Membranes from Carboxymethyl Cellulose/Carboxylated Graphene Oxide for Sustainable Water Treatment by Pervaporation and Nanofiltration
Abstract
1. Introduction
2. Results and Discussion
2.1. Structure and Physicochemical Properties of CMC-Based Membranes
2.2. Transport Characteristics of CMC-Based Membranes
2.2.1. Pervaporation Performance
2.2.2. Nanofiltration Performance
3. Materials and Methods
3.1. Materials
3.2. Preparation of Carboxylated GO
3.3. Membrane Preparation
3.3.1. Dense Membranes
3.3.2. Supported Membranes
3.3.3. Cross-Linking of Membranes
3.4. Membrane Performance Investigation
3.4.1. Pervaporation
3.4.2. Nanofiltration
3.5. Structure and Properties Investigation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Atlaskin, A.A.; Trubyanov, M.M.; Yanbikov, N.R.; Bukovsky, M.V.; Drozdov, P.N.; Vorotyntsev, V.M.; Vorotyntsev, I.V. Total Reflux Operating Mode of Apparatuses of a Membrane Column Type during High Purification of Gases to Remove a Highly Permeable Impurity. Pet. Chem. 2018, 58, 508–517. [Google Scholar] [CrossRef]
- Davletbaeva, I.; Zaripov, I.; Mazilnikov, A.; Davletbaev, R.; Sharifullin, R.; Atlaskin, A.; Sazanova, T.; Vorotyntsev, I. Synthesis and Study of Gas Transport Properties of Polymers Based on Macroinitiators and 2,4-Toluene Diisocyanate. Membranes 2019, 9, 42. [Google Scholar] [CrossRef]
- Besha, A.T.; Tsehaye, M.T.; Tiruye, G.A.; Gebreyohannes, A.Y.; Awoke, A.; Tufa, R.A. Deployable Membrane-Based Energy Technologies: The Ethiopian Prospect. Sustainability 2020, 12, 8792. [Google Scholar] [CrossRef]
- Gui, S.; Mai, Z.; Fu, J.; Wei, Y.; Wan, J. Transport Models of Ammonium Nitrogen in Wastewater from Rare Earth Smelteries by Reverse Osmosis Membranes. Sustainability 2020, 12, 6230. [Google Scholar] [CrossRef]
- Gonçalves, R.; Serra, J.; Reizabal, A.; Correia, D.M.; Fernandes, L.C.; Brito-Pereira, R.; Lizundia, E.; Costa, C.M.; Lanceros-Méndez, S. Biobased polymers for advanced applications: Towards a sustainable future. Prog. Polym. Sci. 2025, 162, 101934. [Google Scholar] [CrossRef]
- Xiong, Y.; Shu, Y.; Deng, N.; Luo, X.; Liu, S.; Wu, X. A Novel Modified ZIF-8 Nanoparticle with Enhanced Interfacial Compatibility and Pervaporation Performance in a Mixed Matrix Membrane for De-Alcoholization in Low-Concentration Solutions. Molecules 2024, 29, 4465. [Google Scholar] [CrossRef]
- Namla, D.; Oves, M.; Alshaeri, M.A.; Al-Maaqar, S.M.; Issa, H.N.Y.; Mangse, G. Nanofiltration as an advanced wastewater treatment technique: A comprehensive review. Discov. Appl. Sci. 2025, 7, 355. [Google Scholar] [CrossRef]
- Zhang, F.; Dou, J.; Zhang, H. Mixed Membranes Comprising Carboxymethyl Cellulose (as Capping Agent and Gas Barrier Matrix) and Nanoporous ZIF-L Nanosheets for Gas Separation Applications. Polymers 2018, 10, 1340. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, X.; Zhang, X.; Liu, W.; Fan, M.; Wang, L. Functionalized Cyclodextrin/Carboxymethyl Cellulose Composite Hydrogel with Double Network Structure for Adsorption of Heavy Metal Ions in Wastewater. Molecules 2024, 29, 5414. [Google Scholar] [CrossRef]
- Rahman, M.S.; Hasan, M.S.; Nitai, A.S.; Nam, S.; Karmakar, A.K.; Ahsan, M.S.; Shiddiky, M.J.A.; Ahmed, M.B. Recent Developments of Carboxymethyl Cellulose. Polymers 2021, 13, 1345. [Google Scholar] [CrossRef] [PubMed]
- Araújo, T.; Parnell, A.J.; Bernardo, G.; Mendes, A. Cellulose-based carbon membranes for gas separations - Unraveling structural parameters and surface chemistry for superior separation performance. Carbon 2023, 204, 398–410. [Google Scholar] [CrossRef]
- Kalahal, P.B.; Sajjan, A.M.; Yunus Khan, T.M.; Rajhi, A.A.; Achappa, S.; Banapurmath, N.R.; M, A.; Duhduh, A.A. Novel Polyelectrolyte Complex Membranes Containing Carboxymethyl Cellulose–Gelatin for Pervaporation Dehydration of Azeotropic Bioethanol for Biofuel. Polymers 2022, 14, 5114. [Google Scholar] [CrossRef]
- Jo, S.; Chaudhari, S.; Shin, H.; Fitriasari, E.I.; Shon, M.; Nam, S.; Park, Y. Strategies to overcome the limitations of cross-linked hydrophilic PVA membranes; carboxy methyl cellulose blending for epichlorohydrin-isopropanol-water pervaporation dehydration. J. Water Process Eng. 2023, 55, 104101. [Google Scholar] [CrossRef]
- Gasemloo, S.; Khosravi, M.; Sohrabi, M.R.; Dastmalchi, S.; Gharbani, P. Response surface methodology (RSM) modeling to improve removal of Cr (VI) ions from tannery wastewater using sulfated carboxymethyl cellulose nanofilter. J. Clean. Prod. 2019, 208, 736–742. [Google Scholar] [CrossRef]
- Wu, J.-K.; Ye, C.-C.; Liu, T.; An, Q.-F.; Song, Y.-H.; Lee, K.-R.; Hung, W.-S.; Gao, C.-J. Synergistic effects of CNT and GO on enhancing mechanical properties and separation performance of polyelectrolyte complex membranes. Mater. Des. 2017, 119, 38–46. [Google Scholar] [CrossRef]
- Dmitrenko, M.E.; Kuzminova, A.I.; Zolotarev, A.A.; Korniak, A.S.; Ermakov, S.S.; Su, R.; Penkova, A.V. Novel mixed matrix membranes based on polyelectrolyte complex modified with fullerene derivatives for enhanced pervaporation and nanofiltration. Sep. Purif. Technol. 2022, 298, 121649. [Google Scholar] [CrossRef]
- Wu, J.-K.; Wang, X.-S.; Chen, K.-F.; Zhou, G.-J.; Li, X.; Xu, J.; An, Q.-F. The states of sulfate groups affect the mechanical and separation properties of carboxymethyl cellulose/chitosan complex membranes. RSC Adv. 2016, 6, 26352–26360. [Google Scholar] [CrossRef]
- Kuzminova, A.; Dmitrenko, M.; Dubovenko, R.; Mikulan, A.; Stepanova, A.; Puzikova, M.; Rakovskaya, N.; Mazur, A.; Shurukhina, A.; Rudakova, A.; et al. Sustainable Novel Membranes Based on Carboxymethyl Cellulose Modified with ZIF-8 for Isopropanol/Water Pervaporation Separation. Sustainability 2025, 17, 3801. [Google Scholar] [CrossRef]
- Guntakanti, U.; Obireddy, S.R.; Thammineni, J.; Merugu, K.S.; Kowthalam, A.; Chintha, M. Development and Characterization of Silicotungstic Acid-loaded Sodium Polymeric Composite Membranes for Pervaporation Applications. Asian J. Chem. 2025, 37, 865–872. [Google Scholar] [CrossRef]
- Kuila, S.B.; Ray, S.K. Separation of benzene–cyclohexane mixtures by filled blend membranes of carboxymethyl cellulose and sodium alginate. Sep. Purif. Technol. 2014, 123, 45–52. [Google Scholar] [CrossRef]
- Saraswathi, M.; Viswanath, B. Separation of water–isopropyl alcohol mixtures with novel hybrid composite membranes. J. Appl. Polym. Sci. 2012, 126, 1867–1875. [Google Scholar] [CrossRef]
- Nigiz, F.U.; Hilmioglu, N.D. Simultaneous separation performance of a catalytic membrane reactor for ethyl lactate production by using boric acid coated carboxymethyl cellulose membrane. React. Kinet. Mech. Catal. 2016, 118, 557–575. [Google Scholar] [CrossRef]
- Dmitrenko, M.; Kuzminova, A.; Zolotarev, A.; Selyutin, A.; Ermakov, S.; Penkova, A. Nanofiltration Mixed Matrix Membranes from Cellulose Modified with Zn-Based Metal–Organic Frameworks for the Enhanced Water Treatment from Heavy Metal Ions. Polymers 2023, 15, 1341. [Google Scholar] [CrossRef]
- Dmitrenko, M.; Kuzminova, A.; Dubovenko, R.; Mikulan, A.; Puzikova, M.; Selyutin, A.; Mazur, A.; Ermakov, S.; Su, R.; Penkova, A. Carboxymethyl cellulose/Zn-based metal organic frameworks membranes for pervaporation-assisted esterification reactor. Sep. Purif. Technol. 2024, 332, 125720. [Google Scholar] [CrossRef]
- Yin, J.; Zhang, C.; Ding, S.; Du, H.; Tan, Z.; Li, M.; Wang, B.; Wang, T. The strategies to improve the interfacial compatibility in mixed-matrix membranes: A review. Mater. Today Energy 2025, 49, 101811. [Google Scholar] [CrossRef]
- Zarafu, I.; Mușat, I.; Limban, C.; Nuță, D.C.; Dulama, I.D.; Radulescu, C.; Stirbescu, R.M.; Tatibouet, A.; Chifiriuc, C.M.; Marutescu, L.; et al. Multifunctional Evaluation of Graphene Oxide–Sulfonamide Nanoconjugates: Antimicrobial, Antibiofilm, Cytocompatibility and Xenobiotic Metabolism Gene Expression Insight. Molecules 2025, 30, 2585. [Google Scholar] [CrossRef] [PubMed]
- Penkova, A.V.; Dmitrenko, M.E.; Hafusa, A.; Yaragalla, S.; Thomas, S. Analytical applications of graphene oxide for membrane processes as separation and concentration methods. In Comprehensive Analytical Chemistry; Hussain, C.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 99–124. [Google Scholar]
- Ranjan, P.; Balakrishnan, J.; Thakur, A.D. Dye Adsorption Behavior of Graphene Oxide. Mater. Today Proc. 2019, 11, 833–836. [Google Scholar] [CrossRef]
- Molla, A.; Li, Y.; Mandal, B.; Kang, S.G.; Hur, S.H.; Chung, J.S. Selective adsorption of organic dyes on graphene oxide: Theoretical and experimental analysis. Appl. Surf. Sci. 2019, 464, 170–177. [Google Scholar] [CrossRef]
- Liu, X.; Ma, R.; Wang, X.; Ma, Y.; Yang, Y.; Zhuang, L.; Zhang, S.; Jehan, R.; Chen, J.; Wang, X. Graphene oxide-based materials for efficient removal of heavy metal ions from aqueous solution: A review. Environ. Pollut. 2019, 252, 62–73. [Google Scholar] [CrossRef]
- Kichukova, D.; Lazarova, T.; Atanasova, G.; Kovacheva, D.; Spassova, I. Tailored Carbon Nanocomposites for Efficient CO2 Capture. Molecules 2025, 30, 2408. [Google Scholar] [CrossRef]
- Eltaweil, A.S.; Elgarhy, G.S.; El-Subruiti, G.M.; Omer, A.M. Carboxymethyl cellulose/carboxylated graphene oxide composite microbeads for efficient adsorption of cationic methylene blue dye. Int. J. Biol. Macromol. 2020, 154, 307–318. [Google Scholar] [CrossRef]
- Wan, C.; Li, J. Graphene oxide/cellulose aerogels nanocomposite: Preparation, pyrolysis, and application for electromagnetic interference shielding. Carbohydr. Polym. 2016, 150, 172–179. [Google Scholar] [CrossRef]
- Mohamed, E.N.; Abd-Elhamid, A.I.; El-Bardan, A.A.; Soliman, H.M.A.; Mohy-Eldin, M.S. Development of carboxymethyl cellulose-graphene oxide biobased composite for the removal of methylene blue cationic dye model contaminate from wastewater. Sci. Rep. 2023, 13, 14265. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Zhu, J.; Xu, M.; Lei, Z.; Hu, Q.; Jin, X. Flexible and alternately layered high electrochemical active electrode based on MXene, carboxymethylcellulose, and carbon nanotube for asymmetric micro-supercapacitors. J. Colloid Interface Sci. 2023, 645, 974–984. [Google Scholar] [CrossRef] [PubMed]
- Khabibi, K.; Siswanta, D.; Mudasir, M. Preparation, Characterization, and In Vitro Hemocompatibility of Glutaraldehyde-Crosslinked Chitosan/Carboxymethylcellulose as Hemodialysis Membrane. Indones. J. Chem. 2021, 21, 1120. [Google Scholar] [CrossRef]
- Dmitrenko, M.; Mikhailovskaya, O.; Dubovenko, R.; Kuzminova, A.; Myznikov, D.; Mazur, A.; Semenov, K.; Rusalev, Y.; Soldatov, A.; Ermakov, S.; et al. Pervaporation Membranes Based on Polyelectrolyte Complex of Sodium Alginate/Polyethyleneimine Modified with Graphene Oxide for Ethanol Dehydration. Polymers 2024, 16, 1206. [Google Scholar] [CrossRef]
- Pratinthong, K.; Punyodom, W.; Jantrawut, P.; Jantanasakulwong, K.; Tongdeesoontorn, W.; Sriyai, M.; Panyathip, R.; Thanakkasaranee, S.; Worajittiphon, P.; Tanadchangsaeng, N.; et al. Modification of a Carboxymethyl Cellulose/Poly(vinyl alcohol) Hydrogel Film with Citric Acid and Glutaraldehyde Crosslink Agents to Enhance the Anti-Inflammatory Effectiveness of Triamcinolone Acetonide in Wound Healing. Polymers 2024, 16, 1798. [Google Scholar] [CrossRef]
- Chen, Y.; Xie, B.; Ren, Y.; Yu, M.; Qu, Y.; Xie, T.; Zhang, Y.; Wu, Y. Designed nitrogen doping of few-layer graphene functionalized by selective oxygenic groups. Nanoscale Res. Lett. 2014, 9, 646. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, C.; Lü, Z.; Yu, S. Modification of polysulfone ultrafiltration membrane by sequential deposition of cross-linked poly(vinyl alcohol) (PVA) and sodium carboxymethyl cellulose (CMCNa) for nanofiltration. Desalin. Water Treat. 2016, 57, 17658–17669. [Google Scholar] [CrossRef]
- Hidayat, S.; Ardiaksa, P.; Riveli, N.; Rahayu, I. Synthesis and characterization of carboxymethyl cellulose (CMC) from salak-fruit seeds as anode binder for lithium-ion battery. J. Phys. Conf. Ser. 2018, 1080, 012017. [Google Scholar] [CrossRef]
- Huang, Z.-M.; Liu, X.-Y.; Wu, W.-G.; Li, Y.-Q.; Wang, H. Highly elastic and conductive graphene/carboxymethylcellulose aerogels for flexible strain-sensing materials. J. Mater. Sci. 2017, 52, 12540–12552. [Google Scholar] [CrossRef]
- He, M.; Liu, Z.; Wang, L.; Zhu, J.; Wang, J.; Miao, R.; Lv, Y.; Wang, X. Carboxymethylcellulose (CMC)/glutaraldehyde (GA)-modified Ti3C2Tx membrane and its efficient ion sieving performance. J. Membr. Sci. 2023, 675, 121541. [Google Scholar] [CrossRef]
- Luo, J.; Fan, C.; Xiao, Z.; Sun, T.; Zhou, X. Novel graphene oxide/carboxymethyl chitosan aerogels via vacuum-assisted self-assembly for heavy metal adsorption capacity. Colloids Surfaces A Physicochem. Eng. Asp. 2019, 578, 123584. [Google Scholar] [CrossRef]
- Buhus, G.; Popa, M.; Desbrieres, J. Hydrogels Based on Carboxymethylcellulose and Gelatin for Inclusion and Release of Chloramphenicol. J. Bioact. Compat. Polym. 2009, 24, 525–545. [Google Scholar] [CrossRef]
- Grabowska, B.; Sitarz, M.; Olejnik, E.; Kaczmarska, K. FT-IR and FT-Raman studies of cross-linking processes with Ca2+ ions, glutaraldehyde and microwave radiation for polymer composition of poly(acrylic acid)/sodium salt of carboxymethyl starch—Part I. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 135, 529–535. [Google Scholar] [CrossRef] [PubMed]
- Kono, H.; Yunoki, S.; Shikano, T.; Fujiwara, M.; Erata, T.; Takai, M. CP/MAS 13 C NMR Study of Cellulose and Cellulose Derivatives. 1. Complete Assignment of the CP/MAS 13 C NMR Spectrum of the Native Cellulose. J. Am. Chem. Soc. 2002, 124, 7506–7511. [Google Scholar] [CrossRef]
- Hidayat, R.A.R.; Chika, V.A.A.; Sofyan, M.I.; Restu, W.K.; Triwulandari, E.; Handayani, A.S.; Pramono, E.; Ndruru, S.T.C.L. Isolation, Modification and Characterization of Cellulose from Corn Husk Waste of Puncak-Bogor. ChemistrySelect 2023, 8, e202300746. [Google Scholar] [CrossRef]
- Kornilov, D.Y.; Gubin, S.P. Graphene Oxide: Structure, Properties, Synthesis, and Reduction (A Review). Russ. J. Inorg. Chem. 2020, 65, 1965–1976. [Google Scholar] [CrossRef]
- Aliyev, E.; Filiz, V.; Khan, M.M.; Lee, Y.J.; Abetz, C.; Abetz, V. Structural Characterization of Graphene Oxide: Surface Functional Groups and Fractionated Oxidative Debris. Nanomaterials 2019, 9, 1180. [Google Scholar] [CrossRef]
- Etale, A.; Nhlane, D.S.; Mosai, A.K.; Mhlongo, J.; Khan, A.; Rumbold, K.; Nuapia, Y. Synthesis and Application of Cationised Cellulose for Removal of Cr(VI) from Acid Mine-Drainage Contaminated Water. AAS Open Res. 2020, 4, 4. [Google Scholar] [CrossRef]
- Yáñez-S, M.; Matsuhiro, B.; Maldonado, S.; González, R.; Luengo, J.; Uyarte, O.; Serafine, D.; Moya, S.; Romero, J.; Torres, R.; et al. Carboxymethylcellulose from bleached organosolv fibers of Eucalyptus nitens: Synthesis and physicochemical characterization. Cellulose 2018, 25, 2901–2914. [Google Scholar] [CrossRef]
- Kapila, K.; Kirtania, S.; Nath, K.K.; Saikumar, A.; Badwaik, L.S.; Ahmed, G.A. Synergistic effect of graphene oxide on the properties of poly (vinyl alcohol)/carboxymethyl cellulose electrospun nanofiber mats. J. Vinyl Addit. Technol. 2025, 31, 572–588. [Google Scholar] [CrossRef]
- Das, M.; Sethy, C.; Kundu, C.N.; Tripathy, J. Synergetic reinforcing effect of graphene oxide and nanosilver on carboxymethyl cellulose/sodium alginate nanocomposite films: Assessment of physicochemical and antibacterial properties. Int. J. Biol. Macromol. 2023, 239, 124185. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Wan, M.; Huang, Z.; Kang, F. Preparation of graphene/metal-organic composites and their adsorption performance for benzene and ethanol. New Carbon Mater. 2015, 30, 566–571. [Google Scholar] [CrossRef]
- Zhang, L.; Dai, F.; Yi, R.; He, Z.; Wang, Z.; Chen, J.; Liu, W.; Xu, J.; Chen, L. Effect of physical and chemical structures of graphene oxide on water permeation in graphene oxide membranes. Appl. Surf. Sci. 2020, 520, 146308. [Google Scholar] [CrossRef]
- Zhang, Y.; Xin, J.; Huo, G.; Zhang, Z.; Zhou, X.; Bi, J.; Kang, S.; Dai, Z.; Li, N. Cross-linked PI membranes with simultaneously improved CO2 permeability and plasticization resistance via tunning polymer precursor orientation degree. J. Membr. Sci. 2023, 687, 121994. [Google Scholar] [CrossRef]
- Peyravi, M.; Jahanshahi, M.; Rahimpour, A.; Javadi, A.; Hajavi, S. Novel thin film nanocomposite membranes incorporated with functionalized TiO2 nanoparticles for organic solvent nanofiltration. Chem. Eng. J. 2014, 241, 155–166. [Google Scholar] [CrossRef]
- Gholami, N.; Mahdavi, H. Nanofiltration composite membranes of polyethersulfone and graphene oxide and sulfonated graphene oxide. Adv. Polym. Technol. 2018, 37, 3529–3541. [Google Scholar] [CrossRef]
- Dmitrenko, M.; Sushkova, X.; Chepeleva, A.; Liamin, V.; Mikhailovskaya, O.; Kuzminova, A.; Semenov, K.; Ermakov, S.; Penkova, A. Modification Approaches of Polyphenylene Oxide Membranes to Enhance Nanofiltration Performance. Membranes 2023, 13, 534. [Google Scholar] [CrossRef]
- Vaysizadeh, A.; Zinatizadeh, A.A.; Zinadini, S. Fouling mitigation and enhanced dye rejection in UF and NF membranes via layer-by-layer (LBL) assembly and altering PVP percentage as pore former. Environ. Technol. Innov. 2021, 23, 101698. [Google Scholar] [CrossRef]
- Lim, C.; Kim, N.; Lee, J.; Yoon, Y. Comparative evaluation of cationic and anionic dye removal using graphene oxide fabricated by Hummers and Couette-Taylor flow methods. Carbon Trends 2025, 19, 100476. [Google Scholar] [CrossRef]
- Dai, F.; Zhou, F.; Chen, J.; Liang, S.; Chen, L.; Fang, H. Ultrahigh water permeation with a high multivalent metal ion rejection rate through graphene oxide membranes. J. Mater. Chem. A 2021, 9, 10672–10677. [Google Scholar] [CrossRef]
- Ayub, M.; Othman, M.H.D. Graphene oxide-based nanofiltration membranes for separation of heavy metals. In Emerging Techniques for Treatment of Toxic Metals from Wastewater; Elsevier: Amsterdam, The Netherlands, 2023; pp. 231–288. [Google Scholar]
- Mukherjee, R.; Bhunia, P.; De, S. Impact of graphene oxide on removal of heavy metals using mixed matrix membrane. Chem. Eng. J. 2016, 292, 284–297. [Google Scholar] [CrossRef]
- Wanjiya, M.; Zhang, J.-C.; Wu, B.; Yin, M.-J.; An, Q.-F. Nanofiltration membranes for sustainable removal of heavy metal ions from polluted water: A review and future perspective. Desalination 2024, 578, 117441. [Google Scholar] [CrossRef]
- Mahmoud, A.E.D.; Mostafa, E. Nanofiltration Membranes for the Removal of Heavy Metals from Aqueous Solutions: Preparations and Applications. Membranes 2023, 13, 789. [Google Scholar] [CrossRef]
- García-Ávila, F.; Zambrano-Jaramillo, A.; Velecela-Garay, C.; Coronel-Sánchez, K.; Valdiviezo-Gonzales, L. Effectiveness of membrane technologies in removing emerging contaminants from wastewater: Reverse Osmosis and Nanofiltration. Water Cycle 2025, 6, 357–373. [Google Scholar] [CrossRef]
- Wang, X.-L.; Wang, W.-N.; Wang, D.-X. Experimental investigation on separation performance of nanofiltration membranes for inorganic electrolyte solutions. Desalination 2002, 145, 115–122. [Google Scholar] [CrossRef]
- Altay Geren, M.B.; Chen, G.Q.; Li, D.; Kentish, S.E. Equilibrium ion sorption in graphene oxide membranes. J. Membr. Sci. 2024, 710, 123155. [Google Scholar] [CrossRef]
- Miao, J.; Chen, G.; Li, L.; Dong, S. Formation and Characterization of Carboxymethyl Cellulose Sodium (CMC-Na)/Poly (vinylidene fluoroide) (PVDF) Composite Nanofiltration Membranes. Sep. Sci. Technol. 2007, 42, 3085–3099. [Google Scholar] [CrossRef]
- Huang, Y.-H.; Wang, M.-J.; Chung, T.-S. Development of multifunctional membranes via plasma-assisted nonsolvent induced phase separation. Nat. Commun. 2024, 15, 1092. [Google Scholar] [CrossRef]
- Baker, R.W. Membrane Technology and Applications; McGraw-Hill: New York, NY, USA, 2000. [Google Scholar]
Membrane | Type | Content of GOCOOH, wt.% | Cross-Linking Method |
---|---|---|---|
CMC | dense | - | - |
CMC-3 | dense | 3 | - |
CMC-5 | dense | 5 | - |
CMC-7 | dense | 7 | - |
CMCGA | dense | - | 1 wt.% GA and 0.5 wt.% H2SO4 |
CMC-5GA | dense | 5 | 1 wt.% GA and 0.5 wt.% H2SO4 |
CMC/PAGA | supported | - | 1 wt.% GA and 0.5 wt.% H2SO4 |
CMC-5/PAGA | supported | 5 | 1 wt.% GA and 0.5 wt.% H2SO4 |
Membrane | Surface Parameters | Water Contact Angle, ° | |
---|---|---|---|
Ra, nm | Rq, nm | ||
CMC | 5.5 | 6.9 | 55 ± 3 |
CMC-5 | 8.3 | 12.8 | 52 ± 2 |
CMCGA | 106.7 | 134.3 | 49 ± 3 |
CMC-5GA | 124.3 | 180.5 | 44 ± 4 |
CMC/PAGA | 6.0 | 9.2 | 48 ± 4 |
CMC-5/PAGA | 14.8 | 21.6 | 42 ± 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dmitrenko, M.; Mikhailovskaya, O.; Kuzminova, A.; Mazur, A.; Su, R.; Penkova, A. Membranes from Carboxymethyl Cellulose/Carboxylated Graphene Oxide for Sustainable Water Treatment by Pervaporation and Nanofiltration. Molecules 2025, 30, 3751. https://doi.org/10.3390/molecules30183751
Dmitrenko M, Mikhailovskaya O, Kuzminova A, Mazur A, Su R, Penkova A. Membranes from Carboxymethyl Cellulose/Carboxylated Graphene Oxide for Sustainable Water Treatment by Pervaporation and Nanofiltration. Molecules. 2025; 30(18):3751. https://doi.org/10.3390/molecules30183751
Chicago/Turabian StyleDmitrenko, Mariia, Olga Mikhailovskaya, Anna Kuzminova, Anton Mazur, Rongxin Su, and Anastasia Penkova. 2025. "Membranes from Carboxymethyl Cellulose/Carboxylated Graphene Oxide for Sustainable Water Treatment by Pervaporation and Nanofiltration" Molecules 30, no. 18: 3751. https://doi.org/10.3390/molecules30183751
APA StyleDmitrenko, M., Mikhailovskaya, O., Kuzminova, A., Mazur, A., Su, R., & Penkova, A. (2025). Membranes from Carboxymethyl Cellulose/Carboxylated Graphene Oxide for Sustainable Water Treatment by Pervaporation and Nanofiltration. Molecules, 30(18), 3751. https://doi.org/10.3390/molecules30183751