Research on the Preparation of Ultramarine Pigments from Palygorskite
Abstract
:1. Introduction
2. Results and Discussion
2.1. Qualitative Analysis of Ultramarine Pigments
2.2. The Influence of the Amount of Raw Materials on the Product
2.2.1. The Influence of the Amount of Na2CO3
2.2.2. The Influence of the Amount of S
2.3. Determination and Modification of Acid Resistance of Ultramarine Pigments
2.3.1. Ultramarine Pigment Acid Resistance Test
2.3.2. Chemical Stability Analysis
3. Experimental
3.1. Preparation of Ultramarine Pigments
3.2. Modification and Acid Resistance Test of Ultramarine Pigments
3.3. Color Tone Evaluation
3.4. Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sancho, J.P.; Restrepo, O.J.; Garcia, P.; Ayala, J. Ultramarine blue from Asturian hard kaolins. Appl. Clay Sci. 2008, 41, 133–142. [Google Scholar] [CrossRef]
- Landman, A.A.; Waal, D.D. Fly ash as a potential starting reagent for the synthesis of ultramarine blue. Mater. Res. Bull. 2004, 39, 655–667. [Google Scholar] [CrossRef]
- Buxbaum, G.; Pfaff, G. Industrial Inorganic Pigments, 3rd ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2005. [Google Scholar] [CrossRef]
- Kowalak, S.; Jankowska, A.; Zeidler, S.; Wieckowski, A.B. Sulfur radicals embedded in various cages of ultramarine analogues prepared from zeolites. J. Solid State Chem. 2007, 180, 1119–1124. [Google Scholar] [CrossRef]
- Osticioli, I.; Mendes, N.F.C.; Nevin, A.; Gil, F.P.S.C.; Becucci, M.; Castellucci, E. Analysis of natural and artificial ultramarine blue pigments using laser-induced breakdown and pulsed Raman spectroscopy. Spectrochim Acta Part A Mol. Biomol. Spectrosc. 2008, 73, 525–531. [Google Scholar] [CrossRef] [PubMed]
- De Menezes, R.A.; Da Paz, S.P.A.; Angélica, R.S.; De Freitas Neves, R.; Castella Pergher, S.B. Color and shade parameters of ultramarine zeolitic pigments synthesized from kaolin waste. Mater. Res. 2014, 17, 23–27. [Google Scholar] [CrossRef]
- Gobeltz, N.; Demortier, A.; Lelieur, J.P.; Duhayon, C. Encapsulation of the chromophores into the sodalite structure during the synthesis of the blue ultramarine pigment. J. Chem. Soc. Faraday Trans. 1998, 94, 2257–2260. [Google Scholar] [CrossRef]
- Andreola, F.; Barbieri, L.; Bondioli, F. Agricultural waste in the synthesis of coral ceramic pigment. Dye. Pigment. 2012, 94, 207–211. [Google Scholar] [CrossRef]
- Hoffmann, S.K.; Goslar, J.; Lijewski, S.; Olejniczak, I.; Jankowska, A.; Zeidler, S.; Koperska, N.; Kowalak, S. S3-radicals in ε-cages of cancrinite and zeolite L: Spectroscopic and magnetic resonance studies. Micropor. Mesopor. Mater. 2012, 151, 70–78. [Google Scholar] [CrossRef]
- Wang, Z.F.; Chen, H.R.; Xu, L.; Xu, S.Q.; Gao, C.F.; Oliphant, A.J.; Liu, J.; Lu, Y.; Wang, W. Synthesis and colour prediction of stable pigments from rice husk biomass. Green Mater. 2015, 3, 10–14. [Google Scholar] [CrossRef]
- Rejmak, P. Structural, optical and magnetic properties of ultramarine pigments: A DFT insight. J. Phys. Chem. C. 2018, 122, 29338–29349. [Google Scholar] [CrossRef]
- Dejoie, C.; Martinetto, P.; Dooryheée, E.; Strobel, P.; Blanc, S.; Bordat, P.; Brown, R.; Porcher, F. Indigo@silicalite: A new organic–inorganic hybrid pigment. ACS Appl. Mater. Interfaces 2010, 2, 2308–2315. [Google Scholar] [CrossRef]
- Borhade, A.V.; Kshirsagar, T.A.; Dholi, A.G. Novel synthesis of ultramarine blue from waste coal fly ash via thiocyanate aluminosilicate sodalite. J. Sulfur Chem. 2016, 37, 632–645. [Google Scholar] [CrossRef]
- Škvarlová, A.; Kaňuchová, M.; Kozáková, L.; Valušová, E.; Holub, M.; Škvarla, J. Preparation and characterization of ultramarine blue pigments from fly ash by using the X-ray photoelectron spectroscopy (XPS) for the determination of chemical states of sulphur in chromophores. Micropor. Mesopor. Mater. 2019, 284, 283–288. [Google Scholar] [CrossRef]
- Li, X.Y.; Jiang, Y.; Liu, X.Q.; Shi, L.Y.; Zhang, D.Y.; Sun, L.B. Direct Synthesis of Zeolites from a Natural Clay, Attapulgit. ACS Sustain. Chem. Eng. 2017, 5, 6124–6130. [Google Scholar] [CrossRef]
- Wu, M.; Jiang, W.B.; Jiang, J.L.; Zou, Y.Q.; Shi, Y.Y. Synthesis of ZSM-5 zeolites using palygorskite as raw material under solvent-free conditions. Bull. Mater. Sci. 2020, 43, 289. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Y.; Diao, J.; Qiang, M.; Chen, Z. Synthesis and photocatalytic activity of hierarchical Zn-ZSM-5 structures. Catalysts 2021, 11, 797–812. [Google Scholar] [CrossRef]
- Lu, Y.S.; Wang, A.Q. From structure evolution of palygorskite to functional material: A review. Micropor. Mesopor. Mater. 2022, 333, 111765. [Google Scholar] [CrossRef]
- Lewis, D.M.; McIlroy, K.A. Modification of cotton with nicotinoyl thioglycollate to improve its dyeability. Dye. Pigment. 1997, 35, 69–86. [Google Scholar] [CrossRef]
- Xie, K.L.; Hou, A.Q.; Wang, X.J. Dyeing and diffusion properties of modified novel cellulose with triazine derivatives containing cationic and anionic groups. Carbohydr. Polym. 2008, 72, 646–651. [Google Scholar] [CrossRef]
- Blackburn, R.S.; Burkinshaw, S.M. A greener approach to cotton dyeing with excellent wash fastness. Green Chem. 2002, 1, 47–52. [Google Scholar] [CrossRef]
- Menezes, R.A.; Paz, S.P.A.; Angélica, R.S.; Neves, R.F.; Neumann, R.; Faulstich, F.R.L.; Pergher, S.B.C. Synthesis of ultramarine pigments from Na-A zeolite derived from kaolin waste from the Amazon. Clay Miner. 2017, 52, 83–95. [Google Scholar] [CrossRef]
- Jankowska, A.; Kowalak, S. Synthesis of ultramarine analogues from erionite. Micropor. Mesopor. Mater. 2008, 110, 570–578. [Google Scholar] [CrossRef]
- Tarling, S.E.; Barnes, P.; Klinowski, J. The structure and Si, Al distribution of the ultramarines. Acta Crys. 1988, 44, 128–135. [Google Scholar] [CrossRef]
- Booth, D.G.; Dann, S.E.; Weller, M.T. The effect of the cation composition on the synthesis and properties of ultramarine blue. Dye. Pigment. 2003, 58, 73–82. [Google Scholar] [CrossRef]
- Esteban, C.; Julio, R.; Juan, R.; Emmanuelle, S.; Regino, S. Synthesis and characterization of the ultramarine-type analogue Na8-x[Si6Al6O24] (S2, S3, CO3)1–2. Inorg. Chem. 2009, 48, 6526–6533. [Google Scholar] [CrossRef]
- Arieli, D.; Vaughan, D.; Goldfarb, D. New synthesis and insight into the structure of blue ultramarine pigments. J. Am. Chem. Soc. 2004, 126, 5776–5788. [Google Scholar] [CrossRef] [PubMed]
- Shen, F.; Chen, H. The Preparation and characteristics of a blue pearlescent pigment with LTA-Type ultramarine coated on the mica substrate. Nano 2021, 16, 6–10. [Google Scholar] [CrossRef]
- Feng, M.; Kou, Z.; Tang, C.; Shi, Z.; Tong, Y.; Zhang, K. Recent progress in synthesis of zeolite from natural clay. Appl. Clay Sci. 2023, 243, 107087. [Google Scholar] [CrossRef]
- CIE. Recommendations of Uniform Color Spaces, Color Difference Equations; CIE: Vienna, Austria, 1978; Available online: https://cie.co.at (accessed on 9 February 2025).
Number | Palygorskite/g | Na2CO3/g | Rosin/g | Quartz Sand/g | S/g | L* | a* | b* | ∆E* |
---|---|---|---|---|---|---|---|---|---|
1 | 0.50 | 1.0 | 0.10 | 0.0717 | 0.75 | ≠ | ≠ | ≠ | ≠ |
2 | 0.50 | 1.1 | 0.10 | 0.0717 | 0.75 | 11.86 | −5.09 | −18.32 | 26.22 |
3 | 0.50 | 1.2 | 0.10 | 0.0717 | 0.75 | 17.67 | −5.71 | −20.63 | 20.32 |
4 | 0.50 | 1.3 | 0.10 | 0.0717 | 0.75 | 24.71 | −4.66 | −22.29 | 14.68 |
5 | 0.50 | 1.4 | 0.10 | 0.0717 | 0.75 | 26.02 | −5.00 | −28.66 | 8.81 |
6 | 0.50 | 1.5 | 0.10 | 0.0717 | 0.75 | 31.93 | −6.31 | −33.71 | 1.15 |
7 | 0.50 | 1.6 | 0.10 | 0.0717 | 0.75 | 33.30 | −5.10 | −30.87 | 4.24 |
8 | 0.50 | 1.7 | 0.10 | 0.0717 | 0.75 | 36.78 | −5.64 | −25.62 | 10.29 |
9 | 0.50 | 1.8 | 0.10 | 0.0717 | 0.75 | 39.91 | −9.81 | −23.90 | 13.84 |
Number | Palygorskite/g | Na2CO3/g | Rosin/g | Quartz Sand/g | S/g | L* | a* | b* | ∆E* |
---|---|---|---|---|---|---|---|---|---|
10 | 0.50 | 1.5 | 0.10 | 0.0717 | 0.55 | ≠ | ≠ | ≠ | ≠ |
11 | 0.50 | 1.5 | 0.10 | 0.0717 | 0.65 | 42.36 | −8.61 | −26.92 | 13.08 |
12 | 0.50 | 1.5 | 0.10 | 0.0717 | 0.75 | 31.95 | −6.27 | −33.98 | 0.882 |
13 | 0.50 | 1.5 | 0.10 | 0.0717 | 0.85 | 37.28 | −5.08 | −32.08 | 5.87 |
14 | 0.50 | 1.5 | 0.10 | 0.0717 | 0.95 | 40.20 | −5.35 | −22.34 | 14.84 |
HCl Concentration | L* | a* | b* | m1 (g) | m2 (g) | ∆m (%) | ΔE* |
---|---|---|---|---|---|---|---|
0% | 31.93 | −5.09 | −33.71 | 0.1500 | ≠ | ≠ | ≠ |
0.8% | 26.66 | −3.85 | −21.07 | 0.1503 | 0.1090 | 27.45 | 13.75 |
1.0% | 26.35 | −3.51 | −19.94 | 0.1495 | 0.07195 | 51.87 | 14.94 |
0.8% | 30.79 | −5.01 | −32.98 | 0.1511 | 0.1422 | 5.89 | 1.35 |
1.0% | 29.94 | −4.95 | −32.89 | 0.1507 | 0.1451 | 3.70 | 2.57 |
1% Acid/Alkali | L* | a* | b* | m1 (g) | m2 (g) | ∆m (%) | ΔE* |
---|---|---|---|---|---|---|---|
Air | 31.93 | −5.99 | −34.71 | 0.1497 | 0.1497 | 0 | 0.37 |
H2O | 32.06 | −5.95 | −33.98 | 0.1487 | 0.1468 | 1.28 | 0.89 |
NaOH | 31.61 | −5.47 | −33.32 | 0.1481 | 0.1453 | 1.86 | 1.77 |
HNO3 | 31.98 | −5.99 | −32.18 | 0.1490 | 0.1455 | 2.34 | 2.36 |
H2SO4 | 31.64 | −5.98 | −32.75 | 0.1495 | 0.1451 | 2.97 | 2.15 |
HCl | 31.22 | −5.94 | −32.92 | 0.150 | 0.1453 | 3.15 | 2.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, M.; Wang, Q.; Wang, X.; Mo, P.; Tong, Y. Research on the Preparation of Ultramarine Pigments from Palygorskite. Molecules 2025, 30, 870. https://doi.org/10.3390/molecules30040870
Feng M, Wang Q, Wang X, Mo P, Tong Y. Research on the Preparation of Ultramarine Pigments from Palygorskite. Molecules. 2025; 30(4):870. https://doi.org/10.3390/molecules30040870
Chicago/Turabian StyleFeng, Min, Qingyun Wang, Xingpeng Wang, Pengwei Mo, and Yongchun Tong. 2025. "Research on the Preparation of Ultramarine Pigments from Palygorskite" Molecules 30, no. 4: 870. https://doi.org/10.3390/molecules30040870
APA StyleFeng, M., Wang, Q., Wang, X., Mo, P., & Tong, Y. (2025). Research on the Preparation of Ultramarine Pigments from Palygorskite. Molecules, 30(4), 870. https://doi.org/10.3390/molecules30040870