Near-Infrared Light-Responsive Molybdenum Disulfide Nanosheets for Controlling the Release of Nimodipine as NIR-Drug Delivery System
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.2. Synthesis of 3-Mercaptopropionate Chitosan (CHIT-SH)
3.3. Preparation of MoS2 Nanosheets
3.4. Preparation of MoS2-NIMO and MoS2-NIMO-CHIT-SH Composites
3.5. Methods of Characterization
3.6. Study the Precipitation Properties of NIMO and Its Composites
3.7. Study the Stability of MoS2, MoS2-NIMO and MoS2-NIMO-CHIT-SH in the Aqueous Medium
3.8. Characterization and Evaluation of Photothermal Property
3.9. In Vitro Drug Release Experiments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CHIT | Chitosan |
CHIT-SH | Thiolated chitosan |
NIR | Near-infrared |
NIMO | Nimodipine |
EDC | 1-(3-Dimethylaminopropyl)-3-ethyl carbodiimide hydrochloride |
PBS | Phosphate buffer saline solution |
DS | Degree of substitution |
DD | Degree of deacetylation |
FTIR | Fourier Transform Infrared |
TEM | Transmission electron microscope |
DLS | Dynamic light scattering |
References
- Fathi, M.; Majidi, S.; Zangabad, P.S.; Barar, J.; Erfan-Niya, H.; Omidi, Y. Chitosan-based Multifunctional Nanomedicines and Theranostics for Targeted Therapy of Cancer. Med. Res. Rev. 2018, 38, 2110–2136. [Google Scholar] [CrossRef]
- Bernkopschnurch, A. Thiomers: A New Generation of Mucoadhesive Polymers. Adv. Drug Deliv. Rev. 2005, 57, 1569–1582. [Google Scholar] [CrossRef]
- Ali, S.R.; De, M. Thiolated Ligand-Functionalized MoS2 Nanosheets for Peroxidase-like Activities. ACS Appl. Nano Mater. 2021, 4, 12682–12689. [Google Scholar] [CrossRef]
- Wang, J.; Pelletier, M.; Zhang, H.; Xia, H.; Zhao, Y. High-Frequency Ultrasound-Responsive Block Copolymer Micelle. Langmuir 2009, 25, 13201–13205. [Google Scholar] [CrossRef]
- Tong, R.; Xia, H.; Lu, X. Fast Release Behavior of Block Copolymer Micelles under High Intensity Focused Ultrasound/Redox Combined Stimulus. J. Mater. Chem. B 2013, 1, 886–894. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Fei, G.; Xia, H.; Han, J.; Zhao, Y. Spatial and Temporal Control of Shape Memory Polymers and Simultaneous Drug Release Using High Intensity Focused Ultrasound. J. Mater. Chem. 2012, 22, 7692. [Google Scholar] [CrossRef]
- Kim, B.-S.; Qiu, J.-M.; Wang, J.-P.; Taton, T.A. Magnetomicelles: Composite Nanostructures from Magnetic Nanoparticles and Cross-Linked Amphiphilic Block Copolymers. Nano Lett. 2005, 5, 1987–1991. [Google Scholar] [CrossRef] [PubMed]
- Roullier, V.; Grasset, F.; Boulmedais, F.; Artzner, F.; Cador, O.; Marchi-Artzner, V. Small Bioactivated Magnetic Quantum Dot Micelles. Chem. Mater. 2008, 20, 6657–6665. [Google Scholar] [CrossRef]
- Carstens, M.G.; Van Nostrum, C.F.; Verrijk, R.; De Leede, L.G.J.; Crommelin, D.J.A.; Hennink, W.E. A Mechanistic Study on the Chemical and Enzymatic Degradation of PEG-Oligo(Ε-caprolactone) Micelles. J. Pharm. Sci. 2008, 97, 506–518. [Google Scholar] [CrossRef] [PubMed]
- Plamper, F.A.; Murtomäki, L.; Walther, A.; Kontturi, K.; Tenhu, H. E-Micellization: Electrochemical, Reversible Switching of Polymer Aggregation. Macromolecules 2009, 42, 7254–7257. [Google Scholar] [CrossRef]
- Chen, D.; Li, N.; Gu, H.; Xia, X.; Xu, Q.; Ge, J.; Lu, J.; Li, Y. A Novel Degradable Polymeric Carrier for Selective Release and Imaging of Magnetic Nanoparticles. Chem. Commun. 2010, 46, 6708. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Xia, X.; Gu, H.; Xu, Q.; Ge, J.; Li, Y.; Li, N.; Lu, J. pH-Responsive Polymeric Carrier Encapsulated Magnetic Nanoparticles for Cancer Targeted Imaging and Delivery. J. Mater. Chem. 2011, 21, 12682. [Google Scholar] [CrossRef]
- Mei, X.; Chen, D.; Li, N.; Xu, Q.; Ge, J.; Li, H.; Yang, B.; Xu, Y.; Lu, J. Facile Preparation of Coating Fluorescent Hollow Mesoporous Silica Nanoparticles with pH-Sensitive Amphiphilic Diblock Copolymer for Controlled Drug Release and Cell Imaging. Soft Matter 2012, 8, 5309. [Google Scholar] [CrossRef]
- Yang, S.; Chen, D.; Li, N.; Mei, X.; Qi, X.; Li, H.; Xu, Q.; Lu, J. A Facile Preparation of Targetable pH-Sensitive Polymeric Nanocarriers with Encapsulated Magnetic Nanoparticles for Controlled Drug Release. J. Mater. Chem. 2012, 22, 25354. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, G.; Li, X.; Chen, J.; Wang, Y.; Ma, J. Temperature-Triggered Redox-Degradable Poly(Ether Urethane) Nanoparticles for Controlled Drug Delivery. J. Mater. Chem. 2012, 22, 25217. [Google Scholar] [CrossRef]
- Zhao, Y. Photocontrollable Block Copolymer Micelles: What Can We Control? J. Mater. Chem. 2009, 19, 4887. [Google Scholar] [CrossRef]
- Sortino, S. Photoactivated Nanomaterials for Biomedical Release Applications. J. Mater. Chem. 2012, 22, 301–318. [Google Scholar] [CrossRef]
- Zhao, Y. Light-Responsive Block Copolymer Micelles. Macromolecules 2012, 45, 3647–3657. [Google Scholar] [CrossRef]
- Mei, X.; Yang, S.; Chen, D.; Li, N.; Li, H.; Xu, Q.; Ge, J.; Lu, J. Light-Triggered Reversible Assemblies of Azobenzene-Containing Amphiphilic Copolymer with β-Cyclodextrin-Modified Hollow Mesoporous Silica Nanoparticles for Controlled Drug Release. Chem. Commun. 2012, 48, 10010. [Google Scholar] [CrossRef]
- Callari, F.L.; Petralia, S.; Conoci, S.; Sortino, S. Light-Triggered DNA Release by Dynamic Monolayer Films. New J. Chem. 2008, 32, 1899. [Google Scholar] [CrossRef]
- Fraix, A.; Kandoth, N.; Manet, I.; Cardile, V.; Graziano, A.C.E.; Gref, R.; Sortino, S. An Engineered Nanoplatform for Bimodal Anticancer Phototherapy with Dual-Color Fluorescence Detection of Sensitizers. Chem. Commun. 2013, 49, 4459. [Google Scholar] [CrossRef] [PubMed]
- Ji, W.; Li, N.; Chen, D.; Qi, X.; Sha, W.; Jiao, Y.; Xu, Q.; Lu, J. Coumarin-Containing Photo-Responsive Nanocomposites for NIR Light-Triggered Controlled Drug Release via a Two-Photon Process. J. Mater. Chem. B 2013, 1, 5942. [Google Scholar] [CrossRef] [PubMed]
- Jochum, F.D.; Theato, P. Thermo- and Light Responsive Micellation of Azobenzene Containing Block Copolymers. Chem. Commun. 2010, 46, 6717. [Google Scholar] [CrossRef] [PubMed]
- Yan, B.; He, J.; Ayotte, P.; Zhao, Y. Optically Triggered Dissociation of Kinetically Stabilized Block Copolymer Vesicles in Aqueous Solution. Macromol. Rapid Commun. 2011, 32, 972–976. [Google Scholar] [CrossRef] [PubMed]
- Chou, S.S.; Kaehr, B.; Kim, J.; Foley, B.M.; De, M.; Hopkins, P.E.; Huang, J.; Brinker, C.J.; Dravid, V.P. Chemically Exfoliated MoS2 as Near-Infrared Photothermal Agents. Angew. Chem. Int. Ed. 2013, 52, 4160–4164. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Chen, Y.; Li, X.; Gao, W.; Zhang, L.; Liu, J.; Zheng, Y.; Chen, H.; Shi, J. Injectable 2D MoS2-Integrated Drug Delivering Implant for Highly Efficient NIR-Triggered Synergistic Tumor Hyperthermia. Adv. Mater. 2015, 27, 7117–7122. [Google Scholar] [CrossRef]
- Liu, T.; Wang, C.; Cui, W.; Gong, H.; Liang, C.; Shi, X.; Li, Z.; Sun, B.; Liu, Z. Combined Photothermal and Photodynamic Therapy Delivered by PEGylated MoS2 Nanosheets. Nanoscale 2014, 6, 11219–11225. [Google Scholar] [CrossRef]
- Yin, W.; Yan, L.; Yu, J.; Tian, G.; Zhou, L.; Zheng, X.; Zhang, X.; Yong, Y.; Li, J.; Gu, Z.; et al. High-Throughput Synthesis of Single-Layer MoS2 Nanosheets as a Near-Infrared Photothermal-Triggered Drug Delivery for Effective Cancer Therapy. ACS Nano 2014, 8, 6922–6933. [Google Scholar] [CrossRef]
- Liu, T.; Wang, C.; Gu, X.; Gong, H.; Cheng, L.; Shi, X.; Feng, L.; Sun, B.; Liu, Z. Drug Delivery with PEGylated MoS2 Nano-sheets for Combined Photothermal and Chemotherapy of Cancer. Adv. Mater. 2014, 26, 3433–3440. [Google Scholar] [CrossRef]
- Yin, W.; Yu, J.; Lv, F.; Yan, L.; Zheng, L.R.; Gu, Z.; Zhao, Y. Functionalized Nano-MoS2 with Peroxidase Catalytic and Near-Infrared Photothermal Activities for Safe and Synergetic Wound Antibacterial Applications. ACS Nano 2016, 10, 11000–11011. [Google Scholar] [CrossRef]
- Cao, F.; Ju, E.; Zhang, Y.; Wang, Z.; Liu, C.; Li, W.; Huang, Y.; Dong, K.; Ren, J.; Qu, X. An Efficient and Benign Antimicrobial Depot Based on Silver-Infused MoS2. ACS Nano 2017, 11, 4651–4659. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Shi, S.; Liang, C.; Shen, S.; Cheng, L.; Wang, C.; Song, X.; Goel, S.; Barnhart, T.E.; Cai, W.; et al. Iron Oxide Decorated MoS2 Nanosheets with Double PEGylation for Chelator-Free Radiolabeling and Multimodal Imaging Guided Photothermal Therapy. ACS Nano 2015, 9, 950–960. [Google Scholar] [CrossRef]
- Zhang, X.; Lai, Z.; Tan, C.; Zhang, H. Solution-Processed Two-Dimensional MoS2 Nanosheets: Preparation, Hybridization, and Applications. Angew. Chem. Int. Ed. 2016, 55, 8816–8838. [Google Scholar] [CrossRef]
- Wang, S.; Li, K.; Chen, Y.; Chen, H.; Ma, M.; Feng, J.; Zhao, Q.; Shi, J. Biocompatible PEGylated MoS2 Nanosheets: Controllable Bottom-up Synthesis and Highly Efficient Photothermal Regression of Tumor. Biomaterials 2015, 39, 206–217. [Google Scholar] [CrossRef] [PubMed]
- Langley, M.S.; Sorkin, E.M. Nimodipine: A Review of Its Pharmacodynamic and Pharmacokinetic Properties, and Therapeutic Potential in Cerebrovascular Disease. Drugs 1989, 37, 669–699. [Google Scholar] [CrossRef]
- Zhao, Y.; Xin, T.; Ye, T.; Yang, X.; Pan, W. Solid Dispersion in the Development of a Nimodipine Delayed-Release Tablet Formulation. Asian J. Pharm. Sci. 2014, 9, 35–41. [Google Scholar] [CrossRef]
- Barmpalexis, P.; Kanaze, F.I.; Kachrimanis, K.; Georgarakis, E. Artificial Neural Networks in the Optimization of a Nimodipine Controlled Release Tablet Formulation. Eur. J. Pharm. Biopharm. 2010, 74, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Gelmers, H.J. Calcium-Channel Blockers in the Treatment of Migraine. Am. J. Cardiol. 1985, 55, B139–B143. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Zhong, D.; Chen, X.; Liu, X.; Tang, X.; Zhao, L. Development of a Dissolution Medium for Nimodipine Tablets Based on Bioavailability Evaluation. Eur. J. Pharm. Sci. 2004, 21, 487–491. [Google Scholar] [CrossRef]
- Grunenberg, A.; Keil, B.; Henck, J.-O. Polymorphism in Binary Mixtures, as Exemplified by Nimodipine. Int. J. Pharm. 1995, 118, 11–21. [Google Scholar] [CrossRef]
- Mahmoud, S.H.; Ji, X.; Isse, F.A. Nimodipine Pharmacokinetic Variability in Various Patient Populations. Drugs R D 2020, 20, 307–318. [Google Scholar] [CrossRef] [PubMed]
- Luca, M.D.; Ioele, G.; Spatari, C.; Ragno, G. Photodegradation of 1, 4-dihydropyridine antihypertensive drugs: An updated review. Int. J. Pharm. Pharm. Sci. 2018, 10, 8. [Google Scholar] [CrossRef]
- Abdelghafour, M.M.; Deák, Á.; Kiss, T.; Budai-Szűcs, M.; Katona, G.; Ambrus, R.; Lőrinczi, B.; Keller-Pintér, A.; Szatmári, I.; Szabó, D.; et al. Self-Assembling Injectable Hydrogel for Controlled Drug Delivery of Antimuscular Atrophy Drug Tilorone. Pharmaceutics 2022, 14, 2723. [Google Scholar] [CrossRef]
- Tharanathan, R.N.; Kittur, F.S. Chitin—The Undisputed Biomolecule of Great Potential. Crit. Rev. Food Sci. Nutr. 2003, 43, 61–87. [Google Scholar] [CrossRef] [PubMed]
- Yasmeen, S.; Kabiraz, M.; Saha, B.; Qadir, M.; Gafur, M.; Masum, S. Chromium (VI) Ions Removal from Tannery Effluent Using Chitosan-Microcrystalline Cellulose Composite as Adsorbent. Int. Res. J. Pure Appl. Chem. 2016, 10, 1–14. [Google Scholar] [CrossRef]
- Dimzon, I.K.D.; Knepper, T.P. Degree of Deacetylation of Chitosan by Infrared Spectroscopy and Partial Least Squares. Int. J. Biol. Macromol. 2015, 72, 939–945. [Google Scholar] [CrossRef] [PubMed]
- Fernandes Queiroz, M.; Melo, K.; Sabry, D.; Sassaki, G.; Rocha, H. Does the Use of Chitosan Contribute to Oxalate Kidney Stone Formation? Mar. Drugs 2014, 13, 141–158. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Su, M.; Tang, S.; Wang, L.; Liang, X.; Meng, F.; Hong, Y.; Xu, Z. Synthesis of Thiolated Chitosan and Preparation Nanoparticles with Sodium Alginate for Ocular Drug Delivery. Mol. Vis. 2012, 18, 1973. [Google Scholar]
- Esquivel, R.; Juárez, J.; Almada, M.; Ibarra, J.; Valdez, M.A. Synthesis and Characterization of New Thiolated Chitosan Nanoparticles Obtained by Ionic Gelation Method. Int. J. Polym. Sci. 2015, 2015, 502058. [Google Scholar] [CrossRef]
- Backes, C.; Berner, N.C.; Chen, X.; Lafargue, P.; LaPlace, P.; Freeley, M.; Duesberg, G.S.; Coleman, J.N.; McDonald, A.R. Functionalization of Liquid-Exfoliated Two-Dimensional 2H-MoS2. Angew. Chem. Int. Ed. 2015, 54, 2638–2642. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Shen, S.; Liu, Z.; Ji, M. Label-free, quantitative imaging of MoS2-nanosheets in live cells with simultaneous stimulated raman scattering and transient absorption microscopy. Adv. Biosyst. 2017, 1, 1700013. [Google Scholar] [CrossRef]
- Liu, Y.; Peng, J.; Wang, S.; Xu, M.; Gao, M.; Xia, T.; Weng, J.; Xu, A.; Liu, S. Molybdenum disulfde/graphene oxide nanocomposites show favorable lung targeting and enhanced drug loading/tumor-killing efcacy with improved biocompatibility. NPG Asia Mater. 2018, 10, e458. [Google Scholar] [CrossRef]
- Teo, W.Z.; Chng, E.L.K.; Sofer, Z.; Pumera, M. Cytotoxicity of exfoliated transition-metal dichalcogenides (MoS2, WS2, and WSe2) is lower than that of graphene and its analogues. Chem. Eur. J. 2014, 20, 9627–9632. [Google Scholar] [CrossRef] [PubMed]
- Siepi, M.; Morales-Narváez, E.; Domingo, N.; Monti, D.M.; Notomista, E.; Merkoçi, A. Production of biofunctionalized MoS2 fakes with rationally modifed lysozyme: A biocompatible 2D hybrid material. 2D Mater. 2017, 4, 035007. [Google Scholar] [CrossRef]
- Moore, C.; Movia, D.; Smith, R.J.; Hanlon, D.; Lebre, F.; Lavelle, E.C.; Byrne, H.J.; Coleman, J.N.; Volkov, Y.; McIntyre, J. Industrial grade 2D molybdenum disulphide (MoS2): An in vitro exploration of the impact on cellular uptake, cytotoxicity, and infammation. 2D Mater. 2017, 4, 025065. [Google Scholar] [CrossRef]
- Appel, J.H.; Li, D.O.; Podlevsky, J.D.; Debnath, A.; Green, A.A.; Wang, Q.H.; Chae, J. Low Cytotoxicity and Genotoxicity of Two-Dimensional MoS2 and WS2. ACS Biomater. Sci. Eng. 2016, 2, 361–367. [Google Scholar] [CrossRef]
- Shah, P.; Narayanan, T.N.; Li, C.-Z.; Alwarappan, S. Probing the biocompatibility of MoS2 nanosheets by cytotoxicity assay and electrical impedance spectroscopy. Nanotechnology 2015, 26, 315102. [Google Scholar] [CrossRef]
- Abdelghafour, M.M.; Orbán, Á.; Deák, Á.; Lamch, Ł.; Frank, É.; Nagy, R.; Janovák, L. Biocompatible poly (ethylene succinate) polyester with molecular weight dependent drug release properties. Int. J. Pharm. 2022, 618, 121653. [Google Scholar] [CrossRef]
- Belal, F.; Al-Majed, A.A.; Julkhuf, S.; Khalil, N.Y. Spectrofluorometric Determination of Nimodipine in Dosage Forms and Human Urine. Pharm.-Int. J. Pharm. Sci. 2003, 58, 874–876. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelghafour, M.M.; Deák, Á.; Amin, K.W.K.; Czimer, Z.; Veronika, C.F.; Péter, V.; Berkecz, R.; Bari, F.; Janovák, L. Near-Infrared Light-Responsive Molybdenum Disulfide Nanosheets for Controlling the Release of Nimodipine as NIR-Drug Delivery System. Molecules 2025, 30, 497. https://doi.org/10.3390/molecules30030497
Abdelghafour MM, Deák Á, Amin KWK, Czimer Z, Veronika CF, Péter V, Berkecz R, Bari F, Janovák L. Near-Infrared Light-Responsive Molybdenum Disulfide Nanosheets for Controlling the Release of Nimodipine as NIR-Drug Delivery System. Molecules. 2025; 30(3):497. https://doi.org/10.3390/molecules30030497
Chicago/Turabian StyleAbdelghafour, Mohamed M., Ágota Deák, Keristina Wagdi K. Amin, Zsófia Czimer, Czike Flóra Veronika, Viktória Péter, Róbert Berkecz, Ferenc Bari, and László Janovák. 2025. "Near-Infrared Light-Responsive Molybdenum Disulfide Nanosheets for Controlling the Release of Nimodipine as NIR-Drug Delivery System" Molecules 30, no. 3: 497. https://doi.org/10.3390/molecules30030497
APA StyleAbdelghafour, M. M., Deák, Á., Amin, K. W. K., Czimer, Z., Veronika, C. F., Péter, V., Berkecz, R., Bari, F., & Janovák, L. (2025). Near-Infrared Light-Responsive Molybdenum Disulfide Nanosheets for Controlling the Release of Nimodipine as NIR-Drug Delivery System. Molecules, 30(3), 497. https://doi.org/10.3390/molecules30030497