Visible-Light-Driven Photocatalysis of Carbon Dioxide and Organic Pollutants by CaBiO2Cl/g-C3N4
Abstract
1. Introduction
2. Results and Discussion
2.1. As-Prepared Sample Characterization
2.1.1. Powder XRD
2.1.2. FT-IR
2.1.3. FE-SEM-EDS
2.1.4. HR-TEM-EDS
2.1.5. X-Ray Photoelectron Spectroscopy Spectra
2.1.6. Ultraviolet–Visible Diffuse Reflectance Spectroscopy
2.1.7. SBET
2.2. Photocatalytic Reaction Activity
2.2.1. Photodegradation of Rh6G
2.2.2. CO2 Photoreduction Performance
2.3. Mechanisms of Rh6G Photodegradation and CO2 Photoreduction
3. Materials and Methods Section
3.1. Chemicals
3.2. Analytical Instruments and Methods
3.3. Synthesis of Photocatalysts
3.3.1. Synthesis of CaBiO2Cl
3.3.2. Synthesis of g-C3N4
3.3.3. Synthesis of CaBiO2Cl/g-C3N4
3.4. Photocatalysis Experiments
3.4.1. Photocatalytic Degradation of Rh6G
3.4.2. Photocatalytic Reduction of CO2
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chakravorty, A.; Roy, S. A review of photocatalysis, basic principles, processes, and materials. Sustain. Chem. Environ. 2024, 8, 100155. [Google Scholar] [CrossRef]
- Wang, Y.; Ren, B.; Ou, J.Z.; Xu, K.; Yang, C.; Li, Y.; Zhang, H. Engineering two-dimensional metal oxides and chalcogenides for enhanced electro- and photocatalysis. Sci. Bull. 2021, 66, 1228–1252. [Google Scholar] [CrossRef]
- Zu, D.; Wei, H.; Lin, Z.; Bai, X.; Ivan, M.N.A.S.; Tsang, Y.H.; Huang, H. The role of point defects in heterojunction photocatalysts: Perspectives and outlooks. Adv. Funct. Mater 2024, 34, 2408213. [Google Scholar] [CrossRef]
- Abe, R. Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation. J. Photochem. Photobiol. C Photochem. Rev. 2010, 11, 179–209. [Google Scholar] [CrossRef]
- Marks, M.J.; Klysner, C.F.; Frank, S.; Lange, N.N.; Klemmt, R.; Jeppesen, H.S.; Ceccato, M.; Bøjesen, E.D.; Goesten, M.G.; Lock, N. Revisiting microstructure, facet exposure, and lattice distortion in bismuth oxyhalide (BiOX, X = Cl, Br, I) nanomaterials for catalysis. ACS Appl. Nano Mater. 2025, 8, 6301–6317. [Google Scholar] [CrossRef]
- Sun, Z.; Amrillah, T. Potential application of bismuth oxyiodide (BiOI) when it meets light. Nanoscale 2024, 16, 5079–5106. [Google Scholar] [CrossRef]
- Yusuf, T.L.; Orimolade, B.O.; Masekela, D.; Adegoke, K.A.; Modibane, K.D.; Makgato, S.S. BiOX (X = Cl, Br, I)-based S-scheme heterostructure photocatalysts for environmental remediation and energy conversion. Mater. Today Sustain. 2025, 30, 101115. [Google Scholar] [CrossRef]
- Pandey, A.; Naresh, G.; Mandal, T.K. Sunlight responsive new Sillén-Aurivillius A1X1 hybrid layered oxyhalides with enhanced photocatalytic activity. Sol. Energy Mater. Sol. Cells 2017, 161, 197–205. [Google Scholar] [CrossRef]
- Olchowka, J.; Kabbour, H.; Colmont, M.; Adlung, M.; Wickleder, C.; Mentré, O. ABiO2X (A = Cd, Ca, Sr, Ba, Pb; X = halogen) Sillen X1 series: Polymorphism versus optical properties. Inorg. Chem. 2016, 55, 7582–7592. [Google Scholar] [CrossRef]
- Charkin, D.O.; Berdonosov, P.S.; Dolgikh, V.A.; Lightfoot, P. A reinvestigation of quaternary layered bismuth oxyhalides of the Sillén X1 type. J. Solid State Chem. 2003, 175, 316–321. [Google Scholar] [CrossRef]
- Suzuki, H.; Ozaki, D.; Ishii, Y.; Tomita, O.; Kato, D.; Nozawa, S.; Nakashima, K.; Saeki, A.; Kageyama, H.; Abea, R. A Sillén oxyhalide SrBi3O4Cl3 as a promising photocatalyst for water splitting: Impact of the asymmetric structure on light absorption and charge carrier dynamics. J. Mater. Chem. A 2023, 11, 15159–15167. [Google Scholar] [CrossRef]
- Shi, R.; Xu, T.; Zhu, Y.; Zhou, J. High photocatalytic activity of oxychloride CaBiO2Cl under visible light irradiation. CrystEngComm 2012, 14, 6257–6263. [Google Scholar] [CrossRef]
- Fray, S.M.; Milne, C.J.; Lightfoot, P. Synthesis and structure of CaBiO2Cl and SrBiO2Cl: New distorted variants of the Sillen X1 structure. J. Solid State Chem. 1997, 128, 115–120. [Google Scholar] [CrossRef]
- Nejad, M.A.; Mücksch, C.; Urbassek, H.M. Insulin adsorption on crystalline SiO2: Comparison between polar and nonpolar surfaces using accelerated molecular-dynamics simulations. Chem. Phys. Lett. 2017, 670, 77–83. [Google Scholar] [CrossRef]
- Ali, S.S.; Elsamahy, T.; Al-Tohamy, R.; Zhu, D.; Mahmoud, Y.A.G.; Koutra, E.; Metwally, M.A.; Kornaros, M.; Sun, J. Plastic wastes biodegradation: Mechanisms, challenges and future prospects. Sci. Total Environ. 2021, 780, 146590. [Google Scholar] [CrossRef]
- Mishra, S.; Sundaram, B. A review of the photocatalysis process used for wastewater treatment. Mater. Today Proc. 2024, 102, 393–409. [Google Scholar] [CrossRef]
- Bourges, J.L.; Gautier, S.E.; Delie, F.; Bejjani, R.A.; Jeanny, J.C.; Gurny, R.; BenEzra, D.; Behar-Cohen, F.F. Ocular drug delivery targeting the retina and retinal pigment epithelium using polylactide nanoparticles. Investig. Ophth. Vis. Sci. 2003, 44, 3562–3569. [Google Scholar] [CrossRef] [PubMed]
- Glossman-Mitnik, D. Computational study of the chemical reactivity properties of the Rhodamine B molecule. Procedia Comput. Sci. 2013, 18, 816–825. [Google Scholar] [CrossRef]
- Arshad, K.; Hussain, N.; Ashraf, M.H.; Saleem, M.Z. Air pollution and climate change as grand challenges to sustainability. Sci. Total Environ. 2024, 928, 172370. [Google Scholar] [CrossRef]
- Xiao, T.; Wu, X.; Liang, H.; Qiao, K.; Chen, Y. Highly efficient photocatalytic conversion of gasphase CO2 using bimetallic porphyrin-sensitized TiO2 nanotube arrays. J. Phys. Chem. C 2024, 128, 7601–7615. [Google Scholar] [CrossRef]
- Molaei, M.J. Graphitic carbon nitride (g-C3N4) synthesis and heterostructures, principles, mechanisms, and recent advances: A critical review. Int. J. Hydrogen Energy 2023, 48, 32708–32728. [Google Scholar] [CrossRef]
- Wudil, Y.S.; Ahmad, U.F.; Gondal, M.A.; Al-Osta, M.A.; Almohammedi, A.; Sa’id, R.S.; Hrahsheh, F.; Haruna, K.; Mohamed, M.J.S. Tuning of graphitic carbon nitride (g-C3N4) for photocatalysis: A critical review. Arab. J. Chem. 2023, 16, 104542. [Google Scholar] [CrossRef]
- Lin, Y.Y.; Lu, C.S.; Liu, F.Y.; Huang, H.H.; Lin, J.H.; Chen, C.C. Visible-light-driven photocatalysis of carbon dioxide by BiSeX and BiSeX/g-C3N4 (X = Cl, Br, I). Mater. Today Sustain. 2023, 23, 100473. [Google Scholar] [CrossRef]
- Lu, C.S.; Lai, Y.J.; Shaya, J.; Lin, Y.Y.; Liu, F.Y.; Lin, J.H.; Chen, C.W.; Tsai, H.Y.; Huang, J.W.; Chen, C.C. Fabrication and characterization of BiOxBry/BiOmIn coupled GCN heterojunctions with enhanced visible-light catalytic activity. Catal. Commun. 2023, 184, 106794. [Google Scholar] [CrossRef]
- Chen, C.C.; Liu, W.J.; Shaya, J.; Lin, Y.Y.; Liu, F.Y.; Chen, C.W.; Tsai, H.Y.; Lu, C.S. Fabrication and characterization of ZnGa1.01Te2.13/g-C3N4 heterojunction with enhanced photocatalytic activity. Helyion 2023, 9, e20879. [Google Scholar] [CrossRef]
- Chen, H.L.; Liu, F.Y.; Lin, Y.Y.; Xiao, X.; Hu, J.; Gao, B.; Zou, D.; Chen, C.C. Photocatalytic CO2 reduction to C1–C5 hydrocarbons using K2Fe2O4/g-C3N4 as coupling photocatalyst. Mater. Today Sustain. 2023, 23, 100430. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Liu, P.; Wang, D.; Li, Y.; Zhao, H. Cross-linked g-C3N4/rGO nanocomposites with tunable band structure and enhanced visible light photocatalytic activity. Small 2013, 9, 3336–3344. [Google Scholar] [CrossRef]
- Huang, J.; Cao, Y.; Wei, Y.; Yu, H.; Wang, H.; Zhou, Q.; Hu, Z.; Peng, F.; Yu, J.C. Enhancement of g-C3N4 photocatalysis by selectively anchoring metal cocatalysts with a strong metal–support interaction. ACS Appl. Nano Mater. 2022, 5, 15399–15408. [Google Scholar] [CrossRef]
- Basivi, P.K.; Selvaraj, Y.; Perumal, S.; Bojarajan, A.K.; Lin, X.; Girirajan, M.; Kim, C.W.; Sangaraju, S. Graphitic carbon nitride (g–C3N4)–Based Z-scheme photocatalysts: Innovations for energy and environmental applications. Mater. Today Sustain. 2025, 29, 101069. [Google Scholar] [CrossRef]
- Wang, T.; Lu, J.; Chen, J.; Wang, C.; Li, K.; Mei, Y. Achieving high CH4 selectivity in CO2 photoreduction via S-type MoO3/g-C3N4 heterojunction with Pt co-catalyst. Catal. Sci. Technol. 2025, 15, 2938–2949. [Google Scholar] [CrossRef]
- Bhanderi, D.; Lakhani, P.; Modi, C.K. Graphitic carbon nitride (g-C3N4) as an emerging photocatalyst for sustainable environmental applications: A comprehensive review. RSC Sustain. 2024, 2, 265–287. [Google Scholar] [CrossRef]
- Mohamadpour, F.; Amani, A. Photocatalytic systems: Reactions, mechanism, and applications. RSC Adv. 2024, 14, 20609–20645. [Google Scholar] [CrossRef]
- Hoque, K.A.; Sathi, S.A.; Akter, F.; Akter, T.; Ahmed, T.; Ullah, W.; Arafin, K.; Rahaman, M.S.; Shahadat, H.M.; Imran, A.B.; et al. Recent advances on photocatalytic CO2 reduction using CeO2-based photocatalysts: A review. J. Environ. Chem. Eng. 2024, 12, 13487. [Google Scholar] [CrossRef]
- Chakraborty, S.; Peter, S.C. Solar-fuel production by photodriven CO2 reduction: Facts, challenges, and recommendations. ACS Energy Lett. 2025, 10, 2359–2371. [Google Scholar] [CrossRef]
- Wang, H.; Guo, Q.; Zhang, H.; Zuo, C. Developments and challenges on enhancement of photocatalytic CO2 reduction through photocatalysis. Carbon Resour. Convers. 2024, 7, 100263. [Google Scholar] [CrossRef]
- Lu, J.; Li, Z.; Wu, B.; Jiang, Z.; Pei, C. Nanosheet-stacked g-C3N4 tubes with carbon vacancies for enhanced photocatalytic H2 evolution. ACS Appl. Nano Mater. 2025, 8, 6133–6143. [Google Scholar] [CrossRef]
- Khan, A.R.; Ramzan, M.; Alanazi, S.J.F.; Al-Mohaimeed, A.M.; Ali, S.; Imran, M.; Majid, M.A.; Sarfraz, M.H. Structural, Optical, Electrical and photocatalytic investigation of n-Type Zn2+-Doped α-Bi2O3 nanoparticles for optoelectronics applications. ACS Omega 2024, 9, 22650–22659. [Google Scholar] [CrossRef]
- Oliveira, J.A.; Torres, J.A.; Gonçalves, R.V.; Ribeiro, C.; Nogueira, F.G.E.; Ruotolo, L.A.M. Photocatalytic CO2 reduction over Nb2O5/basic bismuth nitrate nanocomposites. Mater. Res. Bull. 2021, 133, 111073. [Google Scholar] [CrossRef]
- Li, F.T.; Zhao, Y.; Wang, Q.; Wang, X.J.; Hao, Y.J.; Liu, R.H.; Zhao, D. Enhanced visible-light photocatalytic activity of active Al2O3/g-C3N4 heterojunctions synthesized via surface hydroxyl modification. J. Hazard. Mater. 2015, 283, 371–381. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, G.; Tian, Y.; Yan, L.; Deng, M.; Yang, B.; Kang, Z.; Sun, H. Hydroxyl decorated g-C3N4 nanoparticles with narrowed bandgap for high efficient photocatalyst design. Appl. Catal. B Environ. 2019, 244, 262–271. [Google Scholar] [CrossRef]
- Gupta, S.; Singh, R.; Anoop, M.D.; Kulshrestha, V.; Srivastava, D.N.; Ray, K.; Kothari, S.L.; Awasthi, K.; Kumar, M. Electrochemical sensor for detection of mercury (II) ions in water using nanostructured bismuth hexagons. Appl. Phys. A 2018, 124, 737. [Google Scholar] [CrossRef]
- Arif, M.; Yasin, G.; Shakeel, M.; Fang, X.; Gao, R.; Ji, S.; Yan, D. Coupling of bifunctional CoMn-layered double hydroxide@graphitic-C3N4 nanohybrids towards efficient photoelectrochemical overall water splitting. Chem.-Asian J. 2018, 13, 1045–1052. [Google Scholar] [CrossRef]
- Zhang, J.R.; Ma, Y.; Wang, S.Y.; Ding, J.; Gao, B.; Kan, E.; Hua, W. Accurate K-edge X-ray photoelectron and absorption spectra of g-C3N4 nanosheets by first-principles simulations and reinterpretations. Phys. Chem. Chem. Phys. 2019, 21, 22819–22830. [Google Scholar] [CrossRef] [PubMed]
- Kaulbersch, J.; McGuigan, S.; Timm, J.; Maggard, P.; Marschall, R. Photocatalytic activity and stability of carbon nitride-pyrite composites. ChemPhotoChem 2025, 9, e202400343. [Google Scholar] [CrossRef]
- Rahman, M.M.; Muttakin, M.; Pal, A.; Shafiullah, A.Z.; Saha, B.B. A statistical approach to determine optimal models for IUPAC-Classified Adsorption Isotherms. Energies 2019, 12, 4565. [Google Scholar] [CrossRef]
- Chen, H.L.; Lin, Y.Y.; Liu, F.Y.; Lu, C.S.; Chen, C.C.; Zou, D. High selectivity of photocatalysis for CO2 conversion into hydrocarbons using potassium ferrate/sulfur-doped graphitic-carbon nitride as catalyst. Sep. Purification Technol. 2025, 363, 132319. [Google Scholar] [CrossRef]
- Wang, J.; Chen, F.; Liu, Q.; Huang, H. Intrinsic bimetallic cations regulating band centers and reactive sites for boosting CO2 photoreduction. J. Mater. Chem. A 2024, 12, 18358–18366. [Google Scholar] [CrossRef]
- Wang, Y.; He, D.; Chen, H.; Wang, D. Catalysts in electro-, photo- and photoelectrocatalytic CO2 reduction reactions. J. Photochem. Photobiol. C Photochem. Rev. 2019, 40, 117–149. [Google Scholar] [CrossRef]
- Liu, F.Y.; Chen, H.L.; Hsiao, K.Y.; Dai, Y.M.; Chen, C.C.; Chen, I.-C. Unveiling photochemical CO2 reduction processes on PbBiO2I/GO surfaces: Insights from in situ Raman spectroscopy. Appl. Catal. B Environ. Energy 2025, 364, 124844. [Google Scholar] [CrossRef]
- Hsiao, K.Y.; Liu, F.Y.; Chen, C.C.; Chen, I.-C. Probing photocatalytic reduction pathways of CO2 by catalyst PbBiO2Br using in-situ Raman spectroscopy. ACS Catal. 2025, 15, 3153–3161. [Google Scholar] [CrossRef]
- Wei, Y.J.; Liu, F.Y.; Chen, C.C.; Chen, I.-C. Investigating the vibrational structures of lead bismuth oxyhalides PbBiO2X (X = Cl, Br, I) using temperature-dependent low-wavenumber Raman spectroscopy and the emission properties of the trapped states. Mater. Chem. Phys. 2025, 342, 130992. [Google Scholar] [CrossRef]
- Chen, H.L.; Lu, C.S.; Liu, F.Y.; Lin, Y.Y.; Chen, C.C.; Zou, D. Efficiency of CO2 photoreduction to hydrocarbons with K2Fe2O4/rGO heterojunction as a photocatalyst. J. CO2 Util. 2024, 85, 102858. [Google Scholar] [CrossRef]
Sample | Surface Area (m2/g) | Pore Volume (cm3/g) | Pore Size (nm) |
---|---|---|---|
CaBiO2Cl | 0.6865 | 0.0156 | 32.9464 |
CaBiO2Cl/10 wt% g-C3N4 | 11.9745 | 0.0986 | 26.8036 |
g-C3N4 | 12.9017 | 0.1344 | 34.1077 |
CaBiO2Cl | ||||||||
---|---|---|---|---|---|---|---|---|
g-C3N4 (wt%) | 0 | 5 | 10 | 25 | 50 | 75 | 90 | 100 |
k (h−1) | 0.0525 | 0.0454 | 0.0568 | 0.0516 | 0.0505 | 0.0336 | 0.0283 | 0.0423 |
R2 | 0.9400 | 0.9806 | 0.9828 | 0.9828 | 0.9645 | 0.9022 | 0.9754 | 0.9658 |
Photocatalyst | Concentration (ppm) | CH4 Yield | CH4 Selectivity | ||||
---|---|---|---|---|---|---|---|
CH4 | C2H6 | C3H8 | C4H10 | C5H12 | (μmol·g−1·h−1) | (%) | |
CaBiO2Cl/10 wt% g-C3N4 | 441.99 | 12.81 | --- | --- | --- | 0.5652 | 97.19 |
CaBiO2Cl | 260.49 | 13.92 | --- | 1.69 | --- | 0.3331 | 94.35 |
g-C3N4 | 119.65 | --- | --- | --- | --- | 0.1020 | >99% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.-Y.; Huang, B.-H.; You, W.-Y.; Liu, F.-Y.; Lin, J.-H.; Chen, C.-C. Visible-Light-Driven Photocatalysis of Carbon Dioxide and Organic Pollutants by CaBiO2Cl/g-C3N4. Molecules 2025, 30, 3760. https://doi.org/10.3390/molecules30183760
Lin Y-Y, Huang B-H, You W-Y, Liu F-Y, Lin J-H, Chen C-C. Visible-Light-Driven Photocatalysis of Carbon Dioxide and Organic Pollutants by CaBiO2Cl/g-C3N4. Molecules. 2025; 30(18):3760. https://doi.org/10.3390/molecules30183760
Chicago/Turabian StyleLin, Yu-Yun, Bo-Heng Huang, Wen-Yu You, Fu-Yu Liu, Jia-Hao Lin, and Chiing-Chang Chen. 2025. "Visible-Light-Driven Photocatalysis of Carbon Dioxide and Organic Pollutants by CaBiO2Cl/g-C3N4" Molecules 30, no. 18: 3760. https://doi.org/10.3390/molecules30183760
APA StyleLin, Y.-Y., Huang, B.-H., You, W.-Y., Liu, F.-Y., Lin, J.-H., & Chen, C.-C. (2025). Visible-Light-Driven Photocatalysis of Carbon Dioxide and Organic Pollutants by CaBiO2Cl/g-C3N4. Molecules, 30(18), 3760. https://doi.org/10.3390/molecules30183760