On the Structural and Biological Effects of Hydroxyapatite and Gold Nano-Scale Particles in Poly(Vinylidene Fluoride) Smart Scaffolds for Bone and Neural Tissue Engineering
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphology Analysis
2.2. Water Uptake, Contact Angle Measurements, and Surface Free Energy Determination
Sample ID | Water Contact Angle [°] | Dispersive Component [mN/m] | Polar Component [mN/m] | Surface Free Energy [mN/m] | Surface Polarity (Xp) | Water Uptake [%] |
---|---|---|---|---|---|---|
PVDF_R | 133 ± 0.7 | 32 ± 0.7 | 3 ± 0.4 | 35 ± 0.8 | 0.093 | 140 ± 5 |
PVDF_A | 120 ± 1.1 | 32 ± 0.4 | 5 ± 0.7 | 37 ± 0.2 | 0.156 | 194 ± 3 |
PVDF/nHA_R | 120 ± 2.7 | 37 ± 0.1 | 8 ± 0.3 | 45 ± 0.5 | 0.216 | 157 ± 6 |
PVDF/nHA_A | 110 ± 0.7 | 37 ± 0.6 | 10 ± 1.2 | 47 ± 1.1 | 0.271 | 257 ± 7 |
PVDF/AU_R | 127 ± 0.5 | 34 ± 1.2 | 4 ± 0.6 | 38 ± 1.3 | 0.117 | 150 ± 7 |
PVDF/AU_A | 115 ± 0.4 | 35 ± 0.9 | 7± 0.9 | 42 ± 0.9 | 0.211 | 120 ± 6 |
2.3. Determination of the Crystallinity and the Phase Content
2.3.1. Fourier Transform Infrared Spectroscopy (FTIR)
2.3.2. Wide Angle X-Ray Scattering (WAXS)
2.3.3. Differential Scanning Calorimetry (DSC)
2.4. In Vitro Study on Osteoblasts Human MG-63 Cell Line
2.5. In Vitro Study on Human Induced Pluripotent Stem Cell-Derived Neural Stem Cell Culture (hiPSC-NSC)
3. Experimental Part
3.1. Materials and Methods
3.2. Preparation of PVDF/nHA Solution and Scaffold Fabrication via Electrospinning Technique and Sonochemical Coating
3.3. Characterization of Piezoelectric Nanofibrous Composites
3.3.1. Morphology Analysis
3.3.2. Water Uptake, Water Contact Angle Measurements and Surface Free Energy Determination
3.3.3. Determination of the Crystallinity and the Phase Content
Fourier Transform Infrared Spectroscopy (FTIR)
Wide Angle X-Ray Scattering (WAXS)
Differential Scanning Calorimetry (DSC)
3.3.4. In Vitro Study on Human Osteoblasts MG-63 Cell Line
3.3.5. In Vitro Study on Human Induced Pluripotent Stem Cell-Derived Neural Stem Cell Culture (hiPSC-NSC)
Cell Culture on Biomaterials and Immunofluorescent Staining
3.4. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zaszczynska, A.; Sajkiewicz, P.; Gradys, A. Piezoelectric Scaffolds as Smart Materials for Neural Tissue Engineering. Polymers 2020, 12, 161. [Google Scholar] [CrossRef] [PubMed]
- Zaszczyńska, A.; Zabielski, K.; Gradys, A.; Kowalczyk, T.; Sajkiewicz, P. Piezoelectric Scaffolds as Smart Materials for Bone Tissue Engineering. Polymers 2024, 16, 2797. [Google Scholar] [CrossRef]
- Yu, S.; Tai, Y.; Milam-Guerrero, J.; Nam, J.; Myung, N.V. Electrospun Organic Piezoelectric Nanofibers and Their Energy and Bio Applications. Nano Energy 2022, 97, 107174. [Google Scholar] [CrossRef]
- Li, S.; Dan, X.; Chen, H.; Li, T.; Liu, B.; Ju, Y.; Li, Y.; Lei, L.; Fan, X. Developing Fibrin-Based Biomaterials/Scaffolds in Tissue Engineering. Bioact. Mater. 2024, 40, 597–623. [Google Scholar] [CrossRef]
- Percival, K.M.; Paul, V.; Husseini, G.A. Recent Advancements in Bone Tissue Engineering: Integrating Smart Scaffold Technologies and Bio-Responsive Systems for Enhanced Regeneration. Int. J. Mol. Sci. 2024, 25, 6012. [Google Scholar] [CrossRef] [PubMed]
- Motamedi, A.S.; Mirzadeh, H.; Hajiesmaeilbaigi, F.; Bagheri-Khoulenjani, S.; Shokrgozar, M.A. Piezoelectric Electrospun Nanocomposite Comprising Au NPs/PVDF for Nerve Tissue Engineering. J. Biomed. Mater. Res 2017, 105, 1984–1993. [Google Scholar] [CrossRef]
- Ali, M.; Bathaei, M.J.; Istif, E.; Karimi, S.N.H.; Beker, L. Biodegradable Piezoelectric Polymers: Recent Advancements in Materials and Applications. Adv. Healthc. Mater. 2023, 12, 2300318. [Google Scholar] [CrossRef]
- Kalimuldina, G.; Turdakyn, N.; Abay, I.; Medeubayev, A.; Nurpeissova, A.; Adair, D.; Bakenov, Z. A Review of Piezoelectric PVDF Film by Electrospinning and Its Applications. Sensors 2020, 20, 5214. [Google Scholar] [CrossRef]
- Mohammadi, B.; Yousefi, A.A.; Bellah, S.M. Effect of Tensile Strain Rate and Elongation on Crystalline Structure and Piezoelectric Properties of PVDF Thin Films. Polym. Test. 2007, 26, 42–50. [Google Scholar] [CrossRef]
- Kabir, E.; Khatun, M.; Nasrin, L.; Raihan, M.J.; Rahman, M. Pure β-Phase Formation in Polyvinylidene Fluoride (PVDF)-Carbon Nanotube Composites. J. Phys. D Appl. Phys. 2017, 50, 163002. [Google Scholar] [CrossRef]
- Mokhtari, F.; Latifi, M.; Shamshirsaz, M. Electrospinning/Electrospray of Polyvinylidene Fluoride (PVDF): Piezoelectric Nanofibers. J. Text. Inst. 2016, 107, 1037–1055. [Google Scholar] [CrossRef]
- Khonina, S.N.; Voronkov, G.S.; Grakhova, E.P.; Kazanskiy, N.L.; Kutluyarov, R.V.; Butt, M.A. Polymer Waveguide-Based Optical Sensors—Interest in Bio, Gas, Temperature, and Mechanical Sensing Applications. Coatings 2023, 13, 549. [Google Scholar] [CrossRef]
- Mohammadpourfazeli, S.; Arash, S.; Ansari, A.; Yang, S.; Mallick, K.; Bagherzadeh, R. Future Prospects and Recent Developments of Polyvinylidene Fluoride (PVDF) Piezoelectric Polymer; Fabrication Methods, Structure, and Electro-Mechanical Properties. RSC Adv. 2023, 13, 370–387. [Google Scholar] [CrossRef] [PubMed]
- Zaszczyńska, A.; Niemczyk-Soczynska, B.; Sajkiewicz, P. A Comprehensive Review of Electrospun Fibers, 3D-Printed Scaffolds, and Hydrogels for Cancer Therapies. Polymers 2022, 14, 5278. [Google Scholar] [CrossRef] [PubMed]
- Andrey, V.; Koshevaya, E.; Mstislav, M.; Parfait, K. Piezoelectric PVDF and Its Copolymers in Biomedicine: Innovations and Applications. Biomater. Sci. 2024, 12, 5164–5185. [Google Scholar] [CrossRef]
- Hazarika, G.; Jadhav, S.V.; Ingole, P.G. Exploring the Potential of Polymeric Membranes in Cutting-Edge Chemical and Biomedical Applications: A Review. Mater. Today Commun. 2024, 39, 109022. [Google Scholar] [CrossRef]
- Deshmukh, S.; Kathiresan, M.; Kulandainathan, M.A. A Review on Biopolymer-Derived Electrospun Nanofibers for Biomedical and Antiviral Applications. Biomater. Sci. 2022, 10, 4424–4442. [Google Scholar] [CrossRef]
- Zhang, Y.-Q.; Geng, Q.; Li, C.; Wang, H.-C.; Ren, C.; Zhang, Y.-F.; Bai, J.-S.; Pan, H.-B.; Cui, X.; Yao, M.-X.; et al. Application of Piezoelectric Materials in the Field of Bone: A Bibliometric Analysis. Front. Bioeng. Biotechnol. 2023, 11, 1210637. [Google Scholar] [CrossRef]
- Nain, A.; Chakraborty, S.; Barman, S.R.; Gavit, P.; Indrakumar, S.; Agrawal, A.; Lin, Z.-H.; Chatterjee, K. Progress in the Development of Piezoelectric Biomaterials for Tissue Remodeling. Biomaterials 2024, 307, 122528. [Google Scholar] [CrossRef]
- Das, K.K.; Basu, B.; Maiti, P.; Dubey, A.K. Interplay of Piezoelectricity and Electrical Stimulation in Tissue Engineering and Regenerative Medicine. Appl. Mater. Today 2024, 39, 102332. [Google Scholar] [CrossRef]
- Domingues, J.M.; Miranda, C.S.; Homem, N.C.; Felgueiras, H.P.; Antunes, J.C. Nanoparticle Synthesis and Their Integration into Polymer-Based Fibers for Biomedical Applications. Biomedicines 2023, 11, 1862. [Google Scholar] [CrossRef] [PubMed]
- Shlapakova, L.E.; Surmeneva, M.A.; Kholkin, A.L.; Surmenev, R.A. Revealing an Important Role of Piezoelectric Polymers in Nervous-Tissue Regeneration: A Review. Mater. Today Bio 2024, 25, 100950. [Google Scholar] [CrossRef]
- Tandon, B.; Blaker, J.J.; Cartmell, S.H. Piezoelectric Materials as Stimulatory Biomedical Materials and Scaffolds for Bone Repair. Acta Biomater. 2018, 73, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yin, J.; Wee, M.G.V.; Chinnappan, A.; Ramakrishna, S. A Self-Powered Piezoelectric Nanofibrous Membrane as Wearable Tactile Sensor for Human Body Motion Monitoring and Recognition. Adv. Fiber Mater. 2023, 5, 1417–1430. [Google Scholar] [CrossRef]
- Ribeiro, T.P.; Flores, M.; Madureira, S.; Zanotto, F.; Monteiro, F.J.; Laranjeira, M.S. Magnetic Bone Tissue Engineering: Reviewing the Effects of Magnetic Stimulation on Bone Regeneration and Angiogenesis. Pharmaceutics 2023, 15, 1045. [Google Scholar] [CrossRef]
- Yang, X.; Li, Y.; He, W.; Huang, Q.; Zhang, R.; Feng, Q. Hydroxyapatite/Collagen Coating on PLGA Electrospun Fibers for Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells. J. Biomed. Mater. Res. 2018, 106, 2863–2870. [Google Scholar] [CrossRef]
- Akbari, N.; Khorshidi, S.; Karkhaneh, A. Effect of Piezoelectricity of Nanocomposite Electrospun Scaffold on Cell Behavior in Bone Tissue Engineering. Iran. Polym. J. 2022, 31, 919–930. [Google Scholar] [CrossRef]
- Fu, S.; Zhao, X.; Yang, L.; Qin, G.; Zhang, E. A Novel Ti-Au Alloy with Strong Antibacterial Properties and Excellent Biocompatibility for Biomedical Application. Biomater. Adv. 2022, 133, 112653. [Google Scholar] [CrossRef] [PubMed]
- Pisarenko, T.; Papež, N.; Sobola, D.; Ţălu, Ş.; Částková, K.; Škarvada, P.; Macků, R.; Ščasnovič, E.; Kaštyl, J. Comprehensive Characterization of PVDF Nanofibers at Macro- and Nanolevel. Polymers 2022, 14, 593. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Bai, Z.; Cao, Y.; Dong, M.; Jiang, K.; Zhou, Y.; Tao, Y.; Gu, S.; Xu, J.; Yin, X.; et al. Enhanced Piezoelectric Performance of BiCl3/PVDF Nanofibers-Based Nanogenerators. Compos. Sci. Technol. 2020, 192, 108100. [Google Scholar] [CrossRef]
- Edwards, M.D.; Mitchell, G.R.; Mohan, S.D.; Olley, R.H. Development of Orientation during Electrospinning of Fibres of Poly(ε-Caprolactone). Eur. Polym. J. 2010, 46, 1175–1183. [Google Scholar] [CrossRef]
- Kiselev, P.; Rosell-Llompart, J. Highly Aligned Electrospun Nanofibers by Elimination of the Whipping Motion. J. Appl. Polym. Sci. 2012, 125, 2433–2441. [Google Scholar] [CrossRef]
- Duta, L.; Grumezescu, V. The Effect of Doping on the Electrical and Dielectric Properties of Hydroxyapatite for Medical Applications: From Powders to Thin Films. Materials 2024, 17, 640. [Google Scholar] [CrossRef]
- Mokhtari, F.; Azimi, B.; Salehi, M.; Hashemikia, S.; Danti, S. Recent Advances of Polymer-Based Piezoelectric Composites for Biomedical Applications. J. Mech. Behav. Biomed. Mater. 2021, 122, 104669. [Google Scholar] [CrossRef]
- Lopresti, F.; Carfì Pavia, F.; Vitrano, I.; Kersaudy-Kerhoas, M.; Brucato, V.; La Carrubba, V. Effect of Hydroxyapatite Concentration and Size on Morpho-Mechanical Properties of PLA-Based Randomly Oriented and Aligned Electrospun Nanofibrous Mats. J. Mech. Behav. Biomed. Mater. 2020, 101, 103449. [Google Scholar] [CrossRef]
- Li, Y.; Liao, C.; Tjong, S.C. Electrospun Polyvinylidene Fluoride-Based Fibrous Scaffolds with Piezoelectric Characteristics for Bone and Neural Tissue Engineering. Nanomaterials 2019, 9, 952. [Google Scholar] [CrossRef] [PubMed]
- Kołbuk, D.; Ciechomska, M.; Jeznach, O.; Sajkiewicz, P. Effect of Crystallinity and Related Surface Properties on Gene Expression of Primary Fibroblasts. RSC Adv. 2022, 12, 4016–4028. [Google Scholar] [CrossRef]
- Prasad, G.; Liang, J.-W.; Zhao, W.; Yao, Y.; Tao, T.; Liang, B.; Lu, S.-G. Enhancement of Solvent Uptake in Porous PVDF Nanofibers Derived by a Water-Mediated Electrospinning Technique. J. Mater. 2021, 7, 244–253. [Google Scholar] [CrossRef]
- Saxena, P.; Shukla, P. A Comprehensive Review on Fundamental Properties and Applications of Poly(Vinylidene Fluoride) (PVDF). Adv. Compos. Hybrid Mater. 2021, 4, 8–26. [Google Scholar] [CrossRef]
- Khan, M.U.A.; Aslam, M.A.; Bin Abdullah, M.F.; Hasan, A.; Shah, S.A.; Stojanović, G.M. Recent Perspective of Polymeric Biomaterial in Tissue Engineering—A Review. Mater. Today Chem. 2023, 34, 101818. [Google Scholar] [CrossRef]
- EL-Ghoul, Y.; Alminderej, F.M.; Alsubaie, F.M.; Alrasheed, R.; Almousa, N.H. Recent Advances in Functional Polymer Materials for Energy, Water, and Biomedical Applications: A Review. Polymers 2021, 13, 4327. [Google Scholar] [CrossRef]
- Rudawska, A.; Jacniacka, E. Analysis for Determining Surface Free Energy Uncertainty by the Owen–Wendt Method. Int. J. Adhes. Adhes. 2009, 29, 451–457. [Google Scholar] [CrossRef]
- Kolbuk, D.; Guimond-Lischer, S.; Sajkiewicz, P.; Maniura-Weber, K.; Fortunato, G. The Effect of Selected Electrospinning Parameters on Molecular Structure of Polycaprolactone Nanofibers. Int. J. Polym. Mater. Polym. Biomater. 2015, 64, 365–377. [Google Scholar] [CrossRef]
- Zaszczyńska, A.; Kołbuk, D.; Gradys, A.; Sajkiewicz, P. Development of Poly(Methyl Methacrylate)/Nano-Hydroxyapatite (PMMA/nHA) Nanofibers for Tissue Engineering Regeneration Using an Electrospinning Technique. Polymers 2024, 16, 531. [Google Scholar] [CrossRef]
- Vijayendran, B.R. Polymer Polarity and Surfactant Adsorption. J. Appl. Polym. Sci. 1979, 23, 733–742. [Google Scholar] [CrossRef]
- Nasker, P.; Samanta, A.; Rudra, S.; Sinha, A.; Mukhopadhyay, A.K.; Das, M. Effect of Fluorine Substitution on Sintering Behaviour, Mechanical and Bioactivity of Hydroxyapatite. J. Mech. Behav. Biomed. Mater. 2019, 95, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, C.; Panadero, J.A.; Sencadas, V.; Lanceros-Méndez, S.; Tamaño, M.N.; Moratal, D.; Salmerón-Sánchez, M.; Gómez Ribelles, J.L. Fibronectin Adsorption and Cell Response on Electroactive Poly(Vinylidene Fluoride) Films. Biomed. Mater. 2012, 7, 035004. [Google Scholar] [CrossRef] [PubMed]
- Buitrago-Vásquez, M.; Ossa-Orozco, C.P. Degradation, Water Uptake, Injectability and Mechanical Strength of Injectable Bone Substitutes Composed of Silk Fibroin and Hydroxyapatite Nanorods. Rev. Fac. Ing. 2018, 27, 49–60. [Google Scholar] [CrossRef]
- Bhat, S.; Uthappa, U.T.; Altalhi, T.; Jung, H.-Y.; Kurkuri, M.D. Functionalized Porous Hydroxyapatite Scaffolds for Tissue Engineering Applications: A Focused Review. ACS Biomater. Sci. Eng. 2022, 8, 4039–4076. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Singh, S. Multimodal Potentials of Gold Nanoparticles for Bone Tissue Engineering and Regenerative Medicine: Avenues and Prospects. Small 2022, 18, 2201462. [Google Scholar] [CrossRef] [PubMed]
- Dreanca, A.; Muresan-Pop, M.; Taulescu, M.; Tóth, Z.-R.; Bogdan, S.; Pestean, C.; Oren, S.; Toma, C.; Popescu, A.; Páll, E.; et al. Bioactive Glass-Biopolymers-gold Nanoparticle Based Composites for Tissue Engineering Applications. Mater. Sci. Eng. C 2021, 123, 112006. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Tong, W.; Li, Y.; Zhang, P.; Liu, Y.; Chen, Y.; Zhang, Y. Contributions of Piezoelectricity and Triboelectricity to a Hydroxyapatite/PVDF–HFP Fiber-Film Nanogenerator. Nano Energy 2023, 105, 108026. [Google Scholar] [CrossRef]
- Cai, X.; Lei, T.; Sun, D.; Lin, L. A Critical Analysis of the α, β and γ Phases in Poly(Vinylidene Fluoride) Using FTIR. RSC Adv. 2017, 7, 15382–15389. [Google Scholar] [CrossRef]
- Shaikh, S.F.; Jadhav, B.V.; Patil, R.P. Photocatalytic Activity of Zn-CO-Ferrite Nanoparticle Synthesized Using Lemon as Green Binding Agent by SOL-GEL Method. Indo Am. J. Pharm. Sci. 2018, 5, S89–S93. [Google Scholar]
- Barnawi, N.; Allehyani, S.; Seoudi, R. Biosynthesis and Characterization of Gold Nanoparticles and Its Application in Eliminating Nickel from Water. J. Mater. Res. Technol. 2022, 17, 537–545. [Google Scholar] [CrossRef]
- Gurunathan, S.; Han, J.; Park, J.H.; Kim, J.-H. A Green Chemistry Approach for Synthesizing Biocompatible Gold Nanoparticles. Nanoscale Res. Lett. 2014, 9, 248. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Lu, J. Research Trends of Piezoelectric Biomaterials in Osteochondral Tissue Engineering. Mater. Today Commun. 2024, 41, 110264. [Google Scholar] [CrossRef]
- Magdy, G.; Hassanin, A.H.; Kandas, I.; Shehata, N. PVDF Nanostructures Characterizations and Techniques for Enhanced Piezoelectric Response: A Review. Mater. Chem. Phys. 2024, 325, 129760. [Google Scholar] [CrossRef]
- Kushwah, M.; Sagar, R.; Rogachev, A.A.; Gaur, M.S. Dielectric, Pyroelectric and Polarization Behavior of Polyvinylidene Fluoride (PVDF)—Gold Nanoparticles (AuNPs) Nanocomposites. Vacuum 2019, 166, 298–306. [Google Scholar] [CrossRef]
- Kaspar, P.; Sobola, D.; Částková, K.; Dallaev, R.; Šťastná, E.; Sedlák, P.; Knápek, A.; Trčka, T.; Holcman, V. Case Study of Polyvinylidene Fluoride Doping by Carbon Nanotubes. Materials 2021, 14, 1428. [Google Scholar] [CrossRef]
- Meesaragandla, B.; García, I.; Biedenweg, D.; Toro-Mendoza, J.; Coluzza, I.; Liz-Marzán, L.M.; Delcea, M. H-Bonding-Mediated Binding and Charge Reorganization of Proteins on Gold Nanoparticles. Phys. Chem. Chem. Phys. 2020, 22, 4490–4500. [Google Scholar] [CrossRef] [PubMed]
- Zaszczyńska, A.; Gradys, A.; Ziemiecka, A.; Szewczyk, P.K.; Tymkiewicz, R.; Lewandowska-Szumieł, M.; Stachewicz, U.; Sajkiewicz, P.Ł. Enhanced Electroactive Phases of Poly(Vinylidene Fluoride) Fibers for Tissue Engineering Applications. Int. J. Mol. Sci. 2024, 25, 4980. [Google Scholar] [CrossRef] [PubMed]
- Islam, A.; Khan, A.N.; Shakir, M.F.; Islam, K. Strengthening of β Polymorph in PVDF/FLG and PVDF/GO Nanocomposites. Mater. Res. Express 2020, 7, 015017. [Google Scholar] [CrossRef]
- Martins, P.; Lopes, A.C.; Lanceros-Mendez, S. Electroactive Phases of Poly(Vinylidene Fluoride): Determination, Processing and Applications. Prog. Polym. Sci. 2014, 39, 683–706. [Google Scholar] [CrossRef]
- Isaac, B.; Taylor, R.M.; Reifsnider, K. Mechanical and Dielectric Properties of Aligned Electrospun Fibers. Fibers 2021, 9, 4. [Google Scholar] [CrossRef]
- Leon-Valdivieso, C.Y.; Garcia-Garcia, A.; Legallais, C.; Bedoui, F. Electrospinning of Biomedically Relevant Multi-Region Scaffolds: From Honeycomb to Randomly-Oriented Microstructure. Polymer 2020, 202, 122606. [Google Scholar] [CrossRef]
- Nunes-Pereira, J.; Ribeiro, S.; Ribeiro, C.; Gombek, C.J.; Gama, F.M.; Gomes, A.C.; Patterson, D.A.; Lanceros-Méndez, S. Poly(Vinylidene Fluoride) and Copolymers as Porous Membranes for Tissue Engineering Applications. Polym. Test. 2015, 44, 234–241. [Google Scholar] [CrossRef]
- Davis, G.T.; McKinney, J.E.; Broadhurst, M.G.; Roth, S.C. Electric-Field-Induced Phase Changes in Poly(Vinylidene Fluoride). J. Appl. Phys. 1978, 49, 4998–5002. [Google Scholar] [CrossRef]
- Gradys, A.; Sajkiewicz, P. Determination of the Melting Enthalpy of β Phase of Poly(Vinylidene Fluoride). e-Polymers 2013, 2013, 203–216. [Google Scholar] [CrossRef]
- Neidhöfer, M.; Beaume, F.; Ibos, L.; Bernès, A.; Lacabanne, C. Structural Evolution of PVDF During Storage or Annealing. Polymer 2004, 45, 1679–1688. [Google Scholar] [CrossRef]
- Gregorio, R. Determination of the α, β, and γ Crystalline Phases of Poly(Vinylidene Fluoride) Films Prepared at Different Conditions. J. Appl. Polym. Sci 2006, 100, 3272–3279. [Google Scholar] [CrossRef]
- Nakagawa, K.; Ishida, Y. Annealing Effects in Poly(Vinylidene Fluoride) as Revealed by Specific Volume Measurements, Differential Scanning Calorimetry, and Electron Microscopy. J. Polym. Sci. Polym. Phys. Ed. 1973, 11, 2153–2171. [Google Scholar] [CrossRef]
- Purushothaman, S.M.; Tronco, M.F.; Ponçot, M.; Chitralekha, C.S.; Guigo, N.; Malfois, M.; Kalarikkal, N.; Thomas, S.; Royaud, I.; Rouxel, D. Quantifying the Crystalline Polymorphism in PVDF: Comparative Criteria Using DSC, WAXS, FT-IR, and Raman Spectroscopy. ACS Appl. Polym. Mater. 2024, 6, 8291–8305. [Google Scholar] [CrossRef]
- Enayati, M.S.; Behzad, T.; Sajkiewicz, P.; Bagheri, R.; Ghasemi-Mobarakeh, L.; Łojkowski, W.; Pahlevanneshan, Z.; Ahmadi, M. Crystallinity Study of Electrospun Poly (Vinyl Alcohol) Nanofibers: Effect of Electrospinning, Filler Incorporation, and Heat Treatment. Iran. Polym. J. 2016, 25, 647–659. [Google Scholar] [CrossRef]
- Arinstein, A.; Zussman, E. Electrospun Polymer Nanofibers: Mechanical and Thermodynamic Perspectives. J. Polym. Sci. B Polym. Phys. 2011, 49, 691–707. [Google Scholar] [CrossRef]
- Kitsara, M.; Blanquer, A.; Murillo, G.; Humblot, V.; De Bragança Vieira, S.; Nogués, C.; Ibáñez, E.; Esteve, J.; Barrios, L. Permanently Hydrophilic, Piezoelectric PVDF Nanofibrous Scaffolds Promoting Unaided Electromechanical Stimulation on Osteoblasts. Nanoscale 2019, 11, 8906–8917. [Google Scholar] [CrossRef] [PubMed]
- ISO 10993-5:2009; Biological Evaluation of Medical Devices—Part 5: Tests for In Vitro Cytotoxicity. International Organization for Standardization: Geneva, Switzerland, 2009. Available online: https://www.iso.org/standard/36406.html (accessed on 18 February 2025).
- Braga, F.J.C.; Rogero, S.O.; Couto, A.A.; Marques, R.F.C.; Ribeiro, A.A.; Campos, J.S.D.C. Characterization of PVDF/HAP Composites for Medical Applications. Mater. Res. 2007, 10, 247–251. [Google Scholar] [CrossRef]
- Zhang, X.; Lang, W.-Z.; Xu, H.-P.; Yan, X.; Guo, Y.-J. The Effects of Hydroxyapatite Nano Whiskers and Its Synergism with Polyvinylpyrrolidone on Poly(Vinylidene Fluoride) Hollow Fiber Ultrafiltration Membranes. RSC Adv. 2015, 5, 21532–21543. [Google Scholar] [CrossRef]
- Costa, R.; Ribeiro, C.; Lopes, A.C.; Martins, P.; Sencadas, V.; Soares, R.; Lanceros-Mendez, S. Osteoblast, Fibroblast and In Vivo Biological Response to Poly(Vinylidene Fluoride) Based Composite Materials. J. Mater. Sci. Mater. Med. 2013, 24, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Kołbuk, D.; Guimond-Lischer, S.; Sajkiewicz, P.; Maniura-Weber, K.; Fortunato, G. Morphology and Surface Chemistry of Bicomponent Scaffolds in Terms of Mesenchymal Stromal Cell Viability. J. Bioact. Compat. Polym. 2016, 31, 423–436. [Google Scholar] [CrossRef]
- Zaszczyńska, A.; Gradys, A.; Kołbuk, D.; Zabielski, K.; Szewczyk, P.K.; Stachewicz, U.; Sajkiewicz, P. Poly(L-Lactide)/Nano-Hydroxyapatite Piezoelectric Scaffolds for Tissue Engineering. Micron 2025, 188, 103743. [Google Scholar] [CrossRef]
- Mousa, N.; El-Hosainy, H.; Shoueir, K.; El-Kemary, M. Photoluminescence Sensing of Pb2+ Using Cellulose Acetate Nanofiber Decorated with Au Nanoparticles. J. Alloys Compd. 2023, 931, 167481. [Google Scholar] [CrossRef]
- Zaszczyńska, A.; Sajkiewicz, P.Ł.; Gradys, A.; Tymkiewicz, R.; Urbanek, O.; Kołbuk, D. Influence of process-material conditions on the structure and biological properties of electrospun polyvinylidene fluoride fibers. Bull. Pol. Acad. Sci. Tech. Sci. 2020, 68, 627–633. [Google Scholar] [CrossRef]
- Kołbuk, D.; Urbanek, O.; Denis, P.; Choińska, E. Sonochemical Coating as an Effective Method of Polymeric Nonwovens Functionalization. J. Biomed. Mater. Res. 2019, 107, 2447–2457. [Google Scholar] [CrossRef] [PubMed]
- Ivars, J.; Labanieh, A.R.; Soulat, D. Effect of the Fibre Orientation Distribution on the Mechanical and Preforming Behaviour of Nonwoven Preform Made of Recycled Carbon Fibres. Fibers 2021, 9, 82. [Google Scholar] [CrossRef]
- Shehata, N.; Elnabawy, E.; Abdelkader, M.; Hassanin, A.; Salah, M.; Nair, R.; Ahmad Bhat, S. Static-Aligned Piezoelectric Poly (Vinylidene Fluoride) Electrospun Nanofibers/MWCNT Composite Membrane: Facile Method. Polymers 2018, 10, 965. [Google Scholar] [CrossRef]
- Kanak; Yogita; Singh, P.; Manori, A.; Kumar, A.; Chandra, R.; Raina, K.K.; Shukla, R.K.; Manori, S. Photocatalytic Degradation of Malachite Green Using PVDF Membranes Doped with Fe3 O4 Nanoparticles: Role of Porosity and Surface Roughness. Phys. Scr. 2023, 98, 105953. [Google Scholar] [CrossRef]
- Li, Y.; Li, R.K.Y.; Tjong, S.C. Fabrication and Properties of PVDF/Expanded Graphite Nanocomposites. e-Polymers 2009, 9, 019. [Google Scholar] [CrossRef]
- ElBakry, H.A.; Ammar, M.M.; Moussa, T.A. Effect of Nanodiamonds Surface Deposition on Hydrophilicity, Bulk Degradation and In-Vitro Cell Adhesion of 3D-Printed Polycaprolactone Scaffolds for Bone Tissue Engineering. Biomed. Mater. 2024, 19, 055016. [Google Scholar] [CrossRef]
- Kleintjens, L.A. Integration of Fundamental Polymer Science and Technology; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; ISBN 978-94-009-4185-4. [Google Scholar]
- Ghobeira, R.; Asadian, M.; Vercruysse, C.; Declercq, H.; De Geyter, N.; Morent, R. Wide-Ranging Diameter Scale of Random and Highly Aligned PCL Fibers Electrospun Using Controlled Working Parameters. Polymer 2018, 157, 19–31. [Google Scholar] [CrossRef]
- Buzanska, L. The Collagen Scaffold Supports hiPSC-Derived NSC Growth and Restricts hiPSC. Front. Biosci. 2019, 11, 105–121. [Google Scholar] [CrossRef] [PubMed]
- Kapat, K.; Shubhra, Q.T.H.; Zhou, M.; Leeuwenburgh, S. Piezoelectric Nano-Biomaterials for Biomedicine and Tissue Regeneration. Adv. Funct. Mater. 2020, 30, 1909045. [Google Scholar] [CrossRef]
- Sirkkunan, D.; Pingguan-Murphy, B.; Muhamad, F. Directing Axonal Growth: A Review on the Fabrication of Fibrous Scaffolds That Promotes the Orientation of Axons. Gels 2021, 8, 25. [Google Scholar] [CrossRef]
PVDF_R | PVDF_A | PVDF/nHA_R | PVDF/nHA_A | PVDF/AU_R | PVDF/AU_A | |
---|---|---|---|---|---|---|
Porosity [%] | 87 ± 1.1 | 83 ± 0.9 | 93 ± 1.1 | 87 ± 0.6 | 90 ± 0.4 | 85 ± 0.3 |
Pore size [nm] | 202 ± 7 | 195 ± 3 | 204 ± 9 | 198 ± 8 | 203 ± 6 | 200 ± 4 |
Element | PVDF_R | PVDF_A | PVDF/nHA_R | PVDF/nHA_A | PVDF/AU_R | PVDF_AU_A |
---|---|---|---|---|---|---|
C | 61.81 ± 0.7 | 61.97 ± 0.6 | 60.47 ± 0.3 | 60.13 ± 0.4 | 60.75 ± 0.5 | 60.84 ± 0.7 |
O | 38.19 ± 0.3 | 38.03 ± 0.4 | 33.9 ± 0.7 | 33.81 ± 0.6 | 38.9 ± 0.3 | 38.83 ± 0.4 |
Ca | - | - | 3.52 ± 0.4 | 3.79 ± 0.3 | - | - |
P | - | - | 2.11 ± 0.2 | 2.27 ± 0.1 | - | - |
Au | - | - | - | - | 0.35 ± 0.5 | 0.33 ± 0.2 |
Other | - | - | - | - | - | - |
Sample ID | F(α) (%) | F(β) + F(γ) (%) | F(β) (%) | F(γ) (%) |
---|---|---|---|---|
PVDF_R | 44.7 ± 0.3 | 55.3 ± 2.4 | 52.3 ± 1.1 | 3 ± 2.2 |
PVDF_A | 13 ± 0.6 | 88 ± 0.1 | 80.8 ± 3.1 | 7.2 ± 2.3 |
PVDF/nHA_R | 19 ± 1.7 | 81 ± 0.5 | 80.997 ± 2.2 | 0.003 ± 0.4 |
PVDF/nHA_A | 18.1 ± 0.8 | 81.9 ± 0.8 | 80.999 ± 0.2 | 0.901 ± 1.1 |
PVDF/AU_R | 66 ± 0.9 | 34 ± 1.9 | 32.97 ± 0.9 | 1.03 ± 1.3 |
PVDF/AU_A | 47 ± 1.2 | 53 ± 7.3 | 50.96 ± 2 | 2.04 ± 2.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaszczyńska, A.; Zychowicz, M.; Kołbuk, D.; Denis, P.; Gradys, A.; Sajkiewicz, P.Ł. On the Structural and Biological Effects of Hydroxyapatite and Gold Nano-Scale Particles in Poly(Vinylidene Fluoride) Smart Scaffolds for Bone and Neural Tissue Engineering. Molecules 2025, 30, 1041. https://doi.org/10.3390/molecules30051041
Zaszczyńska A, Zychowicz M, Kołbuk D, Denis P, Gradys A, Sajkiewicz PŁ. On the Structural and Biological Effects of Hydroxyapatite and Gold Nano-Scale Particles in Poly(Vinylidene Fluoride) Smart Scaffolds for Bone and Neural Tissue Engineering. Molecules. 2025; 30(5):1041. https://doi.org/10.3390/molecules30051041
Chicago/Turabian StyleZaszczyńska, Angelika, Marzena Zychowicz, Dorota Kołbuk, Piotr Denis, Arkadiusz Gradys, and Paweł Ł. Sajkiewicz. 2025. "On the Structural and Biological Effects of Hydroxyapatite and Gold Nano-Scale Particles in Poly(Vinylidene Fluoride) Smart Scaffolds for Bone and Neural Tissue Engineering" Molecules 30, no. 5: 1041. https://doi.org/10.3390/molecules30051041
APA StyleZaszczyńska, A., Zychowicz, M., Kołbuk, D., Denis, P., Gradys, A., & Sajkiewicz, P. Ł. (2025). On the Structural and Biological Effects of Hydroxyapatite and Gold Nano-Scale Particles in Poly(Vinylidene Fluoride) Smart Scaffolds for Bone and Neural Tissue Engineering. Molecules, 30(5), 1041. https://doi.org/10.3390/molecules30051041