Bio-Based Surfactants and Biosurfactants: An Overview and Main Characteristics
Abstract
:1. Introduction
2. Surfactants
3. Effects on Environment and Health
- Aquatic life: Reduction in the mucus layer of fish, leading to higher mortality rates and genetic deformities in some species;
- Humans: Toxicity and irritation of the skin, eyes, and respiratory system;
- Plants: Decreased photochemical energy conversion efficiency and toxicity for certain crops, such as lettuce;
- Marine plants: Reduction in sunlight availability caused by foam accumulation;
- Marine microorganisms: Suppression of bacterial population.
4. Natural Surfactants
- Bio-based surfactants: produced by chemical synthesis, from renewable resources.
- First-generation natural surfactants or bio-based surfactants are extracted and purified or chemically synthesized from plant-based and animal-based feedstock to achieve the desired surfactant structure, such as saponins and alkyl polyglucosides (APGs).
- Second-generation natural surfactants are biosynthesized directly by plants, animals, or microorganisms through biological processes, such as fermentation, using renewable raw materials, by-products, or agro-industrial waste. Known as biosurfactants, sophorolipids and rhamnolipids are the most commercially recognized in this category.
4.1. First-Generation Natural Surfactants: Bio-Based Surfactants
4.1.1. Glycerol-Based Surfactants
4.1.2. Animal-Based Surfactants
- Poractant alfa (Curosurf): contains a high concentration of porcine-derived phospholipids;
- Calfactant (Infasurf) and beractant (Survanta): derive from bovine species.
4.1.3. Plant-Based Surfactants—Saponins
- Triterpene saponins with a pentacyclic nucleus composed of 30 carbon atoms;
- Steroidal saponins are composed of a nucleus of 27 carbon atoms [1,51]. There is another steroidal skeleton, called the furostane skeleton, in which the pentacyclic aglycone structure is maintained due to the glycosidic connection involved in the hydroxyl group at the 26-position of the fresh plant material [71].
4.1.4. Sugar-Based Surfactants
Alkyl Polyglucosides (APGs)
Sucrose Esters
Sorbitan Esters
4.2. Second-Generation Surfactants: Biosurfactants
- Low molecular weight (<1200 g/mol): glycolipids, lipopeptides, and phospholipids, which are more effective at reducing surface tension;
4.2.1. Glycolipids
Rhamnolipids
- Transportation enhancers in nano-remediation;
- Degreaser formulation;
- Pesticides removal from contaminated soils;
- Ion collectors in ion flotation;
- Production of lipid-based antimicrobial nanomaterials;
- Bioremediation of marine oil spills;
Sophorolipids
- 52% agricultural waste, such as oils, sugarcane bagasse, potato scraps, corn straw, rice husk, corn cob, etc.;
- 18% animal fat-derived waste;
- 30% service sector bio-waste, such as restaurants and catering waste oils, food companies’ by-products, and supermarket leftovers.
Mannosylerythritol Lipids (MELs)
4.2.2. Lipopeptides
Surfactin
Iturin
Fengycin
4.2.3. Surface-Active Proteins—Hydrophobins
- Class II: Found in ascomycetes (i.e., Trichoderma, Fusarium, and Neurospora) but not in the Aspergillus species. They do not have a rod-like structure like Class I, but have a cysteine conservative region [129,180]. In contrast with Class I hydrophobins, Class II hydrophobins are less robust, forming regular crystalline structures with a random spiral conformation [4,181].
4.2.4. Polymeric Biosurfactants
- Emulsan is an anionic lipo-heteropolysaccharide and protein complex (1000 kDa). Its hydrophilic carbohydrate backbone is linked to a hydrophobic fatty acid moiety through O-ester or N-acyl linkages. It is produced by Acinetobacter calcoaceticus RAG-1 and Acinetobacter calcoaceticus BD4 bacteria. This biosurfactant is an excellent emulsion stabilizer at low concentrations, making it a promising candidate for protein and drug delivery [131,132,133,183,184].
5. Main Challenges and Future Perspectives
- High cost of production: Their complex production includes steps such as fermentation and purification processes or enzymatic routes that are still expensive. In addition, the selected substrate cost could increase the price of the final product.
- Low productivity: The fermentation and purification steps increase the production time. Furthermore, the purification of natural surfactants consists of several steps that produce large amounts of waste, decreasing production recovery.
- High sensibility to environmental factors: Their complex chemical structure and various properties are significantly affected by environmental factors such as temperature, salinity, and pH.
- Variability in production yield: Due to their high environmental sensibility, the production batch of natural surfactants varies due to the type of substrates used, environmental conditions during cultivation, the substrate extraction method, the fermentation method, etc. For biosurfactants, the medium composition, the culture condition, and the producing microorganisms also affect the final product.
- Lack of standardization: Most natural surfactants are still at the laboratory scale.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bezerra, K.G.O.; Rufino, R.D.; Luna, J.M.; Sarubbo, L.A. Saponins and Microbial Biosurfactants: Potential Raw Materials for the Formulation of Cosmetics. Biotechnol. Prog. 2018, 34, 1482–1493. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.; Trybala, A.; Starov, V.; Pinfield, V.J. Effect of Synthetic Surfactants on the Environment and the Potential for Substitution by Biosurfactants. Adv. Colloid Interface Sci. 2021, 288, 102340. [Google Scholar] [CrossRef]
- Bhadani, A.; Kafle, A.; Ogura, T.; Akamatsu, M.; Sakai, K.; Sakai, H.; Abe, M. Current Perspective of Sustainable Surfactants Based on Renewable Building Blocks. Curr. Opin. Colloid Interface Sci. 2020, 45, 124–135. [Google Scholar] [CrossRef]
- da Silva, A.F.; Banat, I.M.; Giachini, A.J.; Robl, D. Fungal Biosurfactants, from Nature to Biotechnological Product: Bioprospection, Production and Potential Applications. Bioprocess Biosyst. Eng. 2021, 44, 2003–2034. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, F.G.; Ribeaux, D.R.; Rocha, T.; Costa, R.A.M.; Guzmán, R.R.; Marcelino, P.R.F.; Lacerda, T.M.; da Silva, S.S. Bio-surfactants: Sustainable and Versatile Molecules. J. Braz. Chem. Soc. 2022, 33, 870–893. [Google Scholar] [CrossRef]
- Selva Filho, A.A.P.; Converti, A.; Soares da Silva, R.d.C.F.; Sarubbo, L.A. Biosurfactants as Multifunctional Remediation Agents of Environmental Pollutants Generated by the Petroleum Industry. Energies 2023, 16, 1029. [Google Scholar] [CrossRef]
- Rocha e Silva, N.M.P.; Meira, H.M.; Almeida, F.C.G.; Soares da Silva, R.d.C.F.; Almeida, D.G.; Luna, J.M.; Rufino, R.D.; Santos, V.A.; Sarubbo, L.A. Natural Surfactants and Their Applications for Heavy Oil Removal in Industry. Sep. Purif. Rev. 2019, 48, 267–281. [Google Scholar] [CrossRef]
- Roy, A.; Fajardie, P.; Lepoittevin, B.; Baudoux, J.; Lapinte, V.; Caillol, S.; Briou, B. CNSL, a Promising Building Blocks for Sustainable Molecular Design of Surfactants: A Critical Review. Molecules 2022, 27, 1443. [Google Scholar] [CrossRef] [PubMed]
- Athaley, A.; Saha, B.; Ierapetritou, M. Biomass-Based Chemical Production Using Techno-Economic and Life Cycle Analysis. AIChE J. 2019, 65, e16660. [Google Scholar] [CrossRef]
- Moldes, A.B.; Rodríguez-López, L.; Rincón-Fontán, M.; López-Prieto, A.; Vecino, X.; Cruz, J.M. Synthetic and Bio-Derived Surfactants versus Microbial Biosurfactants in the Cosmetic Industry: An Overview. Int. J. Mol. Sci. 2021, 22, 2371. [Google Scholar] [CrossRef]
- Yue, X.; Queneau, Y. 5-Hydroxymethylfurfural and Furfural Chemistry Toward Biobased Surfactants. ChemSusChem. 2022, 15, e202102660. [Google Scholar] [CrossRef] [PubMed]
- Agger, J.W.; Zeuner, B. Bio-Based Surfactants: Enzymatic Functionalization and Production from Renewable Resources. Curr. Opin. Biotechnol. 2022, 78, 102842. [Google Scholar] [CrossRef] [PubMed]
- Jena, G.; Dutta, K.; Daverey, A. Surfactants in Water and Wastewater (Greywater): Environmental Toxicity and Treatment Options. Chemosphere 2023, 341, 140082. [Google Scholar] [CrossRef] [PubMed]
- Foley, P.; Kermanshahi Pour, A.; Beach, E.S.; Zimmerman, J.B. Derivation and Synthesis of Renewable Surfactants. Chem. Soc. Rev. 2012, 41, 1499–1518. [Google Scholar] [CrossRef] [PubMed]
- Briem, A.K.; Bippus, L.; Oraby, A.; Noll, P.; Zibek, S.; Albrecht, S. Environmental Impacts of Biosurfactants from a Life Cycle Perspective: A Systematic Literature Review. Adv. Biochem. Engin. Biotechnol. 2022, 181, 235–269. [Google Scholar] [CrossRef]
- Marquez, R.; Ortiz, M.S.; Barrios, N.; Vera, R.E.; Patiño-Agudelo, Á.J.; Vivas, K.A.; Salas, M.; Zambrano, F.; Theiner, E. Surfactants Produced from Carbohydrate Derivatives: Part 2. A Review on the Value Chain, Synthesis, and the Potential Role of Artificial Intelligence within the Biorefinery Concept. J. Surfactants Deterg. 2024, 28, 25–76. [Google Scholar] [CrossRef]
- Stubbs, S.; Yousaf, S.; Khan, I. A Review on the Synthesis of Bio-Based Surfactants Using Green Chemistry Principles. DARU J. Pharm. Sci. 2022, 30, 407–426. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Kuang, N.; Chen, L.; Fan, Y.; Fu, F.; Li, J.; Zhang, J. Synthesis and Property of Alkyl Dioxyethyl α-D-Xyloside. J. Mol. Liq. 2020, 315, 113770. [Google Scholar] [CrossRef]
- Masyithah, Z.; Swasono, A.W.P.; Sianturi, P.D.E.; Leanon, R.; Wirawan, W.; Riyadi, R. Modeling and Optimization of Alkyl Polyglucoside Surfactants from Fatty Alcohol by Response Surface Methodology. ARPN J. Eng. App. Sci. 2020, 15, 1312–1317. [Google Scholar]
- Hayes, D.G.; Smith, G.A. Biobased Surfactants: Overview and Industrial State of the Art. Biobased Surfactants: Synthesis, Properties, and Applications, 2nd ed.; Academic Press: Cambridge, MA, USA; AOCS Press: Champaign, IL, USA, 2019; pp. 3–38. [Google Scholar] [CrossRef]
- Acosta, E.; Sundar, S. How to Formulate Biobased Surfactants Through the HLD-NAC Model. Biobased Surfactants: Synthesis, Properties, and Applications, 2nd ed.; Academic Press: Cambridge, MA, USA; AOCS Press: Champaign, IL, USA, 2019; pp. 471–510. [Google Scholar] [CrossRef]
- Russo Krauss, I.; Esposito, R.; Paduano, L.; D’Errico, G. From Composite Molecular Structures to a Multiplicity of Supramolecular Aggregates: The Role of Intermolecular Interactions in Biosurfactant Self-Assembly. Curr. Opin. Colloid Interface Sci. 2024, 70, 101792. [Google Scholar] [CrossRef]
- Schirone, D.; Tartaro, G.; Gentile, L.; Palazzo, G. An HLD Framework for Cationic Ammonium Surfactants. JCIS Open. 2021, 4, 100033. [Google Scholar] [CrossRef]
- Shayanmehr, M.; Eslami, F. Stability of N-Hexadecane Phase Change Material Emulsions Using Sugar-Based Surfactants and the HLD Platform. J. Surfactants Deterg. 2024, 27, 567–579. [Google Scholar] [CrossRef]
- Rai, S.; Acharya-Siwakoti, E.; Kafle, A.; Devkota, H.P.; Bhattarai, A. Plant-Derived Saponins: A Review of Their Surfactant Properties and Applications. Sci 2021, 3, 44. [Google Scholar] [CrossRef]
- Smith, O.E.P.; Waters, L.J.; Small, W.; Mellor, S. CMC Determination Using Isothermal Titration Calorimetry for Five In-dustrially Significant Non-Ionic Surfactants. Colloids Surf. B Biointerfaces 2022, 211, 112320. [Google Scholar] [CrossRef] [PubMed]
- Olkowska, E.; Ruman, M.; Polkowska, Z. Occurrence of Surface Active Agents in the Environment. J. Anal. Methods Chem. 2014, 2014, 769708. [Google Scholar] [CrossRef] [PubMed]
- Effendi, I.; Nedi, S.; Ellizal, E.; Nursyirwani, N.; Feliatra, F.; Fikar, F.; Tanjung, T.; Pakpahan, R.; Pratama, P. Detergent Disposal into Our Environmentand Its Impact on Marine Microbes. IOP Conf. Ser. Earth Environ. Sci. 2017, 97, 012030. [Google Scholar] [CrossRef]
- Banat, I.M.; Carboué, Q.; Saucedo-Castañeda, G.; de Jesús Cázares-Marinero, J. Biosurfactants: The Green Generation of Speciality Chemicals and Potential Production Using Solid-State Fermentation (SSF) Technology. Bioresour. Technol. 2021, 320, 12422. [Google Scholar] [CrossRef]
- Penfold, J.; Thomas, R.K. Adsorption Properties of Plant Based Bio-Surfactants: Insights from Neutron Scattering Techniques. Adv. Colloid Interface Sci. 2019, 274, 102041. [Google Scholar] [CrossRef]
- Rocha, T.M.; Marcelino, P.R.F.; Muñoz, S.S.; Ruiz, E.D.D.; Balbino, T.R.; Moraes, E.J.C.; Murbach, R.P.; Santos, J.C.; da Silva, S.S. Utilization of Renewable Feedstocks for the Production of Sophorolipids by Native Yeasts from Brazilian Cerrado Biome. Bioenerg. Res. 2023, 16, 1956–1972. [Google Scholar] [CrossRef]
- Estrine, B.; Marinkovic, S.; François, J. Synthesis of Alkyl Polyglycosides from Glucose and Xylose for Biobased Surfactants: Synthesis, Properties, and Applications. Biobased Surfactants: Synthesis, Properties, and Applications, 2nd ed.; Academic Press: Cambridge, MA, USA; AOCS Press: Champaign, IL, USA, 2019; pp. 365–385. [Google Scholar] [CrossRef]
- Fan, L.; Su, W.; Zhang, X.; Yang, S.; Zhu, Y.; Liu, X. Self-Assembly of Sophorolipid and Eugenol into Stable Nanoemulsions for Synergetic Antibacterial Properties through Alerting Membrane Integrity. Colloids Surf. B Biointerfaces 2024, 234, 113749. [Google Scholar] [CrossRef]
- Yu, F.; Yang, Q.; Cui, T.; Luo, L.; Zhao, M.; Long, X. Preparation and Isolation of Hydrophilic Mannosyleryth-ritol Lipids via Chemical Modification and Stepwise Extraction. J. Surfactants Deterg. 2024, 27, 725–736. [Google Scholar] [CrossRef]
- Janek, T.; Gudiña, E.J.; Połomska, X.; Biniarz, P.; Jama, D.; Rodrigues, L.R.; Rymowicz, W.; Lazar, Z. Sustainable Surfactin Production by Bacillus subtilis Using Crude Glycerol from Different Wastes. Molecules 2021, 26, 3488. [Google Scholar] [CrossRef]
- Adhikary, R.; Maiti, P.K.; Ghosh, N.; Rajbangshi, B.; Roy, M.N.; Mandal, S.; Mandal, V. Lipopeptide Iturin C 3 Biosurfactant Produced by Endophytic Bacillus sp. LLB-04 Effectively Controls the Colonization of Topical and Food-Borne Pathogens in Vitro and on Biomedical Devices. Res. Sq. 2024. [Google Scholar] [CrossRef]
- Vigil, T.N.; Felton, S.M.; Fahy, W.E.; Kinkeade, M.A.; Visek, A.M.; Janiga, A.R.; Jacob, S.G.; Berger, B.W. Bio-surfactants as Templates to Inspire New Environmental and Health Applications. Front. Synth. Biol. 2024, 2, 1303423. [Google Scholar] [CrossRef]
- da Silva, M.d.G.C.; Sarubbo, L.A. Synthetic and Biological Surfactants Used to Mitigate Biofouling on Industrial Facilities Surfaces. Biointerface Res. Appl. Chem. 2022, 12, 2560–2585. [Google Scholar] [CrossRef]
- Verma, C.; Hussain, C.M.; Quraishi, M.A.; Alfantazi, A. Green Surfactants for Corrosion Control: Design, Performance and Applications. Adv. Colloid Interface Sci. 2023, 311, 102822. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.; Chang, L.; Li, P.; Han, G.; Huang, Y.; Cao, Y. An Overview on the Surfactants Used in Ion Flotation. J. Mol. Liq. 2019, 286, 110955. [Google Scholar] [CrossRef]
- Sochacki, M.; Vogt, O. Triterpenoid Saponins from Washnut (Sapindus mukorossi Gaertn.)—A Source of Natural Surfac-tants and Other Active Components. Plants 2022, 11, 2355. [Google Scholar] [CrossRef]
- Farias, C.B.B.; Almeida, F.C.G.; Silva, I.A.; Souza, T.C.; Meira, H.M.; Soares da Silva, R.d.C.F.; Luna, J.M.; Santos, V.A.; Converti, A.; Banat, I.M.; et al. Production of Green Surfactants: Market Prospects. Electron. J. Biotechnol. 2021, 51, 28–39. [Google Scholar] [CrossRef]
- Lokesh, K.; West, C.; Kuylenstierna, J.; Fan, J.; Budarin, V.; Priecel, P.; Lopez-Sanchez, J.A.; Clark, J. Environmental Impact Assessment of Wheat Straw Based Alkyl Polyglucosides Produced Using Novel Chemical Approaches. Green Chem. 2017, 19, 4380–4395. [Google Scholar] [CrossRef]
- Guilbot, J.; Kerverdo, S.; Milius, A.; Escola, R.; Pomrehn, F. Life Cycle Assessment of Surfactants: The Case of an Alkyl Polyglucoside Used as a Self Emulsifier in Cosmetics. Green Chem. 2013, 15, 3337–3354. [Google Scholar] [CrossRef]
- Dari, C.; Dallagi, H.; Faille, C.; Dubois, T.; Lemy, C.; Deleplace, M.; Abdallah, M.; Gruescu, C.; Beaucé, J.; Benezech, T.; et al. Decontamination of Spores on Model Stainless-Steel Surface by Using Foams Based on Alkyl Polyglucosides. Molecules 2023, 28, 936. [Google Scholar] [CrossRef] [PubMed]
- Nunes, A.; Marques, P.; Marto, J.; Ascenso, A.; Gonçalves, L.; Fitas, M.; Pinto, P.; Sotomayor, J.; Ribeiro, H.M. Sugar Surfactant-Based Shampoos. J. Surfactants Deterg. 2020, 23, 809–819. [Google Scholar] [CrossRef]
- Wu, H.; Gou, C.; Li, J.; Lu, Y.; Liu, H.; Tan, R.; Hou, J. Synergistic System of Alkyl Polyglucoside and Amine Oxide for Enhanced Oil Recovery. Energy Fuels 2024, 38, 5791–5799. [Google Scholar] [CrossRef]
- Wei, P.; Li, J.; Xie, Y.; Huang, X.; Sun, L. Alkyl Polyglucosides for Potential Application in Oil Recovery Process: Adsorption Behavior in Sandstones under High Temperature and Salinity. J. Pet. Sci. Eng. 2020, 189, 107057. [Google Scholar] [CrossRef]
- Mohamad Shahripoddin, N.S.; Salim, N.; Ahmad, N. Influence of Alkyl Polyglucoside on Physicochemical Characteristics and In Vitro Studies of Ibuprofen-Loaded Nanoemulsion Formulations. Colloid Polym. Sci. 2021, 299, 1631–1642. [Google Scholar] [CrossRef]
- Suh, S.; Choi, K.O.; Yang, S.C.; Kim, Y.E.; Ko, S. Adsorption Mechanism of Alkyl Polyglucoside (APG) on Calcite Nano-particles in Aqueous Medium at Varying PH. J. Solid State Chem. 2017, 251, 122–130. [Google Scholar] [CrossRef]
- Liao, Y.; Li, Z.; Zhou, Q.; Sheng, M.; Qu, Q.; Shi, Y.; Yang, J.; Lv, L.; Dai, X.; Shi, X. Saponin Surfactants Used in Drug Delivery Systems: A New Application for Natural Medicine Components. Int. J. Pharm. 2021, 603, 120709. [Google Scholar] [CrossRef]
- Shang, Y.F.; Chen, H.; Ni, Z.J.; Thakur, K.; Zhang, J.G.; Khan, M.R.; Wei, Z.J. Platycodon Grandiflorum Saponins: Ionic Liquid-Ultrasound-Assisted Extraction, Antioxidant, Whitening, and Antiaging Activity. Food Chem. 2024, 451, 139521. [Google Scholar] [CrossRef] [PubMed]
- Wisetkomolmat, J.; Suppakittpaisarn, P.; Sommano, S.R. Detergent Plants of Northern Thailand: Potential Sources of Natural Saponins. Resources 2019, 8, 10. [Google Scholar] [CrossRef]
- Fan, Z.; Zhao, Y.; Preda, F.; Clacens, J.M.; Shi, H.; Wang, L.; Feng, X.; De Campo, F. Preparation of Bio-Based Surfactants from Glycerol and Dodecanol by Direct Etherification. Green Chem. 2015, 17, 882–892. [Google Scholar] [CrossRef]
- Tang, Q.; Li, X.; Dong, J. Selective Synthesis of Diglycerol Monoacetals via Catalyst-Transfer in Biphasic System and Assessment of Their Surfactant Properties. ACS Sustain. Chem. Eng. 2018, 6, 16813–16818. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, X.; Zhang, P.; Zhang, Z.; Liu, S.; Han, B. Efficient Emulsifying Properties of Glycerol-Based Surfactant. Colloids Surf. A Physicochem. Eng. Asp. 2018, 553, 225–229. [Google Scholar] [CrossRef]
- Lebeuf, R.; Illous, E.; Dussenne, C.; Molinier, V.; Da Silva, E.; Lemaire, M.; Aubry, J.M. Solvo-Surfactant Properties of Dialkyl Glycerol Ethers: Application as Eco-Friendly Extractants of Plant Material through a Novel Hydrotropic Cloud Point Extraction (HCPE) Process. ACS Sustain. Chem. Eng. 2016, 4, 4815–4823. [Google Scholar] [CrossRef]
- Fukuoka, T.; Ikeda, S.; Habe, H.; Sato, S.; Sakai, H.; Abe, M.; Kitamoto, D.; Sakaki, K. Synthesis and Interfacial Properties of Monoacyl Glyceric Acids as a New Class of Green Surfactants. J. Oleo Sci. 2012, 61, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Verboni, M.; Perinelli, D.R.; Qiu, C.Y.; Tiboni, M.; Aluigi, A.; Lucarini, S.; Lam, J.K.W.; Duranti, A. Synthesis and Properties of Sucrose- and Lactose-Based Aromatic Ester Surfactants as Potential Drugs Permeability Enhancers. Pharmaceuticals 2023, 16, 223. [Google Scholar] [CrossRef]
- Zhou, J.; Meng, X. Effect of Glycerol Incorporation on the Liquid Crystal Structure of Sucrose Fatty Acid Ester in Aqueous Solution. Colloids Surf. A Physicochem. Eng. Asp. 2024, 684, 133213. [Google Scholar] [CrossRef]
- Plat, T.; Linhardt, R.J. Syntheses and Applications of Sucrose-Based Esters. J. Surfactants Deterg. 2001, 4, 415–421. [Google Scholar] [CrossRef]
- Holmiere, S.; Valentin, R.; Maréchal, P.; Mouloungui, Z. Esters of Oligo-(Glycerol Carbonate-Glycerol): New Biobased Oligomeric Surfactants. J. Colloid Interface Sci. 2017, 487, 418–425. [Google Scholar] [CrossRef]
- Tan, H.W.; Abdul Aziz, A.R.; Aroua, M.K. Glycerol Production and Its Applications as a Raw Material: A Review. Renew. Sustain. Energy Rev. 2013, 27, 118–127. [Google Scholar] [CrossRef]
- Bagnato, G.; Iulianelli, A.; Sanna, A.; Basile, A. Glycerol Production and Transformation: A Critical Review with Particular Emphasis on Glycerol Reforming Reaction for Producing Hydrogen in Conventional and Membrane Reactors. Membranes 2017, 7, 17. [Google Scholar] [CrossRef]
- Nagtode, V.S.; Cardoza, C.; Yasin, H.K.A.; Mali, S.N.; Tambe, S.M.; Roy, P.; Singh, K.; Goel, A.; Amin, P.D.; Thorat, B.R.; et al. Green Surfactants (Biosurfactants): A Petroleum-Free Substitute for Sustainability—Comparison, Applications, Market, and Future Prospects. ACS Omega 2023, 8, 11674–11699. [Google Scholar] [CrossRef] [PubMed]
- Akar, S.; Topcuoglu, S.; Dincer, E.; Ozalkaya, E.; Karatekin, G.; Yildirim, T.G. Comparison of Efficacy of Beractant and Poractant Treatment Performed with Minimal Invasive Technique. Iran. J. Neonatol. 2021, 12, 1–6. [Google Scholar] [CrossRef]
- Bui, A.; Schumann, C.; Le, J.; Jones, T.; Schwendeman, C. Comparison of Efficacy and Pharmacoeconomic Outcomes Between Calfactant and Poractant Alfa in Preterm Infants with Respiratory Distress Syndrome. J. Pediatr. Pharmacol. Ther. 2024, 29, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Haider, S.; Azhar, N.; Zahid, M.; Iqbal, K.; Shoaib, N.; Irshad, N.; Siddiqui, A.S.; Ahmed, J. Comparative Effectiveness of Calfactant and Beractant in Neonatal Respiratory Distress Syndrome: A Systemic Review and Meta-Analysis. Pediatr. Pulmonol. 2022, 57, 2928–2936. [Google Scholar] [CrossRef] [PubMed]
- Wells, J.; Fernando, L.; Moya, R.; Logan, W. Animal-Derived Surfactants for the Treatment and Prevention of Neonatal Respiratory Distress Syndrome: Summary of Clinical Trials. Ther. Clin. Risk. Manag. 2009, 5, 251–260. [Google Scholar] [CrossRef]
- Královič-Kanjaková, N.; Asi Shirazi, A.; Hubčík, L.; Klacsová, M.; Keshavarzi, A.; Martínez, J.C.; Combet, S.; Teixeira, J.; Uhríková, D. Polymyxin B-Enriched Exogenous Lung Surfactant: Thermodynamics and Structure. Langmuir 2024, 40, 6847–6861. [Google Scholar] [CrossRef]
- Jolly, A.; Kim, H.; Moon, J.Y.; Mohan, A.; Lee, Y.C. Exploring the Imminent Trends of Saponins in Personal Care Product Development: A Review. Ind. Crops Prod. 2023, 205, 117489. [Google Scholar] [CrossRef]
- Góngora-Chi, G.J.; Lizardi-Mendoza, J.; Quihui-Cota, L.; López-Franco, Y.L.; López-Mata, M.A.; Pérez-Morales, R. Yucca schidigera Saponin Rich Extracts: Evaluation of Extraction Methods and Functional Properties. Sustain. Chem. Pharm. 2024, 38, 101470. [Google Scholar] [CrossRef]
- Zhao, S.; Guo, H.; Qiu, L.; Zhong, C.; Xue, J.; Qin, M.; Zhang, Y.; Xu, C.; Xie, Y.; Yu, J. Saponins from Allii Macrostemonis Bulbus Attenuate Atherosclerosis by Inhibiting Macrophage Foam Cell Formation and Inflammation. Sci. Rep. 2024, 14, 12917. [Google Scholar] [CrossRef]
- Pi, X.J.; Zhao, Q.Q.; Wang, J.X.; Zhang, X.L.; Yuan, D.; Hu, S.S.; He, Y.M.; Zhang, C.C.; Zhou, Z.Y.; Wang, T. Saponins from Panax aponicus Attenuate Cognitive Impairment in Ageing Rats through Regulating Microglial Polarisation and Autophagy. Pharm. Biol. 2021, 59, 1117–1125. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.; Wang, J.X.; Xiong, Z.E.; Hu, S.S.; Zhou, A.J.; Yuan, D.; Zhang, C.C.; Zhou, Z.Y.; Wang, T. Saponins from Panax japonicus Improve Neuronal Mitochondrial Injury of Aging Rats. Pharm. Biol. 2023, 61, 1401–1412. [Google Scholar] [CrossRef]
- Yuan, D.; Xiang, T.; Huo, Y.; Liu, C.; Wang, T.; Zhou, Z.; Dun, Y.; Zhao, H.; Zhang, C. Preventive Effects of Total Saponins of Panax japonicus on Fatty Liver Fibrosis in Mice. Arch. Med. Sci. 2018, 14, 396–406. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Wang, S.; Wang, R.; Zhang, Y.; Yuan, Q.; Yuan, C. Total Saponins from Panax japonicus Regulated the Intestinal Microbiota to Alleviate Lipid Metabolism Disorders in Aging Mice. Arch. Gerontol. Geriatr. 2024, 125, 105500. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, J.; Feng, Z.; Ji, J.; Shen, X.; Hou, X.; Mei, Z. The Antiangiogenic Effect of Total Saponins of Panax japonicus C.A. Meyer in Rheumatoid Arthritis Is Mediated by Targeting the HIF-1α/VEGF/ANG-1 Axis. J. Ethnopharmacol. 2024, 333, 118422. [Google Scholar] [CrossRef]
- Younis, U.; Danish, S.; Datta, R.; Al Obaid, S.; Ansari, M.J. Synergistic Effects of Boron and Saponin in Mitigating Salinity Stress to Enhance Sweet Potato Growth. Sci. Rep. 2024, 14, 12988. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.L.; He, Y. Tea Saponins: Effective Natural Surfactants Beneficial for Soil Remediation, from Preparation to Application. RSC Adv. 2018, 8, 24312–24321. [Google Scholar] [CrossRef]
- Bois, R.; Pezron, I.; Nesterenko, A. Dynamic Interfacial Properties of Sugar-Based Surfactants: Experimental Study and Modeling. Colloids Interface Sci. Commun. 2020, 37, 100293. [Google Scholar] [CrossRef]
- Sangiorgio, S.; Pargoletti, E.; Rabuffetti, M.; Robescu, M.S.; Semproli, R.; Ubiali, D.; Cappelletti, G.; Speranza, G. Emulsifying Properties of Sugar-Based Surfactants Prepared by Chemoenzymatic Synthesis. Colloids Interface Sci. Commun. 2022, 48, 100630. [Google Scholar] [CrossRef]
- Jesus, C.F.; Alves, A.A.S.; Fiuza, S.M.; Murtinho, D.; Antunes, F.E. Mini-Review: Synthetic Methods for the Production of Cationic Sugar-Based Surfactants. J. Mol. Liq. 2021, 342, 117389. [Google Scholar] [CrossRef]
- Abdellahi, B.; Bois, R.; Golonu, S.; Pourceau, G.; Lesur, D.; Chagnault, V.; Drelich, A.; Pezron, I.; Nesterenko, A.; Wadouachi, A. Synthesis and Interfacial Properties of New 6-Sulfate Sugar-Based Anionic Surfactants. Tetrahedron Lett. 2021, 74, 153113. [Google Scholar] [CrossRef]
- Sułek, M.W.; Ogorzałek, M.; Wasilewski, T.; Klimaszewska, E. Alkyl Polyglucosides as Components of Water Based Lubricants. J. Surfactants Deterg. 2013, 16, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Verboni, M.; Perinelli, D.R.; Buono, A.; Campana, R.; Sisti, M.; Duranti, A.; Lucarini, S. Sugar-Based Monoester Surfactants: Synthetic Methodologies, Properties, and Biological Activities. Antibiotics 2023, 12, 1500. [Google Scholar] [CrossRef] [PubMed]
- Szuts, A.; Szabó-Révész, P. Sucrose Esters as Natural Surfactants in Drug Delivery Systems—A Mini-Review. Int. J. Pharm. 2012, 433, 1–9. [Google Scholar] [CrossRef]
- Liu, Y.; Binks, B.P. Fabrication of Stable Oleofoams with Sorbitan Ester Surfactants. Langmuir 2022, 38, 14779–14788. [Google Scholar] [CrossRef] [PubMed]
- Silveira, M.; Jonas, R. The Biotechnological Production of Sorbitol. Appl. Microbiol. Biotechnol. 2002, 59, 400–408. [Google Scholar] [CrossRef]
- Alvarez-Trabado, J.; López-García, A.; Martín-Pastor, M.; Diebold, Y.; Sanchez, A. Sorbitan Ester Nanoparticles (SENS) as a Novel Topical Ocular Drug Delivery System: Design, Optimization, and In Vitro/Ex Vivo Evaluation. Int. J. Pharm. 2018, 546, 20–30. [Google Scholar] [CrossRef]
- Gao, Z.; Zhang, C.; Wu, Y.; Chen, F.; Hu, B.; Wang, R.; Yang, J.; Nishinari, K. Composite Oleogels Formed by Cellulose Particles and Sorbitan Acid Esters. Food Struct. 2022, 31, 100242. [Google Scholar] [CrossRef]
- López-González, L.E.; Ponce-Pérez, R.; Takeuchi, N.; Tiznado, H.; Guerrero-Sánchez, J. Adsorption of Sorbitan Ester Surfactant on Copper and Cuprous Oxide Surfaces: A Density Functional Theory Study. Appl. Surf. Sci. 2022, 589, 153061. [Google Scholar] [CrossRef]
- Baccile, N.; Babonneau, F.; Banat, I.M.; Ciesielska, K.; Cuvier, A.S.; Devreese, B.; Everaert, B.; Lydon, H.; Marchant, R.; Mitchell, C.A.; et al. Development of a Cradle-to-Grave Approach for Acetylated Acidic Sophorolipid Biosurfactants. ACS Sustain. Chem. Eng. 2017, 5, 1186–1198. [Google Scholar] [CrossRef]
- Guzmán, E.; Ortega, F.; Rubio, R.G. Exploring the World of Rhamnolipids: A Critical Review of Their Production, Interfacial Properties, and Potential Application. Curr. Opin. Colloid Interface Sci. 2024, 69, 101780. [Google Scholar] [CrossRef]
- Kitamoto, D.; Fukuoka, T.; Saika, A.; Morita, T. Glycolipid Biosurfactants, Mannosylerythritol Lipids: Distinctive Interfacial Properties and Applications in Cosmetic and Personal Care Products. J. Oleo Sci. 2022, 71, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Kopsahelis, A.; Kourmentza, C.; Zafiri, C.; Kornaros, M. Gate-to-Gate Life Cycle Assessment of Biosurfactants and Bioplasticizers Production via Biotechnological Exploitation of Fats and Waste Oils. J. Chem. Technol. Biotechnol. 2018, 93, 2833–2841. [Google Scholar] [CrossRef]
- Liu, X.; Shu, Q.; Chen, Q.; Pang, X.; Wu, Y.; Zhou, W.; Wu, Y.; Niu, J.; Zhang, X. Antibacterial Efficacy and Mechanism of Mannosylerythritol Lipids-A on Listeria Monocytogenes. Molecules 2020, 25, 4857. [Google Scholar] [CrossRef] [PubMed]
- Carolin C., F.; Kumar, P.S.; Ngueagni, P.T. A Review on New Aspects of Lipopeptide Biosurfactant: Types, Production, Properties and Its Application in the Bioremediation Process. J. Hazard. Mater. 2021, 407, 124827. [Google Scholar] [CrossRef]
- Aghaei, S.; Saghandali, F.; Baghban Salehi, M.; Mokhtarani, B.; Taghikhani, V.; Saviz, S. A Micromodel Investigation on the Flooding of Glycolipid Biosurfactants for Enhanced Oil Recovery. Geoenergy Sci. Eng. 2023, 230, 212219. [Google Scholar] [CrossRef]
- Poomalai, P.; Krishnan, J.; Ravichandran, A.; Sureshkumar, R. Biosurfactants: Sustainable Alternative to Synthetic Surfactants and Their Applications. Int. J. Appl. Pharm. 2024, 16, 34–43. [Google Scholar] [CrossRef]
- Eslami, P.; Hajfarajollah, H.; Bazsefidpar, S. Recent Advancements in the Production of Rhamnolipid Biosurfactants by Psedomonas aeruginosa. RSC Adv. 2020, 10, 34014–34032. [Google Scholar] [CrossRef] [PubMed]
- Cerqueira dos Santos, S.; Araújo Torquato, C.; de Alexandria Santos, D.; Orsato, A.; Leite, K.; Serpeloni, J.M.; Losi-Guembarovski, R.; Romão Pereira, E.; Dyna, A.L.; Lopes Barboza, M.G.; et al. Production and Characterization of Rhamnolipids by Pseudomonas aeruginosa Isolated in the Amazon Region, and Potential Antiviral, Antitumor, and Antimicrobial Activity. Sci. Rep. 2024, 14, 4629. [Google Scholar] [CrossRef]
- Balina, K.; Soloha, R.; Suleiko, A.; Dubencovs, K.; Liepins, J.; Dace, E. Prospective Life Cycle Assessment of Microbial Sophorolipid Fermentation. Fermentation 2023, 9, 839. [Google Scholar] [CrossRef]
- Bueno-Mancebo, J.; Artola, A.; Barrena, R.; Rivero-Pino, F. Potential Role of Sophorolipids in Sustainable Food Systems. Trends Food Sci. Technol. 2024, 143, 104265. [Google Scholar] [CrossRef]
- Pal, S.; Chatterjee, N.; Das, A.K.; McClements, D.J.; Dhar, P. Sophorolipids: A Comprehensive Review on Properties and Applications. Adv. Colloid Interface Sci. 2023, 313, 102856. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, Y.; Li, Q.; Ushimaru, K.; Hirota, M.; Morita, T.; Fukuoka, T. Updated Component Analysis Method for Naturally Occurring Sophorolipids from Starmerella bombicola. Appl. Microbiol. Biotechnol. 2024, 108, 296. [Google Scholar] [CrossRef]
- Coelho, A.L.S.; Feuser, P.E.; Carciofi, B.A.M.; de Andrade, C.J.; de Oliveira, D. Mannosylerythritol Lipids: Antimicrobial and Biomedical Properties. Appl. Microbiol. Biotechnol. 2020, 104, 2297–2318. [Google Scholar] [CrossRef] [PubMed]
- Ceresa, C.; Hutton, S.; Lajarin-Cuesta, M.; Heaton, R.; Hargreaves, I.; Fracchia, L.; De Rienzo, M.A.D. Production of Mannosylerythritol Lipids (MELs) to Be Used as Antimicrobial Agents Against S. aureus ATCC 6538. Curr. Microbiol. 2020, 77, 1373–1380. [Google Scholar] [CrossRef]
- Shu, Q.; Wei, T.; Lu, H.; Niu, Y.; Chen, Q. Mannosylerythritol Lipids: Dual Inhibitory Modes against Staphylococcus aureus through Membrane-Mediated Apoptosis and Biofilm Disruption. Appl. Microbiol. Biotechnol. 2020, 104, 5053–5064. [Google Scholar] [CrossRef] [PubMed]
- Yamauchi, S.; Furukawa, M.; Kawahara, A.; Sugahara, T.; Yamamoto, S.; Kitabayashi, M.; Sogabe, A.; Shimoda, S.; Hata, E.; Watanabe, K.; et al. Roles of Mannosylerythritol Lipid-B Components in Antimicrobial Activity against Bovine Mastitis-Causing Staphylococcus aureus. World J. Microbiol. Biotechnol. 2022, 38, 54. [Google Scholar] [CrossRef]
- Mnif, I.; Ellouz-Chaabouni, S.; Ghribi, D. Glycolipid Biosurfactants, Main Classes, Functional Properties and Related Potential Applications in Environmental Biotechnology. J. Polym. Environ. 2018, 26, 2192–2206. [Google Scholar] [CrossRef]
- Lopes, S.; Fahr, E.; Costa, J.; Silva, A.B.; Lopes, M.M.; Faustino, C.; Ribeiro, M.H.L. Sustainable Trehalose Lipid Production by Rhodotorula sp.: A Promising Bio-Based Alternative. Bioprocess Biosyst. Eng. 2024, 47, 145–157. [Google Scholar] [CrossRef]
- Nageshwar, L.; Parameshwar, J.; Rahman, P.K.S.M.; Banat, I.M.; Hameeda, B. Anti-Oxidative Property of Xylolipid Produced by Lactococcus lactis LNH70 and Its Potential Use as Fruit Juice Preservative. Braz. J. Microbiol. 2022, 53, 2157–2172. [Google Scholar] [CrossRef] [PubMed]
- Garay, L.A.; Sitepu, I.R.; Cajka, T.; Xu, J.; Teh, H.E.; German, J.B.; Pan, Z.; Dungan, S.R.; Block, D.E.; Boundy-Mills, K.L. Extracellular Fungal Polyol Lipids: A New Class of Potential High Value Lipids. Biotechnol. Adv. 2018, 36, 397–414. [Google Scholar] [CrossRef]
- Bouchard-Rochette, M.; Machrafi, Y.; Cossus, L.; Thuy An Nguyen, T.; Antoun, H.; Droit, A.; Tweddell, R.J. Bacillus pumilus PTB180 and Bacillus subtilis PTB185: Production of Lipopeptides, Antifungal Activity, and Biocontrol Ability against Botrytis cinerea. Biol. Control 2022, 170, 104925. [Google Scholar] [CrossRef]
- Abdelraof, M.; Nooman, M.U.; Hashem, A.H.; Al-kashef, A.S. Production and Optimization of Surfactin Produced from Locally Isolated Bacillus halotolerans Grown on Agro-Industrial Wastes and Its Antimicrobial Efficiency. BMC Microbiol. 2024, 24, 193. [Google Scholar] [CrossRef]
- Yaraguppi, D.A.; Bagewadi, Z.K.; Patil, N.R.; Mantri, N. Iturin: A Promising Cyclic Lipopeptide with Diverse Applications. Biomolecules 2023, 13, 1515. [Google Scholar] [CrossRef] [PubMed]
- K.T., R.; Sebastian, D. Iturin and Surfactin from the Endophyte Bacillus Amyloliquefaciens Strain RKEA3 Exhibits Antagonism against Staphylococcus aureus. Biocatal. Agric. Biotechnol. 2021, 36, 102125. [Google Scholar] [CrossRef]
- Nelson, J.; El-Gendy, A.O.; Mansy, M.S.; Ramadan, M.A.; Aziz, R.K. The Biosurfactants Iturin, Lichenysin and Surfactin, from Vaginally Isolated Lactobacilli, Prevent Biofilm Formation by Pathogenic Candida. FEMS Microbiol. Lett. 2020, 367, fnaa126. [Google Scholar] [CrossRef]
- Singh, S.S.; Sharma, D.; Baindara, P.; Choksket, S.; Harshvardhan; Mandal, S.M.; Grover, V.; Korpole, S. Characterization and Antimicrobial Studies of Iturin-Like and Bogorol-Like Lipopeptides from Brevibacillus spp. Strains GI9 and SKDU10. Front. Microbiol. 2021, 12, 729026. [Google Scholar] [CrossRef] [PubMed]
- She, M.; Zhou, H.; Dong, W.; Xu, Y.; Gao, L.; Gao, J.; Yang, Y.; Yang, Z.; Cai, D.; Chen, S. Modular Metabolic Engineering of Bacillus amyloliquefaciens for High-Level Production of Green Biosurfactant Iturin A. Appl. Microbiol. Biotechnol. 2024, 108, 311. [Google Scholar] [CrossRef]
- Xia, R.; Li, S.; Yang, H.; Zhao, Y.; Teame, T.; Hao, Q.; Xie, M.; Li, M.; Chen, Q.; Song, C.; et al. Effects of Dietary Bacterial Culture of Fengycin-Producing Bacillus subtilis on Growth Performance, Intestinal and Hepatopancreas Health, Intestinal Microbiota and Disease Resistance of Common Carp (Cyprinus carpio). Aquaculture 2024, 585, 740725. [Google Scholar] [CrossRef]
- Wei, S.Y.; Gao, G.R.; Ding, M.Z.; Cao, C.Y.; Hou, Z.J.; Cheng, J.S.; Yuan, Y.J. An Engineered Microbial Consortium Provides Precursors for Fengycin Production by Bacillus subtilis. J. Nat. Prod. 2024, 87, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Gilliard, G.; Demortier, T.; Boubsi, F.; Jijakli, M.H.; Ongena, M.; De Clerck, C.; Deleu, M. Deciphering the Distinct Biocontrol Activities of Lipopeptides Fengycin and Surfactin through Their Differential Impact on Lipid Membranes. Colloids Surf. B Biointerfaces 2024, 239, 113933. [Google Scholar] [CrossRef] [PubMed]
- Winther, A.R.; Salehian, Z.; Bøe, C.A.; Nesdal, M.; Håvarstein, L.S.; Kjos, M.; Straume, D. Decreased Susceptibility to Viscosin in Streptococcus pneumoniae. Microbiol. Spectr. 2024, 12, e0062424. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Sankhwar, R.; Yadav, S.; Gupta, R.K. Lichenysin Produced by Bacillus licheniformis RG1002 Inhibit the Biofilm Formation of Pseudomonas aeruginosa on Various Surfaces. J. Pure Appl. Microbiol. 2024, 18, 1196–1208. [Google Scholar] [CrossRef]
- Antonioli Júnior, R.; Poloni, J.d.F.; Pinto, É.S.M.; Dorn, M. Interdisciplinary Overview of Lipopeptide and Protein-Containing Biosurfactants. Genes 2023, 14, 76. [Google Scholar] [CrossRef]
- Berger, B.W.; Sallada, N.D. Hydrophobins: Multifunctional Biosurfactants for Interface Engineering. J. Biol. Eng. 2019, 13, 10. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Terauchi, Y.; Yoshimi, A.; Abe, K. Aspergillus Hydrophobins: Physicochemical Properties, Biochemical Proper-ties, and Functions in Solid Polymer Degradation. Microorganisms 2022, 10, 1498. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Han, Z.; Song, B.; Yu, L.; Ma, Z.; Xu, H.; Qiao, M. Effective Drug Delivery System Based on Hydrophobin and Halloysite Clay Nanotubes for Sustained Release of Doxorubicin. Colloids Surf. A Physicochem. Eng. Asp. 2021, 628, 127351. [Google Scholar] [CrossRef]
- Thraeib, J.Z.; Altemimi, A.B.; Jabbar Abd Al-Manhel, A.; Abedelmaksoud, T.G.; El-Maksoud, A.A.A.; Madankar, C.S.; Cacciola, F. Production and Characterization of a Bioemulsifier Derived from Microorganisms with Potential Application in the Food Industry. Life 2022, 12, 924. [Google Scholar] [CrossRef] [PubMed]
- Jahan, R.; Bodratti, A.M.; Tsianou, M.; Alexandridis, P. Biosurfactants, Natural Alternatives to Synthetic Surfactants: Physicochemical Properties and Applications. Adv. Colloid Interface Sci. 2020, 275, 102061. [Google Scholar] [CrossRef] [PubMed]
- Adetunji, A.I.; Olaniran, A.O. Production and Potential Biotechnological Applications of Microbial Surfactants: An Overview. Saudi J. Biol. Sci. 2021, 28, 669–679. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, R.K.; Bothra, N.; Singh, R.; Sai, M.C.; Nedungadi, S.V.; Sarangi, P.K. Microbial Originated Surfactants with Multiple Applications: A Comprehensive Review. Arch. Microbiol. 2022, 204, 452. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Rao, C.; Lei, X.; Li, S.; Huang, X.; Liu, Y.; Ye, D. Comprehensive Insights into Yeast Mannoproteins: Structural Heterogeneity, Winemaking, Food Processing, and Medicine Food Homology. Food Res. Int. 2025, 202, 115719. [Google Scholar] [CrossRef]
- Alizadeh-Sani, M.; Hamishehkar, H.; Khezerlou, A.; Azizi-Lalabadi, M.; Azadi, Y.; Nattagh-Eshtivani, E.; Fasihi, M.; Ghavami, A.; Aynehchi, A.; Ehsani, A. Bioemulsifiers Derived from Microorganisms: Applications in the Drug and Food Industry. Adv. Pharm. Bull. 2018, 8, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Carolin, C.F.; Senthil Kumar, P.; Mohanakrishna, G.; Hemavathy, R.V.; Rangasamy, G.; Aminabhavi, T.M. Sustainable Production of Biosurfactants via Valorisation of Industrial Wastes as Alternate Feedstocks. Chemosphere. 2023, 312, 137326. [Google Scholar] [CrossRef]
- Aranda, F.J.; Teruel, J.A.; Ortiz, A. Recent Advances on the Interaction of Glycolipid and Lipopeptide Biosurfactants with Model and Biological Membranes. Curr. Opin. Colloid Interface Sci. 2023, 68, 101748. [Google Scholar] [CrossRef]
- Ng, Y.J.; Chan, S.S.; Khoo, K.S.; Munawaroh, H.S.H.; Lim, H.R.; Chew, K.W.; Ling, T.C.; Saravanan, A.; Ma, Z.; Show, P.L. Recent Advances and Discoveries of Microbial-Based Glycolipids: Prospective Alternative for Remediation Activities. Biotechnol. Adv. 2023, 68, 108198. [Google Scholar] [CrossRef]
- Tiso, T.; Ihling, N.; Kubicki, S.; Biselli, A.; Schonhoff, A.; Bator, I.; Thies, S.; Karmainski, T.; Kruth, S.; Willenbrink, A.L.; et al. Integration of Genetic and Process Engineering for Optimized Rhamnolipid Production Using Pseudomonas Putida. Front. Bioeng. Biotechnol. 2020, 8, 976. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, A.; Qi, L.; Chen, G. Transport of Nanoscale Zero-Valent Iron in the Presence of Rhamnolipid. Sci. Total Environ. 2024, 927, 172279. [Google Scholar] [CrossRef]
- Abidin, M.H.S.Z.; Asli, U.A.; Sakaria, N.D.; Azman, N.R.; Jalil, A.A. Application of Response Surface Methodology in the Formulation of an Eco-Friendly Degreaser Using Rhamnolipid Biosurfactant. J. Adv. Res. Appl. Sci. Eng. Technol. 2025, 46, 118–135. [Google Scholar] [CrossRef]
- Braz, L.M.; Goda, R.T.; Teixeira, J.; de Alencar, R.G.; Giovanni Freschi, G.P.; Brucha, G.; Andrade, G.S.S.; Tambourgi, E.B. Evaluating the Efficiency of Rhamnolipid in Removing Atrazine and 2,4-D From Soil. J. Polym. Environ. 2024, 32, 1672–1683. [Google Scholar] [CrossRef]
- Chakankar, M.; Pollmann, K.; Rudolph, M. Selective Removal of Gallium from Mixed Metal Solutions with Arsenic by Ion Flotation Using the Biosurfactant Rhamnolipid. J. Water Process Eng. 2024, 58, 104879. [Google Scholar] [CrossRef]
- Kadakia, P.; Valentin, J.D.P.; Hong, L.; Watts, S.; Hameed, O.A.; Walch, M.; Salentinig, S. Biocompatible Rhamnolipid Self-Assemblies with PH-Responsive Antimicrobial Activity. Adv. Healthc. Mater. 2024, 13, e2302596. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Zhang, H.; Cui, W.; Su, Y.; Sun, S.; Zhao, C.; Liu, Q. Performance Evaluation of Rhamnolipid Biosurfactant Produced by Pseudomonas aeruginosa and Its Effect on Marine Oil-Spill Remediation. Arch. Microbiol. 2024, 206, 183. [Google Scholar] [CrossRef] [PubMed]
- Nunes, I.P.F.; de Jesus, R.S.; Almeida, J.A.; Costa, W.L.R.; Malta, M.; Soares, L.G.P.; de Almeida, P.F.; Pinheiro, A.L.B. Evaluation of 1,9-Dimethyl-Methylene Blue Nanoencapsulation Using Rhamnolipid Nanoparticles to Potentiate the Photodynamic Therapy Technique in Candida albicans: In Vitro Study. J. Photochem. Photobiol. B Biol. 2024, 256, 112943. [Google Scholar] [CrossRef]
- Hu, X.; Subramanian, K.; Wang, H.; Roelants, S.L.K.W.; To, M.H.; Soetaert, W.; Kaur, G.; Lin, C.S.K.; Chopra, S.S. Guiding Environmental Sustainability of Emerging Bioconversion Technology for Waste-Derived Sophorolipid Production by Adopting a Dynamic Life Cycle Assessment (DLCA) Approach. Environ. Pollut. 2021, 269, 116101. [Google Scholar] [CrossRef]
- de Oliveira Caretta, T.; Baldo, C.; Silveira, V.A.I.; Hipólito, A.; Costa, N.J.A.; Mali, S.; Celligoi, M.A.P.C. Synthesis of Novel Antimicrobial Bioactive Films for Strawberry Coating Based on Sophorolipids and Fructooligosaccharides-Modified Starch. Polym. Bull. 2024, 81, 3563–3581. [Google Scholar] [CrossRef]
- Filipe, G.A.; Silveira, V.A.I.; Gonçalves, M.C.; Beltrame Machado, R.R.; Nakamura, C.V.; Baldo, C.; Mali, S.; Kobayashi, R.K.T.; Colabone Celligoi, M.A.P. Bioactive Films for the Control of Skin Pathogens with Sophorolipids from Starmerella bombicola. Polym. Bull. 2023, 80, 10809–10823. [Google Scholar] [CrossRef]
- Shah, V.; Dani, P.; Daverey, A. Phytoremediation of Heavy Metal Contaminated Soil Using Bidens Pilosa: Effect of Varying Concentrations of Sophorolipids. Appl. Biochem. Biotechnol. 2024, 196, 2399–2413. [Google Scholar] [CrossRef] [PubMed]
- Bippus, L.; Briem, A.-K.; Beck, A.; Zibek, S.; Albrecht, S. Life Cycle Assessment for Early-Stage Process Optimization of Microbial Biosurfactant Production Using Kinetic Models—A Case Study on Mannosylerythritol Lipids (MEL). Front. Bioeng. Biotechnol. 2024, 12, 1347452. [Google Scholar] [CrossRef]
- Assena, M.W.; Pfannstiel, J.; Rasche, F. Inhibitory Activity of Bacterial Lipopeptides against Fusarium oxysporum f. sp. Strigae. BMC Microbiol. 2024, 24, 227. [Google Scholar] [CrossRef]
- Zhou, S.; Liu, G.; Zheng, R.; Sun, C.; Wu, S. Structural and Functional Insights into Iturin W, a Novel Lipopeptide Produced by the Deep-Sea Bacterium bacillus sp. Strain Wsm-1. Appl. Environ. Microbiol. 2020, 86, e01597-20. [Google Scholar] [CrossRef]
- Jemil, N.; Besbes, I.; Gharbi, Y.; Triki, M.A.; Cheffi, M.; Manresa, A.; Nasri, M.; Hmidet, N. Bacillus Methylotrophicus DCS1: Production of Different Lipopeptide Families, In Vitro Antifungal Activity and Suppression of Fusarium Wilt in Tomato Plants. Curr. Microbiol. 2024, 81, 142. [Google Scholar] [CrossRef]
- Gugel, I.; Vahidinasab, M.; Benatto Perino, E.H.; Hiller, E.; Marchetti, F.; Costa, S.; Pfannstiel, J.; Konnerth, P.; Vertuani, S.; Manfredini, S.; et al. Fed-Batch Bioreactor Cultivation of Bacillus subtilis Using Vegetable Juice as an Alternative Carbon Source for Lipopeptides Production: A Shift towards a Circular Bioeconomy. Fermentation 2024, 10, 323. [Google Scholar] [CrossRef]
- Liu, Q.; Zhao, W.; Li, W.; Zhang, F.; Wang, Y.; Wang, J.; Gao, Y.; Liu, H.; Zhang, L. Lipopeptides from Bacillus velezensis ZLP-101 and Their Mode of Action against Bean Aphids Acyrthosiphon Pisum Harris. BMC Microbiol. 2024, 24, 231. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.J.; Chen, Z.; Chen, Y.P.; Wang, J.P.; Xiao, R.F.; Wang, X.; Liu, B.; Chen, M.C.; He, J. Lipopeptide C17 Fengycin B Exhibits a Novel Antifungal Mechanism by Triggering Metacaspase-Dependent Apoptosis in Fusarium oxysporum. J. Agric. Food Chem. 2024, 72, 7943–7953. [Google Scholar] [CrossRef]
- Saiyam, D.; Dubey, A.; Malla, M.A.; Kumar, A. Lipopeptides from Bacillus: Unveiling Biotechnological Prospects—Sources, Properties, and Diverse Applications. Braz. J. Microbiol. 2024, 55, 281–295. [Google Scholar] [CrossRef]
- Hussain, S.; Tai, B.; Ali, M.; Jahan, I.; Sakina, S.; Wang, G.; Zhang, X.; Yin, Y.; Xing, F. Antifungal Potential of Lipopeptides Produced by the Bacillus siamensis Sh420 Strain against Fusarium graminearum. Microbiol. Spectr. 2024, 12, e04008–e04023. [Google Scholar] [CrossRef] [PubMed]
- de Paiva, W.K.V.; Oliveira, L.B.d.S.; Silva, M.C.N.; Oliveira, M.L.P.L.; Maia, J.W.d.A.; Padilha, C.E.d.A.; Rios, N.S.; de Assis, C.F.; Junior, F.C.d.S.; Viana, J.d.O.; et al. Exploiting the Biological Activities of a Lipopeptide Extract Produced by Bacillus subtilis UFPEDA 438 in Light of the SARS-CoV-2 Pandemic. Biocatal. Agric. Biotechnol. 2024, 58, 103215. [Google Scholar] [CrossRef]
- Sharifian, A.; Varshosaz, J.; Aliomrani, M.; Kazemi, M. Polydopamine Coated Surfactin Micelles for Brain Delivery of Ibudilast in Multiple Sclerosis: Design, Optimization, in Vitro and in Vivo Evaluation. J. Drug Deliv. Sci. Technol. 2024, 95, 105530. [Google Scholar] [CrossRef]
- Mwewa, B.; Augustyn, A.; Pott, R.; Tadie, M. Fundamental Study of Pyrite Flotation Using Eco-Friendly Surfactin as Collector. Miner. Eng. 2023, 202, 108315. [Google Scholar] [CrossRef]
- Dai, C.; Shu, Z.; Ma, C.; Yan, P.; Huang, L.; He, R.; Ma, H. Isolation of a Surfactin-Producing Strain of Bacillus Subtilis and Evaluation of the Probiotic Potential and Antioxidant Activity of Surfactin from Fermented Soybean Meal. J. Sci. Food Agric. 2024, 104, 8469–8479. [Google Scholar] [CrossRef]
- Guo, Z.; Sun, J.; Ma, Q.; Li, M.; Dou, Y.; Yang, S.; Gao, X. Improving Surfactin Production in Bacillus subtilis 168 by Metabolic Engineering. Microorganisms 2024, 12, 998. [Google Scholar] [CrossRef] [PubMed]
- Zhen, C.; Ge, X.F.; Lu, Y.T.; Liu, W.Z. Chemical Structure, Properties and Potential Applications of Surfactin, as Well as Advanced Strategies for Improving Its Microbial Production. AIMS Microbiol. 2023, 9, 195–217. [Google Scholar] [CrossRef]
- Qiao, J.; Borriss, R.; Sun, K.; Zhang, R.; Chen, X.; Liu, Y.; Liu, Y. Research Advances in the Identification of Regulatory Mechanisms of Surfactin Production by Bacillus: A Review. Microb. Cell Factories 2024, 23, 100. [Google Scholar] [CrossRef] [PubMed]
- Hassanisaadi, M. Surfactin as a Multifaceted Biometabolite for Sustainable Plant Defense: A Review. J. Plant Pathol. 2024. [Google Scholar] [CrossRef]
- Liu, P.; Pei, H.; Shen, J.; Xu, C.; Zhao, H. Effect of Surfactin on the Properties of Glycerol Monosterate–Based Oleogels. Food Struct. 2024, 40, 100370. [Google Scholar] [CrossRef]
- Rahman, L.; Sarwar, Y.; Khaliq, S.; Inayatullah, N.; Abbas, W.; Mobeen, A.; Ullah, A.; Hussain, S.Z.; Khan, W.S.; Kyriazi, M.E.; et al. Surfactin-Conjugated Silver Nanoparticles as an Antibacterial and Antibiofilm Agent against Pseudomonas aeruginosa. ACS Appl. Mater. Interfaces 2023, 15, 43321–43331. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhao, H.; Meng, F.; Zhou, L.; Lu, Z.; Lu, Y. Surfactin Alleviated Hyperglycaemia in Mice with Type 2 Diabetes Induced by a High-Fat Diet and Streptozotocin. Food Sci. Hum. Wellness 2023, 12, 2095–2110. [Google Scholar] [CrossRef]
- Wang, S.; Wang, R.; Zhao, X.; Ma, G.; Liu, N.; Zheng, Y.; Tan, J.; Qi, G. Systemically Engineering Bacillus amyloliquefaciens for Increasing Its Antifungal Activity and Green Antifungal Lipopeptides Production. Front. Bioeng. Biotechnol. 2022, 10, 961535. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Zhao, X.; Li, M.; Lu, Y.; Ai, C.; Jiang, C.; Liu, Y.; Pan, Z.; Shi, J. Antifungal Activity of Silver Nanoparticles Synthesized by Iturin against Candida albicans in Vitro and in Vivo. Appl. Microbiol. Biotechnol. 2021, 105, 3759–3770. [Google Scholar] [CrossRef]
- Gao, G.R.; Hou, Z.J.; Ding, M.Z.; Bai, S.; Wei, S.Y.; Qiao, B.; Xu, Q.M.; Cheng, J.S.; Yuan, Y.J. Improved Production of Fengycin in Bacillus subtilis by Integrated Strain Engineering Strategy. ACS Synth. Biol. 2022, 11, 4065–4076. [Google Scholar] [CrossRef]
- Yin, Y.; Wang, X.; Zhang, P.; Wang, P.; Wen, J. Strategies for Improving Fengycin Production: A Review. Microb. Cell Factories 2024, 23, 144. [Google Scholar] [CrossRef]
- He, P.; Cui, W.; Munir, S.; He, P.; Huang, R.; Li, X.; Wu, Y.; Wang, Y.; Yang, J.; Tang, P.; et al. Fengycin Produced by Bacillus subtilis XF-1 Plays a Major Role in the Biocontrol of Chinese Cabbage Clubroot via Direct Effect and Defense Stimulation. J. Cell. Physiol. 2023, 239, e30991. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Yin, Y.; Wen, J. Fermentation Optimization and Metabolomic Analysis of a Bacillus Subtilis Co-Culture System for Fengycin Production from Mixed Sugars. Biochem. Eng. J. 2024, 209, 109406. [Google Scholar] [CrossRef]
- Cai, F.; Zhao, Z.; Gao, R.; Chen, P.; Ding, M.; Jiang, S.; Fu, Z.; Xu, P.; Chenthamara, K.; Shen, Q.; et al. The Pleiotropic Functions of Intracellular Hydrophobins in Aerial Hyphae and Fungal Spores. PLoS Genet. 2021, 17, e1009924. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, S.S.; Nene, S.N.; Joshi, K.S. Identification and Characterization of a Hydrophobin Vmh3 from Pleurotus ostreatus. Protein Expr. Purif. 2022, 195–196, 106095. [Google Scholar] [CrossRef] [PubMed]
- Qiao, J.; Liu, H.; Xue, P.; Hong, M.; Guo, X.; Xing, Z.; Zhao, M.; Zhu, J. Function of a Hydrophobin in Growth and Development, Nitrogen Regulation, and Abiotic Stress Resistance of Ganoderma lucidum. FEMS Microbiol. Lett. 2023, 370, fnad051. [Google Scholar] [CrossRef]
- Siddiquee, R.; Choi, S.S.-C.; Lam, S.S.; Wang, P.; Qi, R.; Otting, G.; Sunde, M.; Kwan, A.H.-Y. Cell-Free Expression of Natively Folded Hydrophobins. Protein Expr. Purif. 2020, 170, 105591. [Google Scholar] [CrossRef] [PubMed]
- Puspitasari, N.; Tsai, S.L.; Lee, C.K. Fungal Hydrophobin RolA Enhanced PETase Hydrolysis of Polyethylene Terephthalate. Appl. Biochem. Biotechnol. 2021, 193, 1284–1295. [Google Scholar] [CrossRef] [PubMed]
- Fardami, A.Y.; Kawo, A.H.; Yahaya, S.; Lawal, I.; Abubakar, A.S.; Maiyadi, K.A. A Review on Biosurfactant Properties, Production and Producing Microorganisms. J. Biochem. Microbiol. Biotechnol. 2022, 10, 5–12. [Google Scholar] [CrossRef]
- Mujumdar, S.; Joshi, P.; Karve, N. Production, Characterization, and Applications of Bioemulsifiers (BE) and Biosurfactants (BS) Produced by Acinetobacter spp.: A Review. J. Basic Microbiol. 2019, 59, 277–287. [Google Scholar] [CrossRef] [PubMed]
- Philippini, R.R.; Martiniano, S.E.; Ingle, A.P.; Franco Marcelino, P.R.; Silva, G.M.; Barbosa, F.G.; dos Santos, J.C.; da Silva, S.S. Agroindustrial Byproducts for the Generation of Biobased Products: Alternatives for Sustainable Biorefineries. Front. Energy Res. 2020, 8, 152. [Google Scholar] [CrossRef]
- Manga, E.B.; Celik, P.A.; Cabuk, A.; Banat, I.M. Biosurfactants: Opportunities for the Development of a Sustainable Future. Curr. Opin. Colloid Interface Sci. 2021, 56, 101514. [Google Scholar] [CrossRef]
HLB Range | Applications |
---|---|
4–6 | Water/oil emulsifier |
7–9 | Wetting agent |
8–18 | Oil/water emulsifier |
13–15 | Detergent |
15–18 | Solubilizer |
Type | Name | CMC [g/L] | Reduced Surface Tension [mN/m] | Temperature [°C] | References |
---|---|---|---|---|---|
Non-renewable surfactants | Sodium lauryl sulfate (SLS) | 2.004 | 39.2 | 20 | [25] |
Sodium dodecyl sulfate (SDS) | 2.36 | 25 | N.A. | [2] | |
Cetyl trimethyl ammonium bromide (CTAB) | 1.131 | N.A. | 25 | [25] | |
353 | 33.4 | 25 | |||
Bio-based surfactants | Decyl glycoside from D-glucose (APG) | 0.994 | 26 | N.A. | [32] |
Decyl glycoside from D-xylose (APG) | 0.301 | 28 | N.A. | [32] | |
Betula pendula saponins (leaves) | 0.24 | 45.7 | 20 | [25] | |
Bellis perennis saponins (flowers) | 0.076 | 36.8 | 20 | [25] | |
Genipa americana saponins (fruits) | 0.65 | 31.39 ± 0.15 | 25 ± 1 | [25] | |
Biosurfactants | Sophorolipids | 0.04–0.1 | 30–40 | N.A. | [33] |
Rhamnolipids | 0.01–0.02 | 26 | N.A. | [2] | |
Hydrophilic mannosylerythritol lipid (MEL) | 0.1 | 27 | 25 ± 2 | [34] | |
Hydrophilic mannosylerythritol lipid (MEL)—G | 0.125 | 30.5 | 25 ± 2 | [34] | |
Surfactin | 0.02 | 27 | N.A. | [35] | |
Iturin C3 | 0.04183 | N.A. | 20 | [36] | |
Hydrophobin | 0.005 | 30 | N.A. | [37] |
Name | Derived/Produced from | Function | References |
---|---|---|---|
Alkyl polyglucosides (APGs) | Synthesized through the trans-acetylation or acetylation process between glucose (i.e., from corn or wheat) and fatty alcohols (i.e., from palm kernel or coconut oil). | High tolerance of electrolytes, thermal stability, emulsifying, foaming, and wetting properties, biodegradability, anti-bacterial activity, thickening effects, dermatological compatibility, and ocular safety. | [17,19,43,44,45,46,47,48,49,50] |
Saponins | Found as a blend of various saponin types in diverse parts of the plants. | Emulsifiers, foaming agents, detergents, shampoos, solubilizers, insect repellents, food additives, cosmetics, wetting agents, pharmaceuticals, drug carriers, antioxidants, anti-diabetic, anti-obesity, anti-fungal, anti-microbial, anti-inflammatory, anti-tumoral, analgesic, molluscicides, remediation, among other functions. | [1,25,30,41,51,52,53] |
Glycerol-based surfactant | Glycerol and fatty acids through esterification or transesterification. | Emulsifying and solubilizing properties, alkali tolerance, foam stability, and laundry performances. | [17,54,55,56,57,58] |
Sucrose sorbitans | Synthesized by esterification of triglycerides or transesterification of fatty acid methyl ester with sucrose in basic catalyst presence. | Emulsifiers in cosmetics, cleansing, and personal care products but could have potential as drug permeability enhancers due to their biocompatible and eco-friendly behaviors. | [17,59,60,61] |
Saponin Source | Sectors | Applications | References |
---|---|---|---|
Yucca schidigera saponin | N.A. | Emulsifying and foaming agents, anti-inflammatory, anti-fungal, anti-parasitic, anti-tumoral, antioxidant, and anti-microbial activity. | [72] |
Plants from northern Thailand such as litsea glutinosa, sapindus rarak, and acacia concinna. | Detergent, personal care, and medicine. | Detergents, shampoo ingredients, cleansing purpose such as spiritual cleansing during Thai new year. Traditional medicines due to their biological activities such as anti-spasmodic, anti-bacterial, and cardiovascular activities, etc. | [53] |
Steroic saponins from Allii Macrostemonis Bulbus, a traditional Chinese medicine | Pharmaceutics | Anti-coagulation, lipid-lowering, anti-tumor, and antioxidant effects. Moderate anti-inflammatory effects on endothelial cells, anti-atherosclerotic effect. | [73] |
Total saponins from Panax japonicus | Pharmaceutics | Anti-angiogenic effect in rheumatoid arthritis. Commonly used to alleviate the pathological symptoms of the digestive system, cardiovascular system, and central nervous system. Inhibitory effects on immune inflammation and general inflammation, bidirectional regulatory effects on immune function, and can restore the abnormal immune system. Regulated the intestinal microbiota to alleviate lipid metabolism disorders in aging mice. | [74,75,76,77,78] |
Boron + saponins | Agriculture | An effective treatment in mitigating salinity stress for sweet potatoes, improving various growth parameters and physiological aspects. | [79] |
Tea saponins, found in Camellia plants | Soil remediation | Desorb heavy metals from contaminated soil as well as enhancing their bioavailability. Improve the accumulation. | [80] |
Type | Name | Biosynthesized by | Applications | References |
---|---|---|---|---|
Glycolipids | Rhamnolipids | Pseudomonas aeruginosa | Anti-adhesive, anti-bacterial, anti-viral, anti-tumor, dispersing, emulsification, wetting, detergency, and de-emulsification activities, among other effects. | [94,101,102] |
Sophorolipids | Starmerella bombicola and other yeast | Lubricants, solubilizers, detergents, foaming agents, emulsifiers, wound healing and anti-cancer effects, and anti-microbial agents against several bacteria, viruses, and fungi species. | [103,104,105,106] | |
Mannosylerythritol lipids (MELs) | Fungi species such as Moesziomyces and Ustilago sp., or yeast strains belonging to the Pseudozyma family. | Anti-tumoral, anti-biofilm, and anti-bacterial agents, emulsifiers, enzyme activation/inhibition, gene transfection and gene therapy in biomedical applications. Antioxidant and protective properties in skin cells, moisturizing effect for dry skin, and their potential as anti-melanogenic properties in skincare products. | [95,97,107,108,109,110] | |
Cellobiose lipids | Ustilago maydis, Ustilagomycetic yeasts of the genus Pseudozyma such as P. fusiformata, P. aphidis, and P. hubeiensis. | Anti-microbial potential, phytopathogenic action against powdery mildew, yeasts and Gram-positive bacteria commonly associated with human infections. Additives for the formulation of colloids applied in the food and cosmetics industries, etc. | [4,111] | |
Trehalose lipids | Gram-positive bacteria with high GC (Guanine and Cytosine) content: Actinomycetales such as Mycobacterium, Nocardia, Corynebacterium, and Rhodococcus. | Emulsifiers, wetting, foaming, solubilizers, anti-microbial, and anti-adhesive agents in biomedical, pharmaceutical, food, and environmental sectors. | [4,111,112] | |
Xylolipids | Secreted by Pichia caribbica when grown in xylose-rich media. Lactococcus lactis LNH70. | Reduce the surface tension to 35.9 mN/m with a CMC of 1 mg/L, anti-bacterial activity against S. aureus. Antioxidant properties. | [4,113] | |
Glycolipid with polyol as polar moiety—polyol lipids | Liamocins | Produced by Aureobasidium pullulans, Aureobasidium melanogenum. | Anti-bacterial activity against strains of Streptococcus spp. Anti-microbial agent group, particularly in prophylactic applications. Inhibit the formation of oral biofilms of S. mutans, S. sobrinus, and S. suis, mainly by rupturing the pathogen’s cell membrane. | [4,114] |
Polyol esters of fatty acids (PEFA) | Secreted by genus Rhodotorula such as Rhodotorula graminis and Rhodotorula glutinis. | Anti-foam activities. Promote the formation of water-in-oil emulsions in water/octane mixtures. Promising prospects for therapeutic and environmental applications. | [4,114] | |
Lipopeptides | Surfactin | Bacillus species | Antibiotic properties for humans and plants. At high concentrations, they show anti-bacterial effects but has fewer anti-fungal properties than other lipopeptide biosurfactants. | [115,116] |
Iturin | Bacillus bacteria and closely related bacterial strains | Anti-bacterial, anti-fungal, anti-biofilm, anti-cancer, anti-viral, and hemolytic agents. Biocontrol agents in agriculture. Microbial-enhanced oil recovery in the petroleum sector. Emulsifiers and inhibitors of fat globule aggregation in food industries. | [117,118,119,120,121] | |
Fengycin | Bacillus species | Anti-fungal, anti-microbial, anti-tumor, antibiotic, and anti-viral properties. Biocontrol agents. | [122,123,124] | |
Viscosin | Synthesized by soil and marine bacteria such as Pseudomonas sp. (Pseudomonas fluorescens) | Anti-microbial effects against bacteria, fungi, protozoa, and human viruses. Involved in pore formation and destabilization of the cytoplasmic membrane of target cells. | [98,125] | |
Lichenysin | Bacillus licheniformis. | Anti-microbial agent against important human pathogens. Pre-coating agents on various surfaces used in several indwelling medical devices and catheters in in vitro conditions. | [98,119,126] | |
Surface-active proteins | Hydrophobins | Filamentous fungi (i.e., Penicillium, Aspergillus, Trichoderma, extremophilic species, or mycorrhizal fungi). | Modification of wettability of solid surfaces (i.e., Teflon), immune-suppressive barrier, hydrophobic drug solubilization and delivery in biomedical applications, antimicrobial coating for biomaterials, food dispersion, protein purification process, biosensors, foam and emulsion stabilizers. | [4,127,128,129,130] |
Polymeric biosurfactant | Alasan | Acinetobacter radioresistens bacteria. | Emulsifying, stabilizing, solubilizing, and surface activities. | [131,132] |
Emulsan | Acinetobacter calcoaceticus RAG-1 and Acinetobacter calcoaceticus BD4 bacteria. | Excellent emulsion stabilizer at low concentrations. | [132,133] | |
Liposan | Candida lipolytica. | Emulsifying, solubilizing, and emulsion stabilizing properties. | [100,134] | |
Mannanproteins | Saccharomyces spp. and Kluyveromyces marxianus of yeast. | Bio-emulsifiers, antioxidants, anti-bacterial and antibiotic properties, anti-tumor agents, and prebiotic components. It can act as a surfactant, reducing bacterial adhesion to the intestines and biofilm formation. | [135,136] | |
Biodispersan | Generated by Acinetobacter calcoaceticus strains. | Emulsifying and stabilizing agents in the industry. | [137] |
Sector | Functions | References |
---|---|---|
Cosmetics | Anti-bacterial, emulsifying, washing, foaming, solubilizing, wetting, penetrating, dispersion, and low-toxicity characteristics. | [165,166] |
Medicine | Anti-tumor, anti-virus and anti-inflammatory activities, anti-biofilm agent, immunosuppressive activity and maintenance of gastrointestinal homeostasis. | [124,162,164,166] |
Agriculture | Biocontrol agents for plant diseases, systematic resistance in plants and promote plant growth and development. Formation of biofilm on plant roots. | [167,168] |
Food | Additive for food processing and formulations due to their larvicidal, anti-adhesive and antimicrobial agents. | [169] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romero Vega, G.; Gallo Stampino, P. Bio-Based Surfactants and Biosurfactants: An Overview and Main Characteristics. Molecules 2025, 30, 863. https://doi.org/10.3390/molecules30040863
Romero Vega G, Gallo Stampino P. Bio-Based Surfactants and Biosurfactants: An Overview and Main Characteristics. Molecules. 2025; 30(4):863. https://doi.org/10.3390/molecules30040863
Chicago/Turabian StyleRomero Vega, Gloria, and Paola Gallo Stampino. 2025. "Bio-Based Surfactants and Biosurfactants: An Overview and Main Characteristics" Molecules 30, no. 4: 863. https://doi.org/10.3390/molecules30040863
APA StyleRomero Vega, G., & Gallo Stampino, P. (2025). Bio-Based Surfactants and Biosurfactants: An Overview and Main Characteristics. Molecules, 30(4), 863. https://doi.org/10.3390/molecules30040863