Comparison of Changes in Sterol Content of Nuts After Roasting Using Conventional and Microwave Methods and After Storage
Abstract
:1. Introduction
2. Results
2.1. Stability of Phytosterols During Storage of Raw Nuts (Unroasted)
2.2. The Effect of Roasting and Long-Term Storage of Nuts on the Sterol Content in Nuts
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Roasting Conditions
- -
- Conventional—PETRONCINI laboratory nut roaster (Petroncini Impianti S.p.A., Modena, Italy) temp. 170 °C. Due to their diverse structure, the time was adjusted specifically for each type of nut and ranged from 10 to 20 min.
- -
- Laboratory—microwave scale roasting—negative pressure in a microwave–vacuum dryer manufactured by Promis-Tech (PROMIS-TECH Sp. z o.o., Wrocław, Poland), roasting temperature 60 °C, pressure 40 hPa. Due to their diverse structure, the time was adjusted specifically for each type of nut and ranged from 140 to 180 s.
4.3. Storage Conditions
4.4. Methods
4.4.1. Determination of Plant Sterols
4.4.2. Calculation of Phytosterol Losses After Roasting or Storage
4.4.3. Statistical Methods—Statistical Program Statistica 12.0
- -
- The arithmetic mean (xmean) and standard deviation (SD);
- -
- The significance of differences between the compared means was tested;
- -
- One-factor and two-factor analysis of variance, designated in the work as ANOVA or MULTI-ANOVA, for an assumed significance level of alpha = 0.05;
- -
- The analysis of principal components (PCA—Principal Component Analysis) was performed in order to determine the dependencies of the obtained results (variables and cases) depending on the storage time, roasting method and type of nuts.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Otaegui-Arrazola, A.; Menéndez-Carreño, M.; Ansorena, D.; Astiasarán, I. Oxysterols: A world to explore. Food Chem. Toxicol. 2010, 48, 3289–3303. [Google Scholar] [CrossRef] [PubMed]
- Nowak, A. Fitosterole w codziennej diecie. Postępy Fitoter. 2011, 1, 48–51. [Google Scholar]
- Toledo, E.; Hu, F.B.; Estruch, R.; Buil-Cosiales, P.; Corella, D.; Salas-Salvadó, J.; Covas, M.I.; Arós, F.; Gómez-Gracia, E.; Fiol, M.; et al. Effect of the Mediterranean diet on blood pressure in the PREDIMED trial: Results from a randomized controlled trial. BMC Med. 2013, 11, 207. [Google Scholar] [CrossRef]
- Prasad, M.; Jayaraman, S.; Eladl, M.A.; El-Sherbiny, M.; Abdelrahman, M.A.E.; Veeraraghavan, V.P.; Vengadassalapathy, S.; Umapathy, V.R.; Jaffer Hussain, S.F.; Krishnamoorthy, K.; et al. A Comprehensive Review on Therapeutic Perspectives of Phytosterols in Insulin Resistance: A Mechanistic Approach. Molecules 2022, 27, 1595. [Google Scholar] [CrossRef] [PubMed]
- Barbour, J.A.; Howe, P.R.; Buckley, J.D.; Bryan, J.; Coates, A.M. Nut consumption for vascular health and cognitive function. Nutr. Res. Rev. 2014, 27, 131–158. [Google Scholar] [CrossRef]
- Bartnikowska, E. Biological activities of phytosterols with particular attention to their effects on lipid metabolism. Pol. J. Food Nutr. Sci. 2009, 59, 105–112. [Google Scholar]
- Brzeska, M.I. Cała prawda o oksysterolach. Postępy Nauk. I Technol. Przemysłu Rolno-Spożywczego 2016, 71, 77–96. [Google Scholar]
- Demoliner, F.; de Britto Policarpi, P.; Ramos, J.C.; Bascuñan, V.L.A.F.; Ferrari, R.A.; Jachmanián, I.; de Francisco de Casas, A.; Vasconcelos, L.F.L.; Block, J.M. Sapucaia nut (Lecythis pisonis Cambess) and its by-products: A promising and underutilized source of bioactive compounds. Part I: Nutritional composition and lipid profile. Food Res. Int. 2018, 108, 27–34. [Google Scholar] [CrossRef]
- Derewiaka, D.; Obiedziński, M.W. Wpływ obróbki termicznej na zawartość steroli w oleju rzepakowym oraz w mieszaninach na bazie oleju rzepakowego. ŻYWNOŚĆ. Nauka. Technologia. Jakość 2012, 3, 64–76. [Google Scholar]
- Kritschevsky, D.; Chen, S.C. Phytosterols–health benefits and potential concerns: A review. Nutr. Res. 2005, 25, 413–428. [Google Scholar] [CrossRef]
- Plat, J.; Baumgartner, S.; Vanmierlo, T.; Lütjohann, D.; Calkins, K.L.; Burrin, D.G.; Guthrie, G.; Thijs, C.; Te Velde, A.A.; Vreugdenhil, A.C.E.; et al. Plant-based sterols and stanols in health & disease: “Consequences of human development in a plant-based environment? ” Prog. Lipid Res. 2019, 74, 87–102. [Google Scholar] [CrossRef] [PubMed]
- Fagundes, M.B.; Alvarez-Rivera, G.; Mendiola, J.A.; Bueno, M.; Sánchez-Martínez, J.D.; Wagner, R.; Jacob-Lopes, E.; Zepka, L.Q.; Ibañez, E.; Cifuentes, A. Phytosterol-rich compressed fluids extracts from Phormidium autumnale cyanobacteria with neuroprotective potential. Algal Res. 2021, 55, 102264. [Google Scholar] [CrossRef]
- Ose, L. Phytosterol intake and dietary recommendation. In Proceedings of the XVI International Symposium on Atherosclerosis, Roma, Italy, 18–22 June 2006; 7, pp. 337–338. [Google Scholar]
- Thanh, T.T.; Verges, M.; Kaloustian, J.; El-Moselhy, T.F.; Amiot-Carlin, M.J.; Potugal, H. Effect of storage and heating oh phytosterol concentrations in vegetable oils determined by GC/MS. J. Sci. Food Agric. 2006, 86, 220–225. [Google Scholar] [CrossRef]
- Trautwein, E.A. Phytosterols and cholesterol—Lowering efficiency in different food formats. In Proceedings of the XVI International Symposium on Atherosclerosis, Roma, Italy, 18–22 June 2006; pp. 7–337. [Google Scholar] [CrossRef]
- Plat, J.; van Onselen, E.N.M.; van Heugten, M.M.A.; Mensink, R.P. Effects on serum lipids, lipoproteins and fat soluble antioxidant concentrations of consumption frequency of margarines and shortenings enriched with plant stanol esters. Eur. J. Clin. Nutr. 2008, 54, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Kulik, K.; Waszkiewicz-Robak, B. Orzechy jadalne jako źródło składników bioaktywnych. In Trendy w Żywieniu Człowieka; Karwowska, M., Gustaw, W., Eds.; Wyd. Naukowe PTTŻ Kraków: Krakow, Poland, 2015; pp. 142–156. [Google Scholar]
- FDA. Qualified Health Claims Subject to Enforcement Discretion (Summary). 2003. Available online: https://www.fda.gov/files/food/published/Petition-for-a-Qualified-Health-Claim-for-Macadamia-Nuts-and-Reduced-Risk-of-Coronary-Heart-Disease-PDF.pdf (accessed on 22 November 2023).
- EFSA. Consumption of food and beverages with added plant sterols in the European Union. EFSA J. 2008, 133, 1–21. [Google Scholar]
- Wełnicki, M.; Szeligowska, J.; Mamcarz, A. Plant sterols in prevention of cardiovascular diseases. Dose sterols can optimize effects of classic cholesterol reducing drugs? Choroby Serca i Naczyń 2014, 11, 225–229. [Google Scholar]
- Maestri, D.; Cittadini, M.C.; Bodoira, R.; Martínez, M. Tree Nut Oils: Chemical Profiles, Extraction, Stability, and Quality Concerns. Eur. J. Lipid Sci. Technol. 2020, 122, 1900450. [Google Scholar] [CrossRef]
- EFSA. Scientific Opinion on the substantiation of health claims related to nuts and essential fatty acids (omega-3/omega-6) in nut oil. EFSA J. 2011, 9, 2032. [Google Scholar]
- EFSA; Chen, J.; Fewtrell, M.; Kennedy, G.; Naska, A.; Riediger, K.; Roos, N.; Sanders, T.; Tuohy, K.M.; Valtuena-Martinez, S. Nutrition challenges ahead. EFSA J. 2016, 14, e00504. [Google Scholar] [CrossRef]
- Pachocka, L.; Stróżyk, A. Orzechy w codziennej diecie–wartości żywieniowe i prozdrowotne. Przemysł Spożywczy 2017, 71, 38–41. [Google Scholar]
- Shahidi, F.; Shukla, V.K.S. Nontriacylglycerol constituents of fats, oils. Inform Journal. 1996, 7, 1227–1231. [Google Scholar]
- Ryan, E.; Galvin, K.; O’Connor, T.P.; Maguire, A.R.; O’Brien, N.M. Fatty acid profile, tocopherol, squalene and phytosterol content of brazil, pecan, pine, pistachio and cashew nuts. Int. J. Food Sci. Nutr. 2006, 57, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Azadmard-Damirchi, S.; Emami, S.H.; Hesari, J.; Peighambardoust, S.H.; Nemati, M. Nuts Composition and their Health Benefits. Int. J. Nutr. Food Eng. 2011, 5, 545–548. [Google Scholar]
- Jesch, E.D.; Carr, T.P. Sitosterol reduces micellar cholesterol solubility in model bile. Nutr. Res. 2006, 26, 579–584. [Google Scholar] [CrossRef]
- Patel, S.B. Plant Sterols and Stanols: Their Role in Health and Disease. J. Clin. Lipidol. 2008, 2, 11–19. [Google Scholar] [CrossRef]
- Li, T.Y.; Brennan, A.M.; Wedick, N.M.; Mantzoros, C.; Rifai, N.; Hu, F.B. Regular consumption of nuts is associated with a lower risk of cardiovascular disease in women with type 2 diabetes. J. Nutr. 2009, 139, 1333–1338. [Google Scholar] [CrossRef]
- Sabate, J.; Wien, M. Nuts, blood lipids and cardiovascular disease. Asia Pac. J. Clin. Nutr. 2010, 19, 131–136. [Google Scholar] [PubMed]
- Sabate, J.; Oda, K.; Ros, E. Nut consumption and blood lipid levels: A pooled analysis of 25 intervention trials. Arch. Intern. Med. 2010, 170, 821–827. [Google Scholar] [CrossRef]
- Adamsson, V.; Reumark, A.; Fredriksson, I.B.; Hammarström, E.; Vessby, B.; Johansson, G.; Risérus, U. Effects of a healthy Nordic diet on cardiovascular risk factors in hypercholesterolaemic subjects: A randomized controlled trial (NORDIET). J. Intern. Med. 2011, 269, 150–159. [Google Scholar] [CrossRef]
- Awad-Allah, M.A.A. Evaluation of selected nuts and their proteins functional properties. J. Appl. Sci. Res. 2013, 9, 885–896. [Google Scholar]
- Kalogeropoulos, N.; Chiou, A.; Ioannou, M.S.; Karathanos, V.T. Nutritional evaluation and health promoting activities of nuts and seeds cultivated in Greece. Int. J. Food Sci. Nutr. 2013, 64, 757–767. [Google Scholar] [CrossRef]
- Jaceldo-Siegl, K.; Haddad, E.; Oda, K.; Fraser, G.E.; Sabaté, J. Tree nuts are inversely associated with metabolic syndrome and obesity: The Adventist health study-2. PLoS ONE 2014, 9, e85133. [Google Scholar] [CrossRef]
- Manne, R.; Nguyen, T.M.; Reddy, I.R.; Lakku, S. Current state of research on the sterol molecules conatined in nuts. N. Asian Int. Res. J. Pharm. Med. Sci. 2020, 4, 27–39. [Google Scholar]
- Gawrysiak-Witulska, M.; Rudzińska, M. Degradacja steroli roślinnych podczas niskotemperaturowego suszenia nasion rzepaku w silosie typu BIN. Acta Agroph. 2017, 24, 41–50. [Google Scholar]
- Rudzińska, M.; Jeleń, H.; Nogala-Kałucka, M.; Gawrysiak-Witulska, M. The influence of storage time and drying temperature on sterols content in seeds of rapeseed. Rośliny Oleiste 2006, 27, 302–312. [Google Scholar]
- Verleyen, T.; Sosinska, U.; Ioannidou, S.; Verhe, R.; Dewettinck, K.; Huyghebaert, A.; De Greyt, W. Influence of the oil refining process on free and esterified sterols. J. Am. Oil Chem. Soc. 2002, 79, 947–953. [Google Scholar] [CrossRef]
- Gawrysiak-Witulska, M.; Siger, A.; Nogala-Kalucka, M. Degradation of tocopherols during near-ambient rapeseed drying. J. Food Lipids 2009, 16, 524–539. [Google Scholar] [CrossRef]
- Kmiecik, D.; Korczak, J.; Rudzińska, M.; Kobus-Cisowska, J.; Gramza-Michałowska, A.; Hęś, M. β-Sitosterol and campesterol stabilisation by natural and synthetic antioxidants during heating. Food Chem. 2011, 128, 937–942. [Google Scholar] [CrossRef]
- Wroniak, M.; Cenkier, J. Porównanie cech sensorycznych, fizyko-chemicznych i stabilności oksydatywnej wybranych olejów tłoczonych na zimno. Zesz. Probl. Postępów Nauk. Rol. 2015, 58, 123–133. [Google Scholar]
- Soupas, L.; Huikko, L.; Lampi, A.M.; Piironen, V. Pan-frying may induce phytosterol oxidation. Food Chem. 2007, 101, 286–297. [Google Scholar] [CrossRef]
- Kmiecik, D.; Korczak, J.; Rudzińska, M.; Jeleń, H. Wpływ procesu smażenia na zawartość steroli i zmiany jakości częściowo uwodornionego oleju rzepakowego. Oilseed Crops 2006, 27, 119–128. [Google Scholar]
- Małecka, M. Wpływ ogrzewania na zawartość steroli i kwasów tłuszczowych w układzie modelowym. Tłuszcze Jadalne 1996, 1–2, 20–24. [Google Scholar]
- Rudzińska, M.; Korczak, J.; Wąsowicz, E. Changes in phytosterols and their products during frying of french fries in rapeseed oil. Pol. J. Food Nutr. Sci. 2005, 55, 381–387. [Google Scholar]
- Folch, J.; Lees, M.; Stanley, G.H.S. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Derewiaka, D.; Szwed, E.; Wołosik, R. Physicochemical properties and composition of lipid fraction of selected edible nuts. Pak. J. Bot. 2014, 46, 337–343. [Google Scholar]
- Hussain, N.; Jabeen, Z.; Li, Y.; Chen, M.; Li, Z.; Guo, W.; Shamsi, I.H.; Chen, X.; Jiang, L. Detection of Tocopherol in Oilseed Rape (Brassica napus L.) Using Gas Chromatography with Flame Ionization Detector. J. Integr. Agric. 2013, 12, 803–814. [Google Scholar] [CrossRef]
- Zhang, R.; Shen, W.; Wei, X.; Zhang, F.; Shen, C.; Wu, B.; Zhao, Z.; Liu, H.; Deng, X. Simultaneous Determination of Tocopherols and Tocotrienols in Vegetable Oils by GC-MS. Anal. Methods 2016, 8, 7341–7346. [Google Scholar] [CrossRef]
Type of Sterols Identified | Phytosterol Content [mg/100 g ± SD] | ||
---|---|---|---|
Walnuts (n = 9) | Peanuts (n = 9) | Hazelnuts (n = 9) | |
not stored | |||
ß-sitosterol | 57.2 ± 1.5 | 50.9 ± 1.2 | 66.4 ± 0.9 |
Campesterol | 3.8 ± 0.1 | 9.2 ± 0.7 | 3.5 ± 0.6 |
Stigmasterol | 2.9 ± 0.3 | 6.4 ± 0.4 | 0.8 ± 0.1 |
Delta 5-avenasterol | 5.6 ± 0.2 | 4.8 ± 0.7 | 3.6 ± 0.2 |
Cycloartenol | 15.8 ± 0.2 | 5.3 ± 2.0 | 4.4 ± 0.1 |
Total | 114.1 ± 1.7 | 92.7 ± 9.7 | 91.8 ± 1.6 |
after 6 months of storing | |||
ß-sitosterol | 54.0 ± 0.3 | 45.7 ± 1.0 | 59.8 ± 2.9 |
Campesterol | 3.6 ± 0.1 | 8.7 ± 0.6 | 2.6 ± 0.3 |
Stigmasterol | 2.8 ± 0.1 | 6.3 ± 0.2 | 0.6 ± 0.1 |
Delta 5-avenasterol | 4.3 ± 0.2 | 4.5 ± 0.1 | 2.9 ± 0.1 |
Cycloartenol | 13.6 ± 0.6 | 4.2 ± 0.4 | 4.9 ± 0.2 |
Total | 106.3 ± 0.6 | 82.1 ± 0.6 | 85.3 ± 2.4 |
after 12 months of storing | |||
ß-sitosterol | 34.35 ± 1 | 41.83 ± 1 | 55.03 ± 2 |
Campesterol | 2.44 ± 1 | 6.99 ± 1 | 2.68 ± 1 |
Stigmasterol | 2.14 ± 1 | 5.91 ± 1 | 0.11 ± 1 |
Delta 5-avenasterol | 2.71 ± 1 | 4.19 ± 1 | 2.68 ± 1 |
Cycloartenol | 11.42 ± 1 | 3.98 ± 1 | 4.90 ± 1 |
Total | 89.77 ± 2 | 74.83 ± 1 | 80.11 ± 2 |
Storage Time (Months) | Sterol Content in Roasted Nuts [mg/100 g ± SD] | Losses After Roasting (%) | ||
---|---|---|---|---|
Conventional | Microwave | Conventional | Microwave | |
Non-Roasted | 114.1 ± 2.6 | |||
0—immediately after roasting (n = 9) | 98.3 ± 3.3 a | 105.8 ± 3.1 b | 13.8 | 7.3 |
3 (n = 9) | 95.9 ± 1.2 a | 103.7 ± 1.3 b | 15.4 | 9.1 |
6 (n = 9) | 90.1 ± 2.3 a | 100.7 ± 1.2 b | 20.6 | 11.7 |
9 (n = 9) | 83.9 ± 2.4 a | 100.4 ± 2.2 b | 25.9 | 12.0 |
12 (n = 9) | 82.6 ± 1.1 a | 99.8 ± 1.1 b | 27.2 | 12.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kulik, K.; Waszkiewicz-Robak, B. Comparison of Changes in Sterol Content of Nuts After Roasting Using Conventional and Microwave Methods and After Storage. Molecules 2025, 30, 606. https://doi.org/10.3390/molecules30030606
Kulik K, Waszkiewicz-Robak B. Comparison of Changes in Sterol Content of Nuts After Roasting Using Conventional and Microwave Methods and After Storage. Molecules. 2025; 30(3):606. https://doi.org/10.3390/molecules30030606
Chicago/Turabian StyleKulik, Klaudia, and Bożena Waszkiewicz-Robak. 2025. "Comparison of Changes in Sterol Content of Nuts After Roasting Using Conventional and Microwave Methods and After Storage" Molecules 30, no. 3: 606. https://doi.org/10.3390/molecules30030606
APA StyleKulik, K., & Waszkiewicz-Robak, B. (2025). Comparison of Changes in Sterol Content of Nuts After Roasting Using Conventional and Microwave Methods and After Storage. Molecules, 30(3), 606. https://doi.org/10.3390/molecules30030606