emissions (−93%). Works at low temperature (20–60 °C), protecting thermolabile compounds. Effective with green solvents (water, dilute ethanol). | Scale-up challenges: uneven cavitation energy in large volumes, noise (~65 dB) requiring shielding, parameter optimization for each matrix. Over-intensification may degrade sensitive compounds. | [44,45,46] |
Pressurized liquid extraction (PLE) | Phenolic compounds, flavonoids, carotenoids, sterols, and polysaccharides from agro-food by-products (e.g., flax shives, grape pomace, tomato by-products, dairy matrices) | Laboratory-scale ASE systems widely commercialized (e.g., Dionex) at ~USD 40–70 k; pilot-scale units (10–50 L) considerably higher due to high-pressure vessels and pumps | Heating of solvents above boiling point, pressurization (10–15 MPa), solvent circulation and recovery systems | Short extraction times (10–20 min vs. hours for Soxhlet); 5–10× lower solvent consumption; yields equal or superior to Soxhlet; can use green solvents (ethanol, water) at subcritical conditions; improved selectivity | Still limited at industrial scale; batch mode common (low throughput); high capital cost relative to UAE/MAE; heat management challenges for water-based PLPW; scaling issues with uniform solvent penetration and plug flow | [47,48,49] |
Vegetal Material | Extraction Method/Parameters | Obtained Compounds | Corrosive Media | Material | Obtained Effects | References |
---|---|---|---|---|---|---|
Lippia javanica (Burm.f.) Spreng., leaves | Soxhlet, 200 mL of 100% acetone, 20 g plant; 3 h | Verbacoside | 1 M HCl | Aluminum | Inhibition protection > 97% at 303 K; complex process involving physical and chemical adsorption processes. Contact angle > 90°. Active compounds contain oxygen atoms located at the carbonyl and hydroxyl groups capable of donating their lone pair electrons to the Al surface. | [76] |
Mangifera indica L. (leaves) | Maceration, 500 mL ethanol; 15 g vegetal material; 3 h; room temperature. | Mangiferin, gallic acid; iriflophenone | 1 M HCl | Mild steel | Increasing extract concentration and immersion time the efficiency—92% after 24 h in the presence of 1000 ppm inhibitor. Functional groups such as carboxylic, carbonyl and hydroxyl are responsible for the effect. | [77] |
Atriplex leucoclada Boiss. (leaves) | Maceration; 100 g plant material; 100 mL of distilled water. The suspension was kept for 24 h without light exposure and then centrifuged at 12 °C for 35 min at 10,000 rpm. | Linalool, camphor, borneol, caryophyllene oxide, kaempferol 7-O-rhamnoside; undecylenic acid | 1M HCl | Copper | Concentration 8 g/L of extract and 8 h immersion for efficiency 92% due to the oxygen-containing functional groups; the protective mechanism was based on formation of a layer. | [78] |
Carthamus tinctorius L. (flowers) | Soxhlet; 2 g plant material; 1000 mL water | 2-piperidinone, N-[4-bromo-n-butyl], 2-hexyl-1-decanol, 2-piperidone, 9-octadecenoic acid, undec-10-yonic acid, and tetradecyl ester | 0.5 N HCl | Carbon steel | Inhibition efficiency of 89.56% at 2.5 g/L; inhibition is attributed to both physical and chemical adsorption. Computational results demonstrates that active compounds are responsible for the effect. | [79] |
Bidens aurea (Aiton) Sherff (leaves) | Reflux process; 10g dry powder; 100 mL water; 1 h | 5-O-caffeoylquinic acid, quercetin-3-O-rutinoside, aurone, and chalcone | 0.5 M HCl | X42 carbon steel | Maximum efficiency—94%; The rate of corrosion is reduced by the presence of a variety of functional groups, including heteroatoms (O), aromatic rings, and multiple bonds; the donor–acceptor mechanism is to interact with the metal surface and build a protective layer at the carbon steel/solution interface. | [80] |
Piper chaba Trel. & Yunck. | Reflux; methanol; 100 g plant powder | Piperine, viridiflorol, piplartine | 2M H2SO4 | Mild steel | Corrosion inhibition efficiency of 86.53 %; contact angle values from 88.00° to 83.20° indicate the hydrophilicity of the coating; the computational analysis demonstrated the adsorption of phytochemicals into a protective layer | [81] |
Polygonum aviculare L. (leaves) | Maceration; methanol; 15 g plant material; 200 mL; 4 days | Chlorogenic acid, vanillic acid, caffeic acid, trans-cinnamic acid, trans-ferulic acid, o-coumaric acid, salicylic acid, hesperidin, rutin, isoquercitrin, Diosgenin, vanillin | 1 M HCl | Mild steel | Inhibition efficiency—96%; good corrosion inhibition efficiency due to containing a series of functional groups such as heteroatoms, multiple bonds, and aromatic rings. | [82] |
Aegle marmelos (L.) Corrêa leaf | Soxhlet; 25 g dry vegetal material; 350 mL ethanol; 5 h | Skimmianine, fagarine, scopoletin, flavone, imperatorin, umbelliferone | 0.05 M HCl. | Zinc | Inhibition efficiency—78.95% to 99% at concentration of 2.0 g/L (extract) due to electron donating groups such as –OCH3 and –OH | [83] |
Use Case/Medium | Inhibitor (Type) | Typical Dose | Reported Efficiency | Stability/Long-Term Notes | Cost/Availability | Reference |
---|---|---|---|---|---|---|
Mild steel in HCl (acid cleaning) | Papaya resin extract (plant extract) | 2000 ppm | 98.08% (mixed-type; dominant anodic) | Forms protective film; DFT/MD indicate good adhesion and thermal stability of the adsorbed layer | Water extract; simple processing; natural variability possible | [140] |
X70 steel in 1 M HCl (acid cleaning) | Ginkgo leaf extract (plant extract) | 200 mg/L | >90% across 298–318 K | Film-forming; Langmuir adsorption; good performance over tested temperatures | Alcoholic extraction; plant-to-plant variability | [141] |
Q420 steel in 1 M HCl (acid cleaning) | Metaplexis hemsleyana leaves extract (plant extract) | 0.8 g/L | 92.86% | Mixed-type; protective layer blocks ion diffusion; spontaneous adsorption (ΔG°ads ≈ −21 kJ/mol) | Water-based extraction; scalable concept; standardization needed | [142] |
Copper in 1.0 M H2SO4 (acid cleaning) | Oleuropein (isolated plant molecule) | 100 mg/L | 98.92%; effective at elevated T | Outer protective layer; high-T efficiency retained; DFT supports strong adsorption | Purified active; requires isolation but offers batch consistency | [54] |
Copper in 0.5 M H2SO4 (acid cleaning) | Pyridazine-based synthetic (synthetic organic) | (as reported) | 94.1% at 298 K | Synthetic organics often show robust, predictable performance profiles | Established supply; typically higher shelf life and standardization | [143] |
Coatings/long-term exposure | Plant-extract additives (e.g., henna) | (formulation-dependent) | High initial barrier improvement reported; case-specific | Limitations: biodegradability, photo-oxidation, storage instability; solvent choice critical | Often low raw-material cost; processing/standardization add cost | [144] |
Coatings/long-term exposure | Conventional pigments (e.g., chromates, etc.) (synthetic/inorganic) | (formulation-dependent) | Excellent long-term performance historically | Toxicity/regulatory restrictions; environmental persistence | High synthesis cost; regulatory burden | [145] |
General (various media) | Synthetic organics (amines, nitrites, phosphonates, etc.) | (system-dependent) | Often high and reliable in harsh environments; wide applicability | Longer shelf life and reliability vs. many naturals; dosing control needed | The literature is contradictory on relative costs: naturals sometimes higher due to processing; synthetics also described as more expensive in other contexts | [146] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbu, C.A.; Fierascu, I.; Semenescu, A.; Cotrut, C.M. Critical Review Regarding the Application of Plant Extracts as Eco-Friendly Corrosion Inhibitors—A Sustainable Interdisciplinary Approach. Molecules 2025, 30, 3722. https://doi.org/10.3390/molecules30183722
Barbu CA, Fierascu I, Semenescu A, Cotrut CM. Critical Review Regarding the Application of Plant Extracts as Eco-Friendly Corrosion Inhibitors—A Sustainable Interdisciplinary Approach. Molecules. 2025; 30(18):3722. https://doi.org/10.3390/molecules30183722
Chicago/Turabian StyleBarbu, Catalin Alexandru, Irina Fierascu, Augustin Semenescu, and Cosmin M. Cotrut. 2025. "Critical Review Regarding the Application of Plant Extracts as Eco-Friendly Corrosion Inhibitors—A Sustainable Interdisciplinary Approach" Molecules 30, no. 18: 3722. https://doi.org/10.3390/molecules30183722
APA StyleBarbu, C. A., Fierascu, I., Semenescu, A., & Cotrut, C. M. (2025). Critical Review Regarding the Application of Plant Extracts as Eco-Friendly Corrosion Inhibitors—A Sustainable Interdisciplinary Approach. Molecules, 30(18), 3722. https://doi.org/10.3390/molecules30183722