Controlling Stimulated Emission via Intramolecular Charge Transfer in Amino-Coumarin Dyes: Switching from Reverse Saturable to Saturable Absorption
Abstract
1. Introduction
2. Results and Discussion
2.1. Molecular Design and Electronic Transition Analysis
2.2. UV-Vis Absorption and Fluorescence Emission
2.3. Excited-State Dynamics Analysis
2.4. Tunable Nonlinear Optical Absorption
3. Materials and Methods
3.1. Materials
3.2. Quantum Chemical Calculation
3.3. Nonlinear Optical Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
NLO | Nonlinear optical |
ICT | Intramolecular charge transfer |
RSA | Reverse saturable absorption |
SA | Saturable absorption |
NLA | Nonlinear optical absorption |
SAs | Saturable absorbers |
OLs | Optical limiters |
DMSO | Dimethyl sulfoxide |
FMO | Frontier molecular orbital |
NTO | Natural transition orbital |
TAS | Transient absorption spectroscopy |
DFT | Density functional theory |
TD-DFT | Time-dependent density functional theory |
OPA | Optical parametric amplifier |
References
- Jiang, M.; Sucha, G.; Fermann, M.E.; Jimenez, J.; Harter, D.; Dagenais, M.; Fox, S.; Hu, Y. Nonlinearly limited saturable-absorber mode locking of an erbium fiber laser. Opt. Lett. 1999, 24, 1074–1076. [Google Scholar] [CrossRef]
- Tachikawa, M.; Hong, F.L.; Tanii, K.; Shimizu, T. Deterministic Chaos in Passive Q-Switching Pulsation of a CO2 Laser with Saturable Absorber. Phys. Rev. Lett. 1988, 60, 2266–2268. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.Y.; Sui, Q.X.; Niu, D.Q.; Gao, L.L.; Shen, Y.J.; Liu, L.G.; Zhang, Q.L.; Lan, R.J. FAPbBr3/GaAs heterojunction saturable absorber for Nd:GdVO4 passively Q-switched lasers. Infrared Phys. Techn. 2024, 137, 105200. [Google Scholar] [CrossRef]
- Zhou, Y.X.; Huang, Y.Y.; Xu, X.L.; Fan, Z.Y.; Khurgin, J.B.; Xiong, Q.H. Nonlinear optical properties of halide perovskites and their applications. Appl. Phys. Rev. 2020, 7, 041313. [Google Scholar] [CrossRef]
- Liu, X.F.; Guo, Q.B.; Qiu, J.R. Emerging Low-Dimensional Materials for Nonlinear Optics and Ultrafast Photonics. Adv. Mater. 2017, 29, 1605886. [Google Scholar] [CrossRef]
- Perumbilavil, S.; Sankar, P.; Rose, T.P.; Philip, R. White light Z-scan measurements of ultrafast optical nonlinearity in reduced graphene oxide nanosheets in the 400–700 nm region. Appl. Phys. Rev. 2015, 107, 051104. [Google Scholar] [CrossRef]
- Elnobi, S.; Abdou, M.M.; Abuelwafa, A.A. Eco-friendly one-pot synthesis, structural, and physical properties of coumarin 6. Opt. Laser Technol. 2025, 188, 112952. [Google Scholar] [CrossRef]
- Sun, J.; Zheng, M.M.; Jia, J.H.; Wang, W.B.; Cui, Y.H.; Gao, J.R. New Coumarin-benzoxazole derivatives: Synthesis, photophysical and NLO properties. Dye. Pigment. 2019, 164, 287–295. [Google Scholar] [CrossRef]
- Jia, J.D.; Li, J.; Zhang, T.W.; Lu, Y.L.; Song, Y.L. Study of two-photon absorption and excited-state dynamics of coumarin derivatives: The effect of monomeric and dimeric structures. Phys. Chem. Chem. Phys. 2024, 26, 11064–11072. [Google Scholar] [CrossRef] [PubMed]
- Gindre, D.; Iliopoulos, K.; Krupka, O.; Champigny, E.; Morille, Y.; Sallé, M. Image storage in coumarin-based copolymer thin films by photoinduced dimerization. Opt. Lett. 2013, 38, 4636–4639. [Google Scholar] [CrossRef]
- Liu, X.; Cole, J.M.; Waddell, P.G.; Lin, T.C.; Radia, J.; Zeidler, A. Molecular Origins of Optoelectronic Properties in Coumarin Dyes: Toward Designer Solar Cell and Laser Applications. J. Phys. Chem. A 2012, 116, 727–737. [Google Scholar] [CrossRef]
- Meimetis, L.G.; Carlson, J.C.T.; Giedt, R.J.; Kohler, R.H.; Weissleder, R. Ultrafluorogenic Coumarin–Tetrazine Probes for Real-Time Biological Imaging. Angew. Chem. Int. Ed. 2014, 53, 7531–7534. [Google Scholar] [CrossRef]
- Chattopadhyay, S.K.; Kundu, I.; Maitra, R. The coumarin–pterocarpan conjugate—A natural product inspired hybrid molecular probe for DNA recognition. Org. Biomol. Chem. 2014, 12, 8087–8093. [Google Scholar] [CrossRef]
- Esnal, I.; Duran-Sampedro, G.; Agarrabeitia, A.R.; Bañuelos, J.; García-Moreno, I.; Macías, M.A.; Peña-Cabrera, E.; López-Arbeloa, I.; de la Moya, S.; Ortiz, M.J. Coumarin–BODIPY hybrids by heteroatom linkage: Versatile, tunable and photostable dye lasers for UV irradiation. Phys. Chem. Chem. Phys. 2015, 17, 8239–8247. [Google Scholar] [CrossRef]
- Sakata, H.; Yamashita, K.; Takeuchi, H.; Tomiki, M. Diode-pumped distributed-feedback dye laser with an organic–inorganic microcavity. Appl. Phys. B 2008, 92, 243–246. [Google Scholar] [CrossRef]
- Geißler, D.; Antonenko, Y.N.; Schmidt, R.; Keller, S.; Krylova, O.O.; Wiesner, B.; Bendig, J.; Pohl, P.; Hagen, V. (Coumarin-4-yl)methyl Esters as Highly Efficient, Ultrafast Phototriggers for Protons and Their Application to Acidifying Membrane Surfaces. Angew. Chem. Int. Ed. 2005, 44, 1195–1198. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chen, C.; Fang, C. Polarity-Dependent Twisted Intramolecular Charge Transfer in Diethylamino Coumarin Revealed by Ultrafast Spectroscopy. Chemosensors 2022, 10, 411. [Google Scholar] [CrossRef]
- Patil, S.A.; Kadolkar, P.S.; Budri, M.B.; Gudasi, K.B.; Chavan, S.K.; Inamdar, S.R. Rotational dynamics study of structurally similar (medium sized) coumarin dyes in aqueous mixtures of DMSO and DMA. J. Mol. Liq. 2023, 379, 121640. [Google Scholar] [CrossRef]
- Sayed, M.; Maity, D.K.; Pal, H. A comparative photophysical study on the structurally related coumarin 102 and coumarin 153 dyes. J. Photoch. Photobio. A 2023, 434, 114265. [Google Scholar] [CrossRef]
- Amoruso, G.; Taylor, V.C.A.; Duchi, M.; Goodband, E.; Oliver, T.A.A. Following Bimolecular Excited-State Proton Transfer between Hydroxycoumarin and Imidazole Derivatives. J. Phys. Chem. B 2019, 123, 4745–4756. [Google Scholar] [CrossRef]
- Cohen, B.; Huppert, D. Excited State Proton-Transfer Reactions of Coumarin 4 in Protic Solvents. J. Phys. Chem. A 2001, 105, 7157–7164. [Google Scholar] [CrossRef]
- Pinheiro, A.V.; Baptista, P.; Lima, J.C. Light activation of transcription: Photocaging of nucleotides for control over RNA polymerization. Nucleic Acids Res. 2008, 36, e90. [Google Scholar] [CrossRef]
- Houk, K.N. Frontier molecular orbital theory of cycloaddition reactions. Acc. Chem. Res. 1975, 8, 361–369. [Google Scholar] [CrossRef]
- Zawadzka, A.; Karakas, A.; Plóciennik, P.; Szatkowski, J.; Lukasiak, Z.; Kepceoglu, A.; Ceylan, Y.; Sahraoui, B. Optical and structural characterization of thin films containing metallophthalocyanine chlorides. Dye. Pigment. 2015, 112, 116–126. [Google Scholar] [CrossRef]
- Premkumar, S.; Jawahar, A.; Mathavan, T.; Dhas, M.K.; Benial, A.M.F. Vibrational spectroscopic and DFT calculation studies of 2-amino-7-bromo-5-oxo-[1]benzopyrano [2,3-b]pyridine-3 carbonitrile. Spectrochim. Acta A 2015, 138, 252–263. [Google Scholar] [CrossRef]
- Sun, C.L.; Lv, S.K.; Liu, Y.P.; Liao, Q.; Zhang, H.L.; Fu, H.; Yao, J. Benzoindolic squaraine dyes with a large two-photon absorption cross-section. J. Mater. Chem. C 2017, 5, 1224–1230. [Google Scholar] [CrossRef]
- Nanda, K.D.; Krylov, A.I. Visualizing the Contributions of Virtual States to Two-Photon Absorption Cross Sections by Natural Transition Orbitals of Response Transition Density Matrices. J. Phys. Chem. Lett. 2017, 8, 3256–3265. [Google Scholar] [CrossRef] [PubMed]
- He, G.S.; Tan, L.S.; Zheng, Q.; Prasad, P.N. Multiphoton Absorbing Materials: Molecular Designs, Characterizations, and Applications. Chem. Rev. 2008, 108, 1245–1330. [Google Scholar] [CrossRef]
- Bhattacharyya, D.; Zhang, Y.Y.; Elles, C.G.; Bradforth, S.E. Electronic Structure of Liquid Alkanes: A Representative Case of Liquid Hexanes and Cyclohexane Studied Using Polarization-Dependent Two-Photon Absorption Spectroscopy. J. Phys. Chem. A 2021, 125, 7988–7999. [Google Scholar] [CrossRef]
- Katan, C.; Blanchard-Desce, M.; Tretiak, S. Position Isomerism on One and Two Photon Absorption in Multibranched Chromophores: A TDDFT Investigation. J. Chem. Theory Comput. 2010, 6, 3410–3426. [Google Scholar] [CrossRef][Green Version]
- van Stokkum, I.H.M.; Larsen, D.S.; van Grondelle, R. Global and target analysis of time-resolved spectra. Biochim. Biophys. Acta 2004, 1657, 82–104. [Google Scholar] [CrossRef] [PubMed]
- Woon, D.E.; Dunning, T.H. Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J. Chem. Phys. 1993, 98, 1358–1371. [Google Scholar] [CrossRef]
- Krishnan, R.; Binkley, J.S.; Seeger, R.; Pople, J.A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 1980, 72, 650–654. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133–A1138. [Google Scholar] [CrossRef]
- Furche, F.; Ahlrichs, R. Adiabatic time-dependent density functional methods for excited state properties. J. Chem. Phys. 2002, 117, 7433–7447. [Google Scholar] [CrossRef]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Han, Y.; Xiao, J.; Wu, X.; Wang, Y.; Zhang, X.; Song, Y. Synthesis and Ultrafast Broadband Optical Limiting Properties of a Two-Branched Twistacene. Molecules 2022, 27, 3564. [Google Scholar] [CrossRef]
- Sheik-Bahae, M.; Said, A.A.; Wei, T.H.; Hagan, D.J.; Stryland, E.W.V. Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Elect. 1990, 26, 760–769. [Google Scholar] [CrossRef]
- Berera, R.; van Grondelle, R.; Kennis, J.T.M. Ultrafast transient absorption spectroscopy: Principles and application to photosynthetic systems. Photosynth. Res. 2009, 101, 105–118. [Google Scholar] [CrossRef] [PubMed]
Sample | μ00 (a.u.) | μ01 (a.u.) | μ11 (a.u.) | α(0) a.u. | γ(0,0,0) ×105 a.u. | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
X | Y | Z | X | Y | Z | f * | X | Y | Z | |||
102 | 3.908 | 2.160 | 0.161 | −2.480 | −0.198 | −0.031 | 0.493 | 8.629 | 1.440 | 0.180 | 77.214 | 2.527 |
153 | −4.317 | −1.976 | 0.103 | 2.355 | 0.942 | −0.050 | 0.460 | −9.527 | −3.043 | 0.170 | 83.973 | 4.204 |
Sample | α0 (m−1) | β (m/W) | Ic (GW/cm2) |
---|---|---|---|
Coumarin 102 | 19.46 | 1.00 × 10−13 | - |
Coumarin 153 | 91.00 | 1.34 × 10−13 | 9.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, J.; Wu, S.; Lu, Y.; Xu, J.; Zuo, H.; Wu, X.; Song, Y. Controlling Stimulated Emission via Intramolecular Charge Transfer in Amino-Coumarin Dyes: Switching from Reverse Saturable to Saturable Absorption. Molecules 2025, 30, 3799. https://doi.org/10.3390/molecules30183799
Jia J, Wu S, Lu Y, Xu J, Zuo H, Wu X, Song Y. Controlling Stimulated Emission via Intramolecular Charge Transfer in Amino-Coumarin Dyes: Switching from Reverse Saturable to Saturable Absorption. Molecules. 2025; 30(18):3799. https://doi.org/10.3390/molecules30183799
Chicago/Turabian StyleJia, Jidong, Siya Wu, Yinlin Lu, Jingyuan Xu, Hang Zuo, Xingzhi Wu, and Yinglin Song. 2025. "Controlling Stimulated Emission via Intramolecular Charge Transfer in Amino-Coumarin Dyes: Switching from Reverse Saturable to Saturable Absorption" Molecules 30, no. 18: 3799. https://doi.org/10.3390/molecules30183799
APA StyleJia, J., Wu, S., Lu, Y., Xu, J., Zuo, H., Wu, X., & Song, Y. (2025). Controlling Stimulated Emission via Intramolecular Charge Transfer in Amino-Coumarin Dyes: Switching from Reverse Saturable to Saturable Absorption. Molecules, 30(18), 3799. https://doi.org/10.3390/molecules30183799