In Vivo Anti-Inflammatory Evaluation and In Silico Physicochemical Characterization of Flavanones from E. platycarpa Leaves
Abstract
1. Introduction
2. Results
2.1. Chemical Characterization
2.2. Pharmacomodulation
2.2.1. Acetylation
2.2.2. Methylation
2.2.3. Cyclization
2.2.4. Vinylogous-Cyclization
2.3. Physicochemical Property Determination
2.4. In Silico Analyses
2.5. In Vivo Anti-Inflammatory Activity Assay
3. Discussion
3.1. Acetylation
3.2. Methylation
3.3. Cyclization
3.4. Vinylogous-Cyclization
3.5. Structure–Activity Relationship (SAR), Drug-likeness and Biological Implications
3.5.1. ADME Properties and Predicted Drug Behaviour
3.5.2. Predicted Biological Activity via PASS Online
3.5.3. Structure–Activity Relationships and In Silico–In Vivo Correlation
3.6. Anti-Inflammatory Assay
Anti-Inflammatory Mechanism and Medicinal Chemistry Implications
- Enzyme inhibition: COX-2 and iNOS inhibition, reducing prostaglandin E2 (PGE2) and nitric oxide (NO) production.
- Signalling modulation: Suppression of NF-κB signalling, leading to decreased production of pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6 [57,58]. Analogue (2c), with its rigidified structure and methoxy group, likely stabilizes interactions at enzyme active sites and with regulatory proteins involved in cytokine expression (Section 3.5).
- Enhanced target binding and selectivity due to structural rigidification introduced by cyclization.
- Improved pharmacokinetics, with the methoxy substituent enhancing lipophilicity, membrane permeability, and potential metabolic stability [56].
- Retention of the flavanone core scaffold, preserving antioxidant properties and a favourable safety profile.
- Lead optimization potential for semi-synthetic derivatives to further improve efficacy and bioavailability in anti-inflammatory drug development.
4. Materials and Methods
4.1. Plant Material
4.2. Materials and Instrumentation
4.3. Preparation of Methanolic Extract
4.4. In Silico Physicochemical and ADME Analysis
4.5. Anti-Inflammatory Activity
4.5.1. Experimental Animals
4.5.2. TPA-Induced Mouse Ear Edema
- ΔWc: weight of the negative control auricular tissue sections;
- ΔWe: weight of tested compound.
4.6. Isolation of Natural Flavanones (1) and (2)
4.7. Preparation of Analogues (1a–1d) and (2a–2d)
4.7.1. Preparation of Acetylated Analogues (1a) and (2a)
- Acetylated analogue (1a):
- 1H-NMR (400 MHz, chloroform-d, δ; ppm)
- 13C-NMR (100 MHz, Chloroform-d, δ; ppm)
- HR-MS (ESI), calcd. for C25H26O6: [M+H+] 423.1729, found: 423.1811 ([M+H+]).
- Acetylated analogue (2a):
- 1H-NMR (400 MHz, chloroform-d, δ; ppm)
- 13C-NMR (100 MHz, chloroform-d, δ; ppm)
- HR-MS (ESI), calcd. for C26H28O7: [M+H+] 453.1835, found: 453.1795 ([M+H+]).
4.7.2. Preparation of Methylated Analogues (1b) and (2b)
- Methylated analogue (1b):
- 1H-NMR (400 MHz, chloroform-d, δ; ppm)
- 13C-NMR (100 MHz, Chloroform-d, δ; ppm)
- HR-MS (ESI), calcd. for C22H24O4: [M+H+] 353.1674, found: 353.1720 ([M+H+]).
- Methylated analogue (2b):
- 1H-NMR (400 MHz, chloroform-d, δ; ppm)
- 13C-NMR (100 MHz, chloroform-d, δ; ppm)
- HR-MS (ESI), calcd. for C23H26O5: [M+H+] 383.1780, found: 383.1801 ([M+H+]).
4.7.3. Preparation of Cyclized Analogues (1c) and (2c)
- Cyclized analogue (1c):
- 1H-NMR (400 MHz, chloroform-d, δ; ppm)
- 13C-NMR (100 MHz, chloroform-d, δ; ppm)
- HR-MS (ESI) (1c), calcd. for C21H22O4: [M+H+] 339.1518, found: 329.1616 ([M+H+]).
- Cyclized analogue (2c):
- 1H-NMR (400 MHz, chloroform-d, δ; ppm)
- 13C-NMR (100 MHz, chloroform-d, δ; ppm)
- HR-MS (ESI), calcd. for C22H24O5: [M+H+] 369.1623, found: 369.1696 ([M+H+]).
4.7.4. Preparation of Vinylogous Cyclization Analogues (1d) and (2d)
- Vinylogous-cyclization analogue (1d):
- 1H-NMR (400 MHz, chloroform-d, δ; ppm)
- 13C-NMR (100 MHz, chloroform-d, δ; ppm)
- HR-MS (ESI), calcd. for C21H20O4: [M+H+] 337.1361, found: 337.1439 ([M+H+]).
- Vinylogous-cyclized analogue (2d):
- 1H-NMR (400 MHz, chloroform-d, δ; ppm)
- 13C-NMR (100 MHz, chloroform-d, δ; ppm)
- HR-MS (ESI), calcd. for C22H22O5: [M+H+] 367.1467, found: 367.1443 ([M+H+]).
4.8. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2017, 9, 7204–7218. [Google Scholar] [CrossRef] [PubMed]
- Cavaillon, J.M. Once upon a time, inflammation. J. Venom. Anim. Toxins Incl. Trop. Dis. 2021, 27, e20200147. [Google Scholar] [CrossRef] [PubMed]
- Calixto, J.B.; Otuki, M.F.; Santos, A.R. Anti-inflammatory compounds of plant origin. Part I. Action on arachidonic acid pathway, nitric oxide and nuclear factor kappa B (NF-kappaB). Planta Med. 2003, 69, 973–983. [Google Scholar] [CrossRef] [PubMed]
- Dias, M.C.; Pinto, D.C.G.A.; Silva, A.M.S. Plant Flavonoids: Chemical Characteristics and Biological Activity. Molecules 2021, 26, 5377. [Google Scholar] [CrossRef]
- Alseekh, S.; Perez de Souza, L.; Benina, M.; Fernie, A.R. The style and substance of plant flavonoid decoration; towards defining both structure and function. Phytochemistry 2020, 174, 112347. [Google Scholar] [CrossRef]
- Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. Sci. World J. 2013, 1, 162750. [Google Scholar] [CrossRef]
- Van Acker, F.A.; Hageman, J.A.; Haenen, G.R.; Van der Vijgh, W.J.; Bast, A.; Menge, W.M. Synthesis of novel 3, 7-substituted-2-(3‘,4‘-dihydroxyphenyl) flavones with improved antioxidant activity. J. Med. Chem. 2000, 43, 3752–3760. [Google Scholar] [CrossRef]
- Andrade-Carrera, B.; Clares, B.; Noé, V.; Mallandrich, M.; Calpena, A.C.; García, M.L.; Garduño-Ramírez, M.L. Cytotoxic Evaluation of (2S)-5,7-dihydroxy-6-prenylflavanone derivatives loaded PLGA nanoparticles against MiaPaCa-2 Cells. Molecules 2017, 22, 1553. [Google Scholar] [CrossRef]
- Suh, S.S.; Hong, J.M.; Kim, E.J.; Jung, S.W.; Kim, S.M.; Kim, J.E.; Kim, S. Anti-inflammation and anti-cancer activity of ethanol extract of antarctic freshwater microalga, Micractinium sp. Int. J. Med. Sci. 2018, 15, 929–936. [Google Scholar] [CrossRef]
- Mestas, J.; Ley, K. Monocyte-endothelial cell interactions in thedevelopment of atherosclerosis. Trends Cardiovasc. Med. 2008, 18, 228–232. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Villegas, V.; Domínguez-Villegas, V.; García, M.L.; Calpena, A.; Clares-Naveros, B.; Garduño-Reamírez, M.L. Anti-inflammatory, antioxidant and cytotoxicity activities of methanolic extract prenylated flavanones isolated from leaves of Eysehardtia platycarpa. Nat. Prod. Commun. 2013, 8, 177–180. [Google Scholar] [CrossRef]
- Shamsudin, N.F.; Ahmed, Q.U.; Mahmood, S.; Shah, S.A.A.; Sarian, M.N.; Khattak, M.M.A.K.; Latip, J. Flavonoids as antidiabetic and anti-inflammatory agents: A review on structural activity relationship-based studies and meta-analysis. Int. J. Mol. Sci. 2022, 23, 12605. [Google Scholar] [CrossRef]
- Wang, X.; Cao, Y.; Chen, S.; Lin, J.; Bian, J.; Huang, D. Anti-inflammation activity of flavones and their structure–activity relationship. J. Agric. Food Chem. 2021, 69, 7285–7302. [Google Scholar] [CrossRef]
- Chen, X.; Mukwaya, E.; Wong, M.S.; Zhang, Y. A systematic review on biological activities of prenylated flavonoids. Pharm. Biol. 2014, 52, 655–660. [Google Scholar] [CrossRef]
- Nugroho, A.A.; Hadi, M.S.; Adianto, C.; Putra, J.A.K.; Purnomo, H.; Fakhrudin, N. Molecular Docking and ADMET Prediction Studies of Flavonoids as Multi-Target Agents In COVID-19 Therapy: Anti-Inflammatory and Antiviral Approaches. Indones. J. Pharm. 2023, 34, 651–664. [Google Scholar] [CrossRef]
- Narváez-Mastache, J.M.; Garduño-Ramírez, M.L.; Alvarez, L.; Delgado, G. Antihyperglycemic activity and chemical constituents of Eysenhardtia platycarpa (Fabaceae). J. Nat. Prod. 2006, 27, 1687–1691. [Google Scholar] [CrossRef] [PubMed]
- Delgado, A.; Minguillon, C.; Joglar, J. Introducción a la Química Terapéutica, 2nd ed.; Editorial Díaz de Santos: Madrid, Spain, 2004; pp. 119–142. [Google Scholar]
- Kiruthiga, N.; Alagumuthu, M.; Selvinthanuja, C.; Srinivasan, K.; Sivakumar, T. Molecular modelling, synthesis and evaluation of flavone and flavanone scaffolds as anti-inflammatory agents. Anti-Inflamm. Anti-Allergy Agents Med. Chem. 2021, 20, 20–38. [Google Scholar] [CrossRef]
- Anbu, N.; Nagarjun, N.; Jacob, M.; Kalaiarasi, J.M.V.K.; Dhakshinamoorthy, A. Acetylation of alcohols, amines, phenols, thiols under catalyst and solvent-free conditions. Chemistry 2019, 1, 69–79. [Google Scholar] [CrossRef]
- Neeman, M.; Caserio, M.C.; Roberts, J.D.; Johnson, W.S. Methylation of alcohols with diazomethane. Tetrahedron 1959, 6, 36–47. [Google Scholar] [CrossRef]
- Jain, A.C.; Gupta, R.C.; Sarpal, P.D. Synthesis of (±) lupinifolin, di-O-methyl xanthohumol and isoxanthohumol and related compounds. Tetrahedron 1978, 34, 3563–3567. [Google Scholar] [CrossRef]
- Nagar, A.; Gujral, V.K.; Gupta, S.R. Synthesis of lupinifolin. Tetrahedron Lett. 1978, 23, 2031–2034. [Google Scholar] [CrossRef]
- Buck, K.W.; Duxbury, J.M.; Foster, A.B.; Perry, A.R.; Webber, J.M. Observations on esterification reactions. Carbohydr. Res. 1966, 2, 122–131. [Google Scholar] [CrossRef]
- Shin, J.S.; Kim, K.S.; Kim, M.B.; Jeong, J.H.; Kim, B.K. Synthesis and hypoglycemic effect of chrysin derivatives. Bioorg. Med. Chem. Lett. 1999, 9, 869–874. [Google Scholar] [CrossRef]
- Bernini, R.; Crisante, F.; Ginnasi, M.C. A convenient and safe O-methylation of flavonoids with dimethyl carbonate (DMC). Molecules 2011, 16, 1418–1425. [Google Scholar] [CrossRef] [PubMed]
- Barreiro, E.J.; Fraga, C.A.M. Química Medicinal—As Bases Moleculares da Açāo dos Fármacos, 2nd ed.; Artmed: Porto Alegre, Brazil, 2008; pp. 77–81. [Google Scholar]
- Testa, B.; Carrupt, P.A.; Gaillard, P.; Billois, F.; Weber, P. Lipophilicity in molecular modeling. Pharm. Res. 1996, 13, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.L.; Chen, Y.L.; Kuo, Y.H. Three new flavonoids, 3′-methoxylupinifolin, laxifolin, and isolaxifolin from the roots of Derris laxiflora Benth. Chem. Pharm. Bull. 1991, 39, 3132–3135. [Google Scholar] [CrossRef]
- Kühnel, E.; Laffan, D.D.; Lloyd-Jones, G.C.; Martínez del Campo, T.; Shepperson, I.R.; Slaughter, J.L. Mechanism of methyl esterification of carboxylic acids by trimethylsilyldiazomethane. Angew. Chem. Int. Ed. 2007, 46, 7075–7078. [Google Scholar] [CrossRef]
- Filho, R.B.; Gottlieb, O.R.; Mourao, A.P. A Stilbene and two flavanones from Derris rariflora. Phytochemistry 1975, 14, 261–263. [Google Scholar] [CrossRef]
- Ahluwalia, V.K.; Jain, A.; Gupta, R.A. A convenient synthesis of linear 2-methylpyrianochromones. Bull. Chem. Soc. Jpn. 1982, 55, 2649–2652. [Google Scholar] [CrossRef]
- Todeschini, R.; Consonni, V. Molecular Descriptors for Chemoinformatics: Volume I: Alphabetical Listing/Volume II: Appendices, References; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- López-Lázaro, M. Distribution and biological activities of the flavonoid luteolin. Mini Rev. Med. Chem. 2009, 9, 31–59. [Google Scholar] [CrossRef]
- Ghose, A.K.; Viswanadhan, V.N.; Wendoloski, J.J. Prediction of hydrophobic (lipophilic) properties of small organic molecules using fragmental methods: An analysis of ALOGP and CLOGP methods. J. Phys. Chem. A 1998, 102, 3762–3772. [Google Scholar] [CrossRef]
- Roy, K.; Kar, S.; Das, R.N. Understanding the Basics of QSAR for Applications in Pharmaceutical Sciences and Risk Assessment; Academic press: Cambridge, MA, USA, 2015. [Google Scholar]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 1997, 23, 3–25. [Google Scholar] [CrossRef]
- Leeson, P.D.; Springthorpe, B. The influence of drug-like concepts on decision-making in medicinal chemistry. Nat. Rev. Drug Discov. 2007, 206, 881–890. [Google Scholar] [CrossRef] [PubMed]
- Constantinescu, T.; Lungu, C.N.; Lung, I. Lipophilicity as a central component of drug-like properties of chalchones and flavonoid derivatives. Molecules 2019, 24, 1505. [Google Scholar] [CrossRef]
- Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med. 2010, 49, 1603–1616. [Google Scholar] [CrossRef]
- García-Lafuente, A.; Guillamón, E.; Villares, A.; Rostagno, M.A.; Martínez, J.A. Flavonoids as anti-inflammatory agents: Implications in cancer and cardiovascular disease. Inflamm. Res. 2009, 58, 537–552. [Google Scholar] [CrossRef]
- Chen, L.; Teng, H.; Xie, Z.; Cao, H.; Cheang, W.S.; Skalicka-Woniak, K.; Xiao, J. Modifications of dietary flavonoids towards improved bioactivity: An update on structure–activity relationship. Crit. Rev. Food Sci. Nutr. 2018, 58, 513–527. [Google Scholar] [CrossRef]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef] [PubMed]
- Zanger, U.M.; Schwab, M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther. 2013, 138, 103–141. [Google Scholar] [CrossRef]
- Savjani, K.T.; Gajjar, A.K.; Savjani, J.K. Drug solubility: Importance and enhancement techniques. Int. Sch. Res. Not. 2012, 2012, 195727. [Google Scholar] [CrossRef]
- Bennett, M.; Gilroy, D.W. Lipid mediators in inflammation. In Myeloid Cells in Health and Disease: A Synthesis; John Wiley & Sons: Hoboken, NJ, USA, 2017; pp. 343–366. [Google Scholar] [CrossRef]
- Radi, R. Oxygen radicals, nitric oxide, and peroxynitrite: Redox pathways in molecular medicine. Proc. Natl. Acad. Sci. USA 2018, 115, 5839–5848. [Google Scholar] [CrossRef] [PubMed]
- Vane, J.R.; Botting, R.M. Mechanism of action of anti-inflammatory drugs. Scand. J. Rheumatol. 1996, 25 (Suppl. S102), 9–21. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, A.L. Network pharmacology: The next paradigm in drug discovery. Nat. Chem. Biol. 2008, 4, 682–690. [Google Scholar] [CrossRef] [PubMed]
- Rouzer, C.A.; Marnett, L.J. Cyclooxygenases: Structural and functional insights. J. Lipid Res. 2009, 50, S29–S34. [Google Scholar] [CrossRef]
- Rouzer, C.A.; Marnett, L.J. Structural and chemical biology of the interaction of cyclooxygenase with substrates and non-steroidal anti-inflammatory drugs. Chem. Rev. 2020, 120, 7592–7641. [Google Scholar] [CrossRef]
- During, A.; Larondelle, Y. The O-methylation of chrysin markedly improves its intestinal anti-inflammatory properties: Structure–activity relationships of flavones. Biochem. Pharmacol. 2013, 86, 1739–1746. [Google Scholar] [CrossRef]
- Botta, B.; Vitali, A.; Menendez, P.; Misiti, D.; Monache, G.D. Prenylated flavonoids: Pharmacology and biotechnology. Curr. Med. Chem. 2005, 12, 713–739. [Google Scholar] [CrossRef]
- Souza, R.O.D.; Hilgenberg, L.C.; Pinto, A.C.; Costa, R.A.; Simplicio, F.G.; Lima, E.S. Novel flavanone naringenin derivative with anti-inflammatory activity. J. Braz. Chem. Soc. 2024, 35, e-20230157. [Google Scholar] [CrossRef]
- Jaworska, D.; Kłósek, M.; Bronikowska, J.; Krawczyk-Łebek, A.; Perz, M.; Kostrzewa-Susłow, E.; Czuba, Z.P. Methyl Derivatives of Flavone as Potential Anti-Inflammatory Compounds. Int. J. Mol. Sci. 2025, 26, 729. [Google Scholar] [CrossRef]
- Stabrauskiene, J.; Kopustinskiene, D.M.; Lazauskas, R.; Bernatoniene, J. Naringin and naringenin: Their mechanisms of action and the potential anticancer activities. Biomedicines 2022, 10, 1686. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Wen, H.; Zhou, H.; Zhang, D.; Lan, D.; Liu, S.; Zhang, J. Naringenin: A flavanone with anti-inflammatory and anti-infective properties. Biomed. Pharmacother. 2023, 164, 114990. [Google Scholar] [CrossRef]
- Morante-Carriel, J.; Nájera, H.; Samper-Herrero, A.; Živković, S.; Martínez-Esteso, M.J.; Martínez-Márquez, A.; Bru-Martínez, R. Therapeutic Potential of Prenylated Flavonoids of the Fabaceae Family in Medicinal Chemistry: An Updated Review. Int. J. Mol. Sci. 2024, 25, 13036. [Google Scholar] [CrossRef]
- Abdul-Hammed, M.; Adedotun, I.O.; Akinboade, M.W.; Adegboyega, T.A.; Salaudeen, O.M. Antibacterial activities, PASS prediction and ADME analysis of phytochemicals from Curcubita moschata, Curcubita maxima, and Irvingia gabonensis: Insights from in silico studies. In Silico Pharmacol. 2024, 12, 65. [Google Scholar] [CrossRef] [PubMed]
- NOM-062-ZOO-1999; Especificaciones Técnicas para la Producción, Cuidado y Uso de los Animales de Laboratorio. NORMA Oficial Mexicana: Mexico, Mexico, 1999.
- Suresh, R.V.; Iyer, C.S.R.; Iyer, P.R. Cinnamoylation of chromans: Formation of flavonoids and neoflavonoids. Heterocycles 1986, 24, 1925–1930. [Google Scholar] [CrossRef]
Physicochemical Properties | Compounds | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
(1) | (1a) | (1b) | (1c) | (1d) | (2) | (2a) | (2b) | (2c) | (2d) | Indomethacin | |
Total Energy (kcal/mol) | −98,539.800 | −126,384.000 | −102,117.000 | −98,543.600 | −97,886.078 | −109,514.032 | −137,357.701 | −113,091.124 | −109,517.615 | −108,860.185 | −104,099.550 |
Bond Energy (kcal/mol) | −5090.910 | −6159.707 | −5356.437 | −5094.670 | −4962.790 | −5463.810 | −6532.550 | −5729.163 | −5467.390 | −5335.570 | −4548.765 |
Heat of Formation (H°f) (kcal/mol) | −117.740 | −175.450 | −108.173 | −121.500 | −93.820 | −155.990 | −213.640 | −146.246 | −159.670 | −131.950 | −87.997 |
Dipole Moment (µ) | 4.263 | 1.981 | 2.079 | 4.262 | 3.770 | 4.562 | 2.649 | 3.525 | 4.930 | 4.220 | 1.996 |
HOMO (eV) | −8.860 | −9.030 | −8.830 | −8.760 | −8.610 | −8.854 | −9.033 | −8.837 | −8.751 | −8.600 | −8.755 |
LUMO (eV) | −0.482 | −0.660 | −0.644 | −0.4 | −0.479 | −0.469 | −0.653 | −0.633 | −0.389 | −0.464 | −0.857 |
Molecular Surface Area (A2) | 567.310 | 681.540 | 587.830 | 564.470 | 561.650 | 608.150 | 721.54 | 641.400 | 607.700 | 606.060 | 504.830 |
Molecular Weight (MW) (uma) | 338.400 | 428.480 | 352.430 | 338.400 | 336.400 | 368.430 | 452.500 | 382.460 | 368.430 | 366.410 | 357.790 |
Molecular Volume (MV) (A3) | 979.300 | 1199.640 | 1029.93 | 968.9 | 961.130 | 1054.850 | 1275.400 | 1121.140 | 1045.830 | 1083.010 | 960.940 |
Logarithm of the Partition Coefficient (Log P) | 0.850 | 0.420 | 0.880 | 0.200 | 0.090 | −0.140 | −0.580 | −0.110 | −0.790 | −0.910 | −1.430 |
Compounds | Pharmacokinetics | |||||
---|---|---|---|---|---|---|
GI Absortion | BBB Permeation | CYP450 Inhibition | TPSA (Å2) | Log P | Water Solubility (Log S) | |
(1) | High | Yes | CYP1A2: Yes CYP2C19: Yes CYP2C9: Yes CYP2D6: No CYP3A4: Yes | 66.76 | 3.97 | −5.27 |
(1a) | High | No | CYP1A2: No CYP2C19: Yes CYP2C9: Yes CYP2D6: No CYP3A4: Yes | 78.90 | 4.46 | −5.24 |
(1b) | High | Yes | CYP1A2: No CYP2C19: Yes CYP2C9: Yes CYP2D6: No CYP3A4: Yes | 55.75 | 4.34 | −5.48 |
(1c) | High | Yes | CYP1A2: Yes CYP2C19: Yes CYP2C9: Yes CYP2D6: Yes CYP3A4: Yes | 55.76 | 3.91 | −5.03 |
(1d) | High | Yes | CYP1A2: Yes CYP2C19: Yes CYP2C9: No CYP2D6: No CYP3A4: Yes | 55.76 | 2.97 | −3.79 |
Compounds | Pharmacokinetics | |||||
---|---|---|---|---|---|---|
GI Absortion | BBB Permeation | CYP450 Inhibition | TPSA (Å2) | Log P | Water Solubility (Log S) | |
(2) | High | No | CYP1A2: No CYP2C19: Yes CYP2C9: Yes CYP2D6: No CYP3A4: Yes | 75.99 | 3.99 | −5.35 |
(2a) | High | No | CYP1A2: No CYP2C19: Yes CYP2C9: Yes CYP2D6: No CYP3A4: Yes | 88.13 | 4.45 | −5.33 |
(2b) | High | Yes | CYP1A2: No CYP2C19: Yes CYP2C9: Yes CYP2D6: No CYP3A4: Yes | 64.99 | 4.36 | −5.56 |
(2c) | High | Yes | CYP1A2: No CYP2C19: Yes CYP2C9: Yes CYP2D6: Yes CYP3A4: Yes | 64.99 | 3.88 | −5.11 |
(2d) | High | Yes | CYP1A2: No CYP2C19: No CYP2C9: No CYP2D6: No CYP3A4: Yes | 64.99 | 2.67 | −3.88 |
Indomethacin | High | No | CYP1A2: Yes CYP2C19: No CYP2C9: Yes CYP2D6: No CYP3A4: No | 77.76 | 3.35 | −4.66 |
Compounds | Anti-Inflammatory | NOS2 Expression Inhibitor | Free Radical Scavenger | Lipid Peroxidase Inhibitor | Antioxidant | HMOX1 Expression Enhancer | MMP9 Expression Inhibitor | Histamine Release Inhibitor | Cytoprotectant |
---|---|---|---|---|---|---|---|---|---|
(1) | 0.782 | 0.860 | 0.857 | 0.922 | 0.778 | 0.693 | 0.672 | 0.672 | 0.627 |
(1a) | 0.803 | 0.686 | 0.793 | 0.925 | 0.678 | 0.631 | ND | 0.617 | 0.659 |
(1b) | 0.740 | 0.848 | 0.896 | 0.927 | 0.697 | 0.665 | 0.661 | 0.639 | 0.632 |
(1c) | 0.743 | 0.715 | 0.786 | 0.930 | 0.780 | 0.617 | ND | 0.556 | 0.588 |
(1d) | 0.630 | 0.861 | 0.844 | 0.790 | 0.759 | 0.620 | 0.449 | 0.568 | 0.612 |
(2) | 0.754 | 0.899 | 0.917 | 0.937 | 0.716 | 0.647 | 0.733 | 0.635 | 0.634 |
(2a) | 0.776 | 0.772 | 0.868 | 0.938 | 0.633 | 0.567 | 0.512 | 0.585 | 0.665 |
(2b) | 0.734 | 0.868 | 0.914 | 0.935 | 0.692 | 0.647 | 0.678 | 0.631 | 0.634 |
(2c) | 0.711 | 0.806 | 0.858 | 0.943 | 0.717 | 0.551 | 0.502 | 0.531 | 0.598 |
(2d) | ND | 0.746 | 0.633 | ND | 0.547 | 0.516 | ND | ND | 0.605 |
Indomethacin | 0.711 | 0.440 | 0.151 | 0.410 | ND | 0.298 | 0.231 | 0.242 | 0.285 |
Compounds | Inflammation Inhibition Percentage (%) |
---|---|
(1) | 12.20 ± 1.12 g |
(1a) | 16.02 ± 1.47 g |
(1b) | 36.66 ± 2.02 ef |
(1c) | 71.64 ± 1.86 c |
(1d) | 37.79 ± 1.83 ef |
(2) | 68.35 ± 1.45 d |
(2a) | 41.75 ± 2.07 e |
(2b) | 25.69 ± 1.59 f |
(2c) | 98.62 ± 1.92 a |
(2d) | 76.12 ± 1.74 c |
Indomethacine | 91. 00 ± 0.46 b |
Structural Feature | Effect on Activity | Supporting Evidence |
---|---|---|
Cyclization/rigidity | ↑ target binding, ↓ entropic penalty | (2c) > (1), (2) (Section 3.5) |
Methoxy group at 4′ | ↑ lipophilicity, permeability, stability | (2c) > (1c) (Section 3.4) |
Conjugated double bond (2d) | ↓ activity, ↑ reactivity, potential metabolite formation | (2d) < (2c) (Section 3.5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrade-Carrera, B.; Domínguez-Villegas, V.; Calpena, A.C.; Garduño-Ramírez, M.L. In Vivo Anti-Inflammatory Evaluation and In Silico Physicochemical Characterization of Flavanones from E. platycarpa Leaves. Molecules 2025, 30, 3728. https://doi.org/10.3390/molecules30183728
Andrade-Carrera B, Domínguez-Villegas V, Calpena AC, Garduño-Ramírez ML. In Vivo Anti-Inflammatory Evaluation and In Silico Physicochemical Characterization of Flavanones from E. platycarpa Leaves. Molecules. 2025; 30(18):3728. https://doi.org/10.3390/molecules30183728
Chicago/Turabian StyleAndrade-Carrera, Berenice, Valeri Domínguez-Villegas, Ana Cristina Calpena, and María Luisa Garduño-Ramírez. 2025. "In Vivo Anti-Inflammatory Evaluation and In Silico Physicochemical Characterization of Flavanones from E. platycarpa Leaves" Molecules 30, no. 18: 3728. https://doi.org/10.3390/molecules30183728
APA StyleAndrade-Carrera, B., Domínguez-Villegas, V., Calpena, A. C., & Garduño-Ramírez, M. L. (2025). In Vivo Anti-Inflammatory Evaluation and In Silico Physicochemical Characterization of Flavanones from E. platycarpa Leaves. Molecules, 30(18), 3728. https://doi.org/10.3390/molecules30183728