The Facile Synthesis of Exogenous Lewis-Base-Free Amidoalanes: A Structural Comparison
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Amidoalanes
2.2. Spectroscopic Studies of 1a–f
2.3. Single-Crystal X-Ray Crystallographic Studies
2.4. Air Stability Studies
2.5. Reactivity Studies
3. Materials and Methods
- Syntheses of dialkylamidoaluminium dihydrides [H2Al(NR2)]n 1
- [H2Al(NEt2)]2 1a. Yield 37%; colourless crystals (blocks); mp. (sealed capillary) 41–42 °C; 1H NMR (400.20 MHz, 298 K, C6D6): δ/ppm = 0.86 (t, 12 H, CH3, 3JHH = 7.1 Hz), 2.84 (q, 8 H, CH2, 3JHH = 7.1 Hz), and 4.13 (br., 4 H, Al-H); 13C NMR (100.64 MHz, 298 K, C6D6): δ/ppm = 12.3 (CH3) and 42.3 (CH2); 27Al NMR (104.27 MHz, 298 K, C6D6): δ/ppm = 150.2; IR (NaCl plates, nujol) ν/cm−1 = 3446 (vs, br.), 2932 (vs, nujol), 1826 (vs, νAlH), 1453 (vs), 1382 (vs), 1315 (w), 1291 (m), 1261 (w), 1175 (s), 1111 (vs), 1046 (s), 1004 (s), 903 (m), 854 (s), and 732 (s); MS (EI, 70 eV): m/z 201 (38%) (M+–H), 187 (13%) (M+–CH3), 173 (50%) (M+–C2H5), 171 (63%) (M+–C2H5–2H), 157 (77%) (M+–CH3–C2H5), and 100 (100%) (monomer–H). CARE! This compound is somewhat pyrophoric in the solid state.
- [H2Al(NiPr2)]2 1b. Yield 88%; colourless crystals (blocks); mp. (sealed capillary) 133–134 °C; 1H NMR (400.20 MHz, 298 K, C6D6): δ/ppm = 1.29 (d, 24 H, CH3, 3JHH = 7.0 Hz), 3.56 (sept., 4 H, CH, 3JHH = 7.0 Hz), and 4.30 (br., 4 H, Al-H); 13C NMR (100.64 MHz, 298 K, C6D6): δ/ppm = 24.7 (CH3) and 50.7 (CH); 27Al NMR (104.27 MHz, 298 K, C6D6): δ/ppm = 143.5; IR (NaCl plates, nujol) ν/cm−1 = 3585 (m), 3413 (m), 3318 (m), 2925 (vs, nujol), 2600 (m), 2303 (w), 1816 (vs, νAlH), 1592 (m), 1448 (vs), 1390 (vs), 1314 (m), 1261 (w), 1175 (vs), 1126 (vs), 977 (w), 956 (s), 915 (s), and 840 (s); MS (EI, 70 eV): m/z 257 (23%) (M+–H), 243 (8%) (M+–CH3), 227 (20%) (M+–2CH3–H); 213 (20%) (M+–3CH3); 129 (6%) (monomer), 128 (100%) (monomer–H), 126 (30%) (monomer–3H), 114 (42%) (monomer–CH3), and 86 (57%) (monomer–C(CH3)2).
- [H2Al(NC5H10)]2 1c. Yield 69%; colourless crystals (blocks); mp. (sealed capillary) 91–92 °C; 1H NMR (400.20 MHz, 298 K, C6D6): δ/ ppm = 1.11–1.17 (m, 4 H, C4-H2), 1.33–1.38 (m, 8 H, C3-H2), 2.72–2.75 (m, 8 H, C2-H2), and 4.14 (br., 4 H, Al-H); 13C NMR (100.64 MHz, 298 K, C6D6): δ/ppm = 24.1 (C4), 27.0 (C3), and 51.6 (C2); 27Al NMR (104.27 MHz, 298 K, C6D6): δ/ppm = 150.3; IR (NaCl plates, nujol) ν/cm−1 = 3436 (vs, br.), 2923 (vs, nujol), 2499 (m), 2385 (w), 2314 (w), 2257 (w), 2209 (w), 2077 (w), 1990 (w), 1823 (vs, br., νAlH), 1643 (m), 1504 (s), 1452 (vs), 1373 (s), 1312 (m), 1281, (m), 1257 (m), 1190 (s), 1152 (s), 1086 (s), 1030 (vs), 940 (s), 856 (s), and 806 (s); MS (EI, 70 eV): m/z 226 (45%) (M+), 225 (52%) (M+–H), 224 (24%) (M+–2H), 197 (68%); 195 (46%), 113 (8%) (monomer); 112 (50%) (monomer–H), 85 (51%) (piperidine), and 84 (100%) (piperidine–H), 57 (43%), 56 (57%).
- [H2Al(NiBu2)]2 1d. Yield 90%; colourless crystals (blocks); mp. (sealed capillary) 66–67 °C; 1H NMR (400.20 MHz, 298 K, C6D6): δ/ppm = 0.90 (d, 24 H, CH3, 3JHH = 6.7 Hz), 1.80–2.00 (m, 4 H, CH), 2.90 (d, 8 H, CH2, 3JHH = 6.9 Hz), and 4.31 (br., 4 H, Al-H); 13C NMR (100.64 MHz, 298 K, C6D6): δ/ppm = 22.0 (CH3), 27.2 (CH), and 57.0 (CH2); 27Al NMR (104.27 MHz, 298 K, C6D6): δ/ppm = 147.0; IR (NaCl plates, nujol) ν/cm−1 = 3384 (vs, br.), 2958 (vs, nujol), 1834 (vs, νAlH), 1465 (vs), 1391 (s), 1314 (m), 1268 (m), 1156 (s), 1134 (s), 1082 (vs), 1018 (vs), and 940 (s); MS (EI, 70 eV): m/z 313 (14%) (M+–H), 311 (13%) (M+–3H), 283 (19%) (M+–2CH3–H), 271 (23%) (M+–C(CH3)2), 269 (20%) (M+–CH(CH3)2–H), 156 (80%) (monomer –H), 154 (100%) (monomer–3H), and 112 (34) (monomer–CH(CH3)2–H); elemental analysis: anal. calc. for C16H40Al2N2: C 61.1, H 12.8, N 8.9, found C 61.4, H 12.5, N 9.0%.
- [H2Al(NCy2)]2 1e. 85%; colourless crystals (blocks); mp. (sealed capillary) 193 °C (decomposition, yellow); 1H NMR (400.20 MHz, 298 K, C6D6): δ/ppm = 0.95 (dtt, 4 H, C4-Hax, 2JHH = 13.0 Hz, 3JHH = 13.0, 3.1 Hz), 1.14–1.29 (m, 8 H, C3-Hax), 1.47 (app. d, 4 H, C4-Heq, 2JHH = 13.2 Hz, the small 3JHH was not fully resolved), 1.57–1.71 (m, 16 H, C3-Heq overlapped by C2-Hax), 2.23 (app. d, 8 H, C2-Heq, 2JHH = 11.6 Hz, the small 3JHH couplings were not fully resolved), 3.21 (dt, 4 H, C1-Hax, 3JHH = 11.7, 2.6 Hz), and 4.47 (br., 4 H, Al-H); 13C NMR (100.64 MHz, 298 K, C6D6): δ/ppm = 25.8 (C4), 26.5 (C3), 35.7 (C2), and 61.1 (C1); IR (NaCl plates, nujol) ν/cm−1 = 3428 (vs, br.), 2924 (vs, nujol), 2664 (s), 1806 (vs, br., νAlH), 1630 (m), 1448 (vs), 1368 (s), 1345 (m), 1259 (s), 1109 (vs), 1025 (vs), 888 (s), and 800 (vs); MS (EI, 70 eV): m/z 417 (10%) (M+–H), 387 (13%), 333 (34%) (M+–cyclohexyl–H), 208 (100%) (monomer–H), 206 (50%) (monomer–2H), and 138 (50%); elemental analysis: anal. calc. for C24H48Al2N2: C 68.9, H 11.6, N 6.7, found C 69.3, H 11.4, N 6.8%.
- [H2Al(NC4H8)]3 1f. Yield 62%; colourless crystals (needles); mp. (sealed capillary) 106–107 °C; 1H NMR (400.20 MHz, 298 K, C6D6): δ/ppm = 1.44–1.69 (m, 12 H, NCH2), 2.95–3.40 (m, 12 H, CH2), and 4.14 (br., 6 H, Al-H); 13C NMR (100.64 MHz, 298 K, C6D6): δ/ppm = 25.7 (NCH2) and 51.7 (CH2); 27Al NMR (104.27 MHz, 298 K, C6D6): δ/ppm = 144.9; IR (NaCl plates, nujol) ν/cm−1 = 3515 (vs, br.), 2923 (vs, nujol), 2359 (m), 1794 (vs, br., νAlH), 1456 (vs), 1342 (w), 1291 (w), 1256 (w), 1178 (m), 1102 (s), and 1036 (vs); MS (EI, 70 eV): m/z 297 (5%) (M+), 296 (44%) (M+–H), 295 (11%) (M+–2H), 268 (11%) (M+–AlH2), 266 (16%) (M+–AlH4), 264 (10%) (M+–AlH6), (11%) (M+–2H), 219 (37%), 198 (33%) (dimer), 197 (79%) (dimer–H), 196 (28%) (dimer–2H), 169 (68%) (dimer–AlH2), 167 (70%) (dimer–AlH2), 131 (22%), 99 (8%) (monomer), 98 (100%) (monomer–H), 70 (18%) (pyrrolidine), and 69 (50%) (pyrrolidine–H).
3.1. Synthesis of [HAl(NiBu2)2]2 2
- Yield 17.5 g, 58%; colourless crystals (blocks); mp. (sealed capillary) 107–108 °C; 1H NMR (400.20 MHz, 298 K, C6D6): δ/ppm = 0.96 (d, 12 H, CH3 bridged, 3JHH = 6.6 Hz), 1.04 (d, 24 H, CH3 term., 3JHH = 6.5 Hz), 1.18 (d, 12 H, CH3 bridged, 3JHH = 6.7 Hz), 2.07 (m, 4 H, CH term.), 2.25 (m, 4 H, CH bridged), 2.97 (d, 8 H, CH2 term., 3JHH = 6.0 Hz), 3.04 (dd, 4 H, CH2 bridged, 2JHH = 14.9 Hz, 3JHH = 5.6 Hz), 3.12 (dd, 4 H, CH2 bridged, 2JHH = 13.3 Hz, 3JHH = 6.7 Hz), and 4.31 (br., 2 H, Al-H); 13C NMR (100.64 MHz, 298 K, C6D6): δ/ppm = 21.7 (CH3), 22.9 (CH3), 23.1 (CH3), 27,4 (CH), 27.8 (CH, bridged), 55.7 (CH2), and 57.4 (CH2, bridged); 27Al NMR (104.27 MHz, 298 K, C6D6): δ/ppm = 131.1; IR (NaCl plates, nujol) ν/cm−1 = 3378 (vs, br.), 3175 (vs), 2951 (vs, nujol), 1833 (vs, νAlH), 1464 (vs), 1383 (vs), 1314 (m), 1298 (m), 1262 (s), 1154 (vs), 1102 (vs), 1064 (vs), 1011 (vs), 977 (s) 950 (s), 925 (m), and 862 (s); MS (EI, 70 eV): m/z 526 (13%), 442 (13%), 441 (38%) (M+–NiBu2), 399 (23%), 398 (16%), 314 (45%), 313 (49%), and 154 (100%).
3.2. X-Ray Data Collection, Solution, and Refinement
- Hydroalumination of carbonyl compounds: In a nitrogen-filled glovebox, an oven-dried Schlenk tube was charged with amidoalane 1b (0.225 mmol), carbonyl compound (0.205 mmol), and THF (1 mL). The flask was removed from the glovebox and stirred for 2 h at room temperature. After 2 h, the reaction was quenched with HCl(aq) and the layers separated, and the aqueous phase was extracted with diethyl ether (3 × 5 mL). The yield was determined by 1H NMR spectroscopy using 1,1,2,2-tetrachloroethane as the internal standard.
- Hydroalumination of olefins: In a nitrogen-filled glovebox, an oven-dried Schlenk tube was charged with amidoalane 1b (0.225 mmol), olefin (0.205 mmol), Cp2TiCl2 (2.55 mg, 0.01 mmol), and THF (1 mL). The flask was removed from the glovebox and stirred for 3 h at room temperature. After 3 h, the reaction was either quenched with HCl(aq) or O2-bubbled through the reaction and then quenched with HCl(aq). The layers were separated, and the aqueous phase was extracted with diethyl ether (3 × 5 mL). The yield was determined by 1H NMR spectroscopy using 1,1,2,2-tetrachloroethane as the internal standard.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baidossi, W.; Rosenfeld, A.; Wasswemann, B.C.; Schutte, S.; Schumann, H.; Blum, J. [(3-Dimethylamino)propyl]dimethylaluminum: A Convenient Reagent for Methylation and Ethynylation of Carbonyl Compounds. Synthesis 1996, 1127–1130. [Google Scholar] [CrossRef]
- Schumann, H.; Frick, M.; Heymer, B.; Girgsdies, F. Intramolecularly stabilized organoaluminium and organogallium compounds: Synthesis and X-ray crystal structures of some dimethylaluminium and -gallium alkoxides Me2MOROR′ and amides Me2MNHROR′. J. Organomet. Chem. 1996, 512, 117–126. [Google Scholar] [CrossRef]
- Biswas, K.; Prieto, O.; Goldsmith, P.J.; Woodward, S. Remarkably Stable (Me3Al)2·DABCO and Stereoselective Nickel-Catalyzed AlR3 (R = Me, Et) Additions to Aldehydes. Angew. Chem. Int. Ed. 2005, 44, 2232–2234. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Rawson, D.; Woodward, S. Direct Reaction of Aryl Iodides with Activated Aluminium Powder and Reactions of the Derived Aryl Sesquiiodides. Synlett 2010, 4, 0636–0638. [Google Scholar]
- Andrews, P.; Latham, C.M.; Magre, M.; Willcox, D.; Woodward, S. ZrCl2(η-C5Me5)2-AlHCl2·(THF)2: Efficient hydroalumination of terminal alkynes and cross-coupling of the derived alanes. Chem. Commun. 2012, 49, 1488–1490. [Google Scholar] [CrossRef] [PubMed]
- Finholat, A.E.; Bond, C.; Schlesinger, H.I. Lithium Aluminum Hydride, Aluminum Hydride and Lithium Gallium Hydride, and Some of their Applications in Organic and Inorganic Chemistry. J. Am. Chem. Soc. 1947, 69, 1199–1203. [Google Scholar] [CrossRef]
- Storr, A.; Thomas, B.S.; Penland, A.D. Cyclogallazanes. Part III. (N-polymethylene)cyclogallata-azonianes. J. Chem. Soc. Dalton Trans. 1972, 3, 326–330. [Google Scholar] [CrossRef]
- Tang, C.Y.; Downs, A.J.; Greene, T.M.; Parsons, S. Dimeric piperidino-alane and -gallane: Metal hydrides with a cyclic M(μ-N)2M core (M = Al or Ga). Dalton Trans. 2003, 540–543. [Google Scholar] [CrossRef]
- Klein, C.; Nöth, H.; Tacke, M.; Thomann, M. Dimeric and Trimeric Aminoalanes with Inverse Bridging Functions. Angew. Chem. Int. Ed. Engl. 1993, 32, 886–888. [Google Scholar] [CrossRef]
- Beachley, O.T.; Racette, K.C. Chelation in organoaluminum-nitrogen chemistry. Inorg. Chem. 1976, 15, 2110–2115. [Google Scholar] [CrossRef]
- Hodgson, M.C.; Khan, M.A.; Wehmschultem, R.J. Synthesis and Reactivity of Amidoaluminum Hydride Compounds as Potential Precursors to AlN. J. Cluster Sci. 2002, 13, 503–520. [Google Scholar] [CrossRef]
- Dümichen, U.; Gelbrich, T.; Sieler, J. Synthese und strukturelle Studien von Aluminiumdialkylaminen und -amiden: N-Chiralität von (CH3)3AlNHRR′ und cis-trans-Isomerie an X2AlNRR′ (X = CH3, Cl, H). Z. Anorg. Allg. Chem. 1999, 625, 262–268. [Google Scholar] [CrossRef]
- Cernia, E.; Giongo, G.M.; Marcati, F.; Marconi, W.; Palladino, N. Optically active phosphines by asymmetric reduction of racemic phosphine oxides. Inorg. Chim. Acta 1974, 11, 195–200. [Google Scholar] [CrossRef]
- Downs, A.J.; Duckworth, D.; Machell, J.C.; Pulham, C.R. The spectroscopic properties and X-ray crystal structure of a discrete molecular alane, dimethylamidoalane, [Me2NAlH2]3. Polyhedron 1992, 11, 1295–1304. [Google Scholar] [CrossRef]
- Jones, C.; Lee, F.C.; Koutsantonis, G.A.; Gardiner, M.G.; Raston, C.L. Alane– and gallane–sulfur donor chemistry: Synthesis of AlH3·NMe(CH2CH2)2S, {AlH2[µ-N(CH2CH2)2S]}2 and MH(SCH2CH2NEt2)2(M = Al or Ga). J. Chem. Soc. Dalton Trans. 1996, 829–833. [Google Scholar] [CrossRef]
Compound | Et (1a) | iPr (1b) | -(CH2)5- (1c) | iBu (1d) | Cy (1e) | -(CH2)4- (1f) | iBu (2) |
---|---|---|---|---|---|---|---|
1H NMR (δAl-H) (ppm) | 4.13 | 4.30 | 4.14 | 4.31 | 4.47 | 4.14 | 4.31 |
27Al NMR (ppm) | 150.2 | 143.5 | 150.3 | 147.0 | - | 144.9 | 131.1 |
IR (νAl-H) (cm–1) | 1826 | 1816 | 1794 | 1823 | 1834 | 1807 | 1833 |
Structural Parameter | Et (1a) | iPr (1b) | -(CH2)5- (1c) a | iBu (1d) | Cy (1e) | -(CH2)4- (1f) | iBu (2) | CSD Ave. (N = 17) b |
---|---|---|---|---|---|---|---|---|
Al—N(1)/Å | 1.946(2) | 1.9631(12) 1.9640(12) | 1.94 | 1.964(2) 1.968(2) 1.970(2) 1.971(2) | 1.961(3) 1.978(3) | 1.862(2) 1.9343(5) 1.9354(5) 1.991(2) | 1.975(3) 1.991(3) | 1.95 |
Al—N(2)/Å | - | - | - | - | - | - | 1.820(3) | 1.89 |
Al—H/Å | 1.56(4) 1.60(4) | 1.46(2) 1.46(2) | 1.75 | 1.42(3) 1.47(3) 1.78(3) 1.84(3) | 1.48(4) 1.55(3) | 1.490(8) 1.497(11) 1.520(7) 1.520(10) | 1.43(3) | 1.67 |
Al··Al/Å | 2.756(2) | 2.7499(9) | 2.76 | 2.7442(10) | 2.759(2) | 3.2442(3) 3.2452(3) 3.2452(3) | 2.8197(19) | 2.84 |
R–N(1) c/Å | 1.488(2) 1.492(3) | 1.515(2) 1.517(2) | 1.49 | 1.491(3) 1.493(3) 1.496(3) 1.498(3) | 1.508(4) 1.509(4) | 1.5203(8) 1.5298(7) | 1.497(4) 1.498(4) | 1.50 |
N(1)–Al–N(1)/o | 89.86(8) | 91.10(4) | 89.5 | 91.48(8) 91.72(8) | 91.07(10) | 108.48(3) 107.17(3) 110.84(3) | 89.39(11) | 84.9 |
Al–N(1)–Al/o | 90.14(8) | 88.90(4) | 90.5 | 88.47(8) 88.33(8) | 88.93(10) | 113.99(3) 114.64(3) | 90.61(11) | 93.5 |
N(2)–Al–H/o | - | - | - | - | - | - | 116.7(13) | 117.5 |
R–N(1)–R/o | 111.9(2) | 119.38(10) | 109.1 | 112.2(2) 112.5(2) | 120.4(2) | 105.19(4) 105.99(6) | 113.5 | 110.1 |
H–Al–H/o | 102.1(17) | 122.3(10) | 121 | 113.2(14) 118.0(14) | 122(2) | 116.7(4) 118.6(5) | - | 108.3 |
Compound | 1a | 1b | 1d | 1e | 1f | 2 |
---|---|---|---|---|---|---|
formula | C8H24Al2N2 | C12H32Al2N2 | C16H40Al2N2 | C24H48Al2N2 | C12H30Al3N3 | C32H74Al2N4 |
Fw | 202.25 | 258.36 | 314.46 | 418.60 | 297.33 | 568.91 |
crystal system | monoclinic | monoclinic | orthorhombic | triclinic | monoclinic | monoclinic |
space group | P21/c | C2/c | P212121 | Pī | P21/m | P21/n |
wavelength [Å] | 0.71073 | 0.71073 | 0.71073 | 0.71073 | 0.71073 | 0.71073 |
temperature/K | 150(2) | 150(2) | 150(2) | 150(2) | 150(2) | 150(2) |
a, Å | 7.351(1) | 14.514(3) | 9.1662(7) | 6.613(1) | 6.332(1) | 10.377(2) |
b, Å | 12.859(1) | 15.439(3) | 14.3798(10) | 12.546(1) | 15.113(1) | 8.685(1) |
c, Å | 7.219(1) | 8.661(2) | 15.8971(11) | 15.162(1) | 9.274(1) | 21.34(1) |
α, deg | 90 | 90 | 90 | 98.28(1) | 90 | 90 |
β, deg | 90.27(1) | 122.23(1) | 90 | 92.08(1) | 103.33(1) | 99.29(1) |
γ, deg | 90 | 90 | 90 | 90.12(1) | 90 | 90 |
V, Å3 | 682.3(1) | 1641.8(6) | 2095.4(3) | 1244.0(1) | 863.6(1) | 1898.1(5) |
Z | 2 | 4 | 4 | 2 | 2 | 2 |
crystal dimensions/ | 0.10 | 0.17 | 0.40 | 0.12 | 0.19 | 0.04 |
mm | 0.30 | 0.27 | 0.49 | 0.19 | 0.44 | 0.18 |
0.40 | 0.57 | 0.63 | 0.32 | 0.50 | 0.20 | |
crystal shape | block | tablet | block | tablet | tablet | plate |
ρcalc, Mg/m3 | 0.984 | 1.045 | 0.997 | 1.118 | 1.143 | 0.995 |
Θ range/° | 2.77–25.04 | 2.12–27.48 | 2.56–25.1 | 2.28–27.26 | 2.26–27.53 | 1.93–25.05 |
μabs [mm−1] | 0.177 | 0.160 | 0.023 | 0.129 | 0.209 | 0.100 |
F(000) [e] | 224 | 576 | 704 | 464 | 324 | 640 |
index ranges | −8 < h < 8 | −13 < h < 18 | −10 < h < 10 | −8 < h < 8 | −7 < h < 7 | −12 < h < 12 |
−15 < k < 15 | −19 < k < 20 | −15 < k < 17 | −16 < k < 16 | −17 < k < 17 | −10 < k < 10 | |
0 < l < 8 | −11 < l < 9 | −16 < l < 18 | −19 < l < 19 | −11 < l < 11 | −24 < l < 25 | |
no. meas. refl. | 6599 | 5118 | 10,851 | 14,659 | 9008 | 13,559 |
no. indep. reflns | 1215 | 1861 | 3707 | 5591 | 1587 | 3372 |
Rint | 0.032 | 0.022 | 0.023 | 0.081 | 0.019 | 0.062 |
no. reflns. observed | 1027 | 1578 | 3424 | 3894 | 1502 | 2700 |
parameter/restraints | 64/0 | 85/0 | 202/0 | 269/0 | 116/0 | 184/0 |
GooF (F2) | 1.06 | 1.09 | 1.05 | 1.12 | 1.08 | 1.09 |
R [I > 2σ(I)]/wR2 | 0.048/0.125 | 0.061/0.169 | 0.0466/0.128 | 0.085/0.171 | 0.030/0.085 | 0.079/0.163 |
R1 (all)/wR2 | 0.060/0.137 | 0.067/0.176 | 0.0497/0.131 | 0.118/0.184 | 0.031/0.087 | 0.101/0.172 |
ρrest (max/min) [e·nm−3] | 582/−131 | 1038/−212 | 1020/−160 | 502/−348 | 263/−142 | 414/−270 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hemsworth, J.; Vinogradov, A.; Lewis, W.; Woodward, S.; Willcox, D. The Facile Synthesis of Exogenous Lewis-Base-Free Amidoalanes: A Structural Comparison. Molecules 2025, 30, 986. https://doi.org/10.3390/molecules30050986
Hemsworth J, Vinogradov A, Lewis W, Woodward S, Willcox D. The Facile Synthesis of Exogenous Lewis-Base-Free Amidoalanes: A Structural Comparison. Molecules. 2025; 30(5):986. https://doi.org/10.3390/molecules30050986
Chicago/Turabian StyleHemsworth, Jake, Andrej Vinogradov, William Lewis, Simon Woodward, and Darren Willcox. 2025. "The Facile Synthesis of Exogenous Lewis-Base-Free Amidoalanes: A Structural Comparison" Molecules 30, no. 5: 986. https://doi.org/10.3390/molecules30050986
APA StyleHemsworth, J., Vinogradov, A., Lewis, W., Woodward, S., & Willcox, D. (2025). The Facile Synthesis of Exogenous Lewis-Base-Free Amidoalanes: A Structural Comparison. Molecules, 30(5), 986. https://doi.org/10.3390/molecules30050986