Diastereodivergent Construction of Octahydrophenanthridinone and Octahydrophenanthridine Cores
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
4. Materials and Methods
4.1. General Information
4.2. General Procedure for the Coupling Reaction of Aryl Bromide and α-Chloro Oxime
4.3. General Procedure for the Reduction of α-Aryl Oxime
4.4. General Procedure for the Formation of Phenanthridinones via Formylation and Oxidation
4.5. General Procedure for the Formation of Phenanthridinones via a Bischler–Napieralski Reaction
4.6. General Procedure for the Formation of Phenanthridines via Formylation and Reduction
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Petit, G.R.; Gaddamidi, V.; Cragg, G.M.; Herald, D.L.; Sagawa, Y. Isolation and Structure of Pancratistatin. J. Chem. Soc. Chem. Commun. 1984, 24, 1693. [Google Scholar] [CrossRef]
- Nakagawa, Y.; Uyeno, S.; Yajima, H. The Double Bond in Lycorine. Chem. Ind. 1956, 42, 1238. [Google Scholar]
- Chen, C.-Y.; MacLean, D.B. Structure and Stereochemistry of Chelidonine and its O-Acetate. Can. J. Chem. 1967, 45, 3001. [Google Scholar] [CrossRef]
- Lamoral-Theys, D.; Andolfi, A.; Van Goietsenoven, G.; Cimmino, A.; Calvé, B.; Wauthoz, N.; Mégalizzi, V.; Gras, T.; Bruyère, C.; Dubois, J.; et al. Lycorine, the Main Phenanthridine Amaryllidaceae Alkaloid, Exhibits Significant Antitumor Activityin Cancer Cells That Display Resistance to Proapoptotic Stimuli: An Investigation of Structure–Activity Relationship and Mechanistic Insight. J. Med. Chem. 2009, 52, 6244. [Google Scholar] [CrossRef] [PubMed]
- Ding, F.; Liang, L.; Yao, J.; Wang, B.; Xu, C.; Liu, D. Total Synthesis of (+)-Pancratistatin and Its Potent Topo I Inhibition Activity Studies. Org. Lett. 2022, 24, 9458. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, B.; Yang, S.; Griffith, L.; Ma, J.; Wang, F.; Liu, H.; Zhao, Q.; Du, Y.; Zhang, J.; Chang, J.; et al. Discovery of Hepatitis B Virus Subviral Particle Biogenesis Inhibitors from a Bioactive Compound Library. Antivir. Res. 2024, 228, 105955. [Google Scholar] [CrossRef]
- Revu, O.; Zepeda-Velázquez, C.; Nielsen, A.J.; McNulty, J.; Yolken, R.H.; Jones-Brando, L. Total Synthesis of the Natural Product (+)-trans-Dihydronarciclasine via an Asymmetric Organocatalytic [3+3]-Cycloaddition and Discovery of its Potent Anti-Zika Virus (ZIKV) Activity. ChemistrySelect 2016, 1, 5895. [Google Scholar] [CrossRef]
- Kornienko, A.; Evidente, A. Chemistry, Biology, and Medicinal Potential of Narciclasine and its Congeners. Chem. Rev. 2008, 108, 1982–2014. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.; Pignanelli, C.; Tarade, D.; Gilbert, T.; Noel, M.; Mansour, F.; Adams, S.; Dowhayko, A.; Stokes, K.; Vshyvenko, S.; et al. Cancer Cell Mitochondria Targeting by Pancratistatin Analogs is Dependent on Functional Complex II and III. Sci. Rep. 2017, 7, 42957. [Google Scholar] [CrossRef] [PubMed]
- Shenvi, R.A. Natural Product Synthesis in the 21st Century: Beyond the Mountain Top. ACS Cent. Sci. 2024, 10, 519. [Google Scholar] [CrossRef] [PubMed]
- Rigby, J.H.; Maharoof, U.S.M.; Mateo, M.E. Studies on the Narciclasine Alkaloids: Total Synthesis of (+)-Narciclasine and (+)-Pancratistatin. J. Am. Chem. Soc. 2000, 122, 6624. [Google Scholar] [CrossRef]
- Li, M.; Wu, A.; Zhou, P. A Concise Synthesis of (+)-Pancratistatin Using Pinitol as a Chiral Building Block. Tetrahedron Lett. 2006, 47, 3707. [Google Scholar] [CrossRef]
- Chida, N.; Ohtsuka, M.; Ogawa, S. Stereoselective Total Synthesis of (+)-Lycoricidine. Tetrahedron Lett. 1991, 32, 4525. [Google Scholar] [CrossRef]
- Yasuhara, T.; Osafune, E.; Nishimura, K.; Yamashita, M.; Yamada, K.; Muraoka, O.; Tomioka, K. Efficient Synthesis of (±)-γ-Lycorane Employing Stereoselective Conjugate Addition to Nitroolefin. Tetrahedron Lett. 2004, 45, 3043. [Google Scholar] [CrossRef]
- Yasuhara, T.; Nishimura, K.; Yamashita, M.; Fukuyama, N.; Yamada, K.; Muraoka, O.; Tomioka, K. Total Synthesis of (±)-α- and β-Lycoranes by Sequential Chemoselective Conjugate Addition–Stereoselective Nitro-Michael Cyclization of an ω-Nitro-α,β,ψ,ω-unsaturated Ester. Org. Lett. 2003, 5, 1123. [Google Scholar] [CrossRef]
- Yamada, K.I.; Yamashita, M.; Sumiyoshi, T.; Nishimura, K.; Tomioka, K. Total Synthesis of (−)-Lycorine and (−)-2-epi-Lycorine by Asymmetric Conjugate Addition Cascade. Org. Lett. 2009, 11, 1631. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, K.; Fukuyama, N.; Yasuhara, T.; Yamashita, M.; Sumiyoshi, T.; Yamamoto, Y.; Yamada, K.; Tomioka, K. A Short Synthesis of (+)-β-Lycorane by Asymmetric Conjugate Addition Cascade. Tetrahedron 2015, 71, 7222. [Google Scholar] [CrossRef]
- Yamada, K.; Mogi, Y.; Mohamed, M.A.; Takasu, K.; Tomioka, K. Total Synthesis of (+)-trans-Dihydronarciclasine Utilizing Asymmetric Conjugate Addition. Org. Lett. 2012, 14, 5868. [Google Scholar] [CrossRef] [PubMed]
- Akai, S.; Kojima, M.; Yamauchi, S.; Kohji, T.; Nakamura, Y.; Sato, K. A Concise Total Synthesis of (+)-Pancratistatin from D-Glucose Featuring the Henry Reaction. Asian J. Org. Chem. 2013, 2, 299. [Google Scholar] [CrossRef]
- Hudlicky, T.; Tian, X.; Kcnigsberger, K. First Enantioselective Total Synthesis of (+)-Pancratistatin: An Unusual Set of Problems. J. Am. Chem. Soc. 1995, 117, 3643. [Google Scholar]
- Trost, B.M.; Pulley, S.R. Asymmetric Total Synthesis of (+)-Pancratistatin. J. Am. Chem. Soc. 1995, 117, 10143. [Google Scholar] [CrossRef]
- Matveenko, M.; Banwell, M.G.; Willis, A.C. A Chemoenzymatic Total Synthesis of ent-Narciclasine. Tetrahedron 2008, 64, 4817. [Google Scholar] [CrossRef]
- Cagide-Fagín, F.; Nieto-García, O.; Lago-Santomé, H.; Alonso, R. Enantioselective Synthesis of Protected Nitrocyclohexitols with Five Stereocenters. Total Synthesis of (+)-Pancratistatin. J. Org. Chem. 2012, 77, 11377. [Google Scholar] [CrossRef]
- Poe, S.L.; Morken, J.P. A Boron-Based Synthesis of the Natural Product (+)-trans-Dihydrolycoricidine. Angew. Chem. Int. Ed. 2011, 50, 4189. [Google Scholar] [CrossRef]
- Kim, S.; Ko, H.; Kim, E.; Kim, D. Stereocontrolled Total Synthesis of Pancratistatin. Org. Lett. 2002, 4, 1343. [Google Scholar] [CrossRef] [PubMed]
- Bingham, T.; Hernandez, L.W.; Olson, D.G.; Svec, R.L.; Hergenrother, P.J.; Sarlah, D. Enantioselective Synthesis of Isocar-bostyril Alkaloids and Analogs Using Catalytic Dearomative Functionalization of Benzene. J. Am. Chem. Soc. 2019, 141, 657. [Google Scholar] [CrossRef] [PubMed]
- Danishefsky, S.; Lee, J.Y. Total Synthesis of (±)-Pancratistatin. J. Am. Chem. Soc. 1989, 111, 4829. [Google Scholar] [CrossRef]
- Meng, X.-L.; Liu, T.; Sun, Z.-W.; Wang, J.-C.; Peng, F.-Z.; Shao, Z.-H. Asymmetric Catalytic Conjugate Addition of Acetal-dehyde to Nitrodienynes/Nitroenynes: Applications to the Syntheses of (+)-α-Lycorane and Chiral β-Alkynyl Acids. Org. Lett. 2014, 16, 3044. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhu, Y.; Ma, G.; Wei, Q.; Yang, S.; Zeng, X.; Zhang, H.; Chen, J. Short, Enantioselective, Gram-scale Synthesis of (−)-Zephyranthine. Chem. Sci. 2021, 12, 9452. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Inokuma, T.; Tsuji, D.; Yamaoka, Y.; Akagi, R.; Yamada, K. Total Synthesis of 1,4a-di-epi-ent-Pancratistatin, Exem-plifying a Stereodivergent Approach to Pancratistatin Isomers. Chem. Commun. 2024, 60, 6757. [Google Scholar] [CrossRef]
- Duff, J.C.; Bills, E.J. Reactions Between Hexamethylenetetramine and Phenolic Compounds. Part I. A New Method for the Preparation of 3- and 5-Aldehydosalicylic Acids. J. Chem. Soc. 1932, 1987. [Google Scholar] [CrossRef]
- Mohamed, M.A.; Yamada, K.; Tomioka, K. Accessing the Amide Functionality by the Mild and Low-Cost Oxidation of Imine. Tetrahedron Lett. 2009, 50, 3436. [Google Scholar] [CrossRef]
- Weinreb, S.M. Nitrosoalkenes: Underappreciated Reactive Intermediates for Formation of Carbon–Carbon Bonds. Synlett 2019, 30, 1855. [Google Scholar] [CrossRef]
- Sengupta, R.; Witek, J.A.; Weinreb, S.M. Stereochemical Investigation of Conjugate Additions of Carbon- and Heteronucle-ophiles to Ring-Substituted Nitrosocyclohexenes. Tetrahedron 2011, 67, 8229. [Google Scholar] [CrossRef] [PubMed]
- Ganem, B.; Osby, J.O. Synthetically Useful Reactions with Metal Boride and Aluminide Catalysts. Chem. Rev. 1986, 86, 763. [Google Scholar] [CrossRef]
- Ipaktschi, J. Reduktion von Oximen mit Natriumboranat in Gegenwart von Übergangsmetallverbindungen. Chem. Ber. 1984, 117, 856. [Google Scholar] [CrossRef]
- Cheng, X.; Yang, B.; Hu, X.; Xu, Q.; Lu, Z. Visible-Light-Promoted Metal-Free Aerobic Oxidation of Primary Amines to Acids and Lactones. Chem. Eur. J. 2016, 22, 17566. [Google Scholar] [CrossRef]
- Bergstrom, F.W. Heterocyclic Nitrogen Compounds. Part IIA. Hexacyclic Compounds: Pyridine, Quinoline, and Isoquinoline. Chem. Rev. 1944, 35, 77. [Google Scholar] [CrossRef]
- Schmidt, B.; Riemer, M. Suzuki–Miyaura Coupling of Halophenols and Phenol Boronic Acids: Systematic Investigation of Positional Isomer Effects and Conclusions for the Synthesis of Phytoalexins from Pyrinae. J. Org. Chem. 2014, 79, 4104. [Google Scholar] [CrossRef] [PubMed]
- Park, N.H.; Vinogradova, E.V.; Surry, D.S.; Buchwald, S.L. Design of New Ligands for the Palladium-Catalyzed Arylation of α-Branched Secondary Amines. Angew. Chem. Int. Ed. 2015, 54, 8259. [Google Scholar] [CrossRef] [PubMed]
- Kale, A.P.; Pawar, G.G.; Kapur, M. Regioselectivity Switch Achieved in the Palladium Catalyzed α-Arylation of Enones by Employing the Modified Kuwajima–Urabe Conditions. Org. Lett. 2012, 14, 1808. [Google Scholar] [CrossRef] [PubMed]
- Majmudar, J.D.; Hodges-Loaiza, H.B.; Hahne, K.; Donelson, J.L.; Song, J.; Shrestha, L.; Harrison, M.L.; Hrycyna, C.A.; Gibbs, R.A. Amide-Modified Prenylcysteine Based Icmt Inhibitors: Structure–Activity Relationships, Kinetic Analysis and Cellular Characterization. Bioorg. Med. Chem. 2012, 20, 283. [Google Scholar] [CrossRef] [PubMed]
- Finney, L.C.; Mitchell, L.J.; Moody, C.J. Visible Light Mediated Oxidation of Benzylic sp3 C–H Bonds Using Catalytic 1,4-Hydroquinone, or its Biorenewable Glucoside, Arbutin, as a Pre-Oxidant. Green Chem. 2018, 20, 2242. [Google Scholar] [CrossRef]
- Wiseman, R.L.; Johnson, S.M.; Kelker, M.S.; Foss, T.; Wilson, I.A.; Kelly, J.W. Kinetic Stabilization of an Oligomeric Protein by a Single Ligand Binding Event. J. Am. Chem. Soc. 2005, 127, 5540. [Google Scholar] [CrossRef] [PubMed]
- Rousseaux, S.; Gorelsky, S.I.; Chung, B.K.W.; Fagnou, K. Investigation of the Mechanism of C(sp3)−H Bond Cleavage in Pd(0)-Catalyzed Intramolecular Alkane Arylation Adjacent to Amides and Sulfonamides. J. Am. Chem. Soc. 2010, 132, 10692. [Google Scholar] [CrossRef]
Entry | Cu Salt | Yield (%) [b] |
---|---|---|
1 | CuI | 75 |
2 | CuOAc | 59 |
3 | CuCN | 80 |
4 | CuTC | 85 |
5 [c] | CuTC | 9 |
Entry | 1 | 3 | Yield (%) [b] |
---|---|---|---|
1 | 83 | ||
2 | 71 | ||
3 | 73 | ||
4 | 84 | ||
5 | 64 | ||
6 | 66 | ||
7 | 67 | ||
8 | 0 | ||
9 | 0 |
Entry | Conditions | Yield of 4a (%) [b] | Comment | |
---|---|---|---|---|
cis | trans | |||
1 | H2 (1 atm), Pd(OH)2/C, EtOAc/MeOH | 0 | 0 | no reaction |
2 | SmI2, THF | 0 | 0 | complex mixture |
3 | DIBAL-H, THF | 0 | 0 | no reaction |
4 | LiB(s-Bu)3H, THF | 0 | 0 | no reaction |
5 | NaB(OAc)3H, THF | 0 | 0 | no reaction |
6 | NaBH3CN, TFA | 0 | 0 | complex mixture |
7 | NiCl2·6H2O, NaBH4, EtOH | 34 | 37 | |
8 | MoO3, NaBH4, MeOH | 17 | 51 |
Entry | 3 | 4 | Yield (%) [b] | |
---|---|---|---|---|
cis-4 | trans-4 | |||
1 | 44 | 44 | ||
2 | 33 | 31 | ||
3 | 33 | 27 | ||
4 | 0 | 0 | ||
5 | 0 | 0 | ||
6 | 0 | 0 | ||
7 | 0 | 0 |
Entry | 4 | 5 | Yield (%) [b] |
---|---|---|---|
1 | 29 | ||
2 | 45 | ||
3 | 31 | ||
4 | 27 | ||
5 | 47 | ||
6 | 50 | ||
7 | 0 | ||
8 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, C.; Nishikawa, H.; Inokuma, T.; Yamada, K.-i. Diastereodivergent Construction of Octahydrophenanthridinone and Octahydrophenanthridine Cores. Molecules 2025, 30, 371. https://doi.org/10.3390/molecules30020371
Sun C, Nishikawa H, Inokuma T, Yamada K-i. Diastereodivergent Construction of Octahydrophenanthridinone and Octahydrophenanthridine Cores. Molecules. 2025; 30(2):371. https://doi.org/10.3390/molecules30020371
Chicago/Turabian StyleSun, Chunzhao, Hiromichi Nishikawa, Tsubasa Inokuma, and Ken-ichi Yamada. 2025. "Diastereodivergent Construction of Octahydrophenanthridinone and Octahydrophenanthridine Cores" Molecules 30, no. 2: 371. https://doi.org/10.3390/molecules30020371
APA StyleSun, C., Nishikawa, H., Inokuma, T., & Yamada, K.-i. (2025). Diastereodivergent Construction of Octahydrophenanthridinone and Octahydrophenanthridine Cores. Molecules, 30(2), 371. https://doi.org/10.3390/molecules30020371