A Facile, Sustainable One-Pot Synthesis of the Spiro-Dimers of α-Tocopheramine and Its N-Methyl Derivative
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Preedy, V.R.; Watson, R.R. Encyclopedia of Vitamin E; CABI Publishing: Oxford, UK; Cambridge, UK, 2007. [Google Scholar]
- Smith, L.I.; Renfrow, W.B., Jr.; Opie, J.W. The Chemistry of Vitamin E. XXXVIII. 1,2 α-Tocopheramine, a New Vitamin E Factor. J. Am. Chem. Soc. 1942, 64, 1082–1084. [Google Scholar] [CrossRef]
- Mayer, H.; Isler, O. Tocopheramines and Tocopherthiols. In Methods in Enzymology; Colowick, S.P., Kaplan, N.O., Eds.; Academic Press: New York, NY, USA, London, 1971; Volume 18, part C; pp. 275–282, 334–342. [Google Scholar]
- Hettegger, H.; Zhang, J.; Koide, M.; Rinner, U.; Potthast, A.; Gotoh, Y.; Rosenau, T. Fiber Spinning from Cellulose Solutions in Imidazolium Ionic Liquids: Effects of Natural Antioxidants on Molecular Weight, Dope Discoloration, and Yellowing Behavior. Fibers 2022, 10, 50. [Google Scholar] [CrossRef]
- Zhang, J.; Kitayama, H.; Potthast, A.; Rosenau, T.; Gotoh, Y. Non-woven fabrics of fine regenerated cellulose fibers prepared from ionic-liquid solution via wet type solution blow spinning. Carbohydr. Polym. 2019, 226, 115258. [Google Scholar] [CrossRef]
- Rosenau, T.; Potthast, A.; Adorjan, I.; Hofinger, A.; Sixta, H.; Firgo, H.; Kosma, P. Cellulose solutions in N-methylmorpholine-N-oxide (NMMO)—Degradation processes and stabilizers. Cellulose 2002, 9, 283–291. [Google Scholar] [CrossRef]
- McMasters, V.; Lewis, J.K.; Kinsell, L.W. Effect of supplementing the diet of man with tocopherol on the tocopherol levels of adipose tissue and plasma. Amer. J. Clin. Nutr. 1965, 17, 357–359. [Google Scholar] [CrossRef]
- Schlegel, W.; Schwieter, U.; Tamm, R. Non-toxic antioxidants, based on chromane derivatives. Chem. Abstr. 1969, 69, 21909. [Google Scholar]
- Søndergaard, E.; Dam, H. The vitamin E activity of 5 different tocopheramines on muscular dystrophy in chicks. Zeitschr. Ernährungswiss 1970, 10, 71–78. [Google Scholar] [CrossRef]
- Tokuwame, M. Synergistic antioxidant-heat stabilizer sys- tems for polyolefins. Chem. Abstr. 1991, 115, 73015. [Google Scholar]
- Lambert, K.J.; Lal, M. Preparation of aminobenzopyran derivatives as surfactants. Chem. Abstr. 2002, 137, 263202. [Google Scholar]
- Bieri, J.G.; Prival, E.L. Vitamin E Activity and Metabolism of N-Methyltocopheramines. Biochemistry 1967, 6, 2153–2158. [Google Scholar] [CrossRef]
- Itoh, S.; Nagaoka, S.; Mukai, K.; Ikesu, S.; Kaneko, Y. Kinetic study of quenching reactions of singlet oxygen and scavenging reactions of free radicals by alpha-, beta-, gamma- and delta-tocopheramines in ethanol solution and micellar dispersion. Lipids 1994, 29, 799–802. [Google Scholar] [CrossRef] [PubMed]
- Tomic-Vatic, A.; Eytina, J.; Chapman, J.; Mahdavian, E.; Neuzil, J.; Salvatore, B.A. Vitamin E amides, a new class of vitamin E analogues with enhanced proapoptotic activity. Int. J. Cancer 2005, 117, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Gille, L.; Stamberg, W.; Patel, A.; Böhmdorfer, S.; Rosenau, T. Isolated bc(1) complex as a screening system for potential anti-malaria drugs. Free Rad. Biol. Med. 2012, 53, 100–101. [Google Scholar]
- Zingg, J.M. Molecular and Cellular Activities of Vitamin E Analogues. Mini Rev. Med. Chem. 2007, 7, 545–560. [Google Scholar] [CrossRef]
- Neuzil, J.; Tomasetti, M.; Zhao, Y.; Dong, L.F.; Birringer, M.; Wang, X.F.; Low, P.; Wu, K.; Salvatore, B.A.; Ralph, S.J. Vitamin E analogs, a novel group of 'mitocans,' as anti-cancer agents: The importance of being redox-silent. Mol. Pharmacol. 2007, 71, 1185–1199. [Google Scholar] [CrossRef] [PubMed]
- Tanito, M.; Yoshida, Y.; Kaidzu, S.; Chen, Z.H.; Cynshi, O.; Jishage, K.I.; Niki, E.; Ohira, A. Acceleration of age-related changes in the retina in α-tocopherol transfer protein null mice fed a vitamin E–deficient diet. Investig. Ophthalm. Visual. Sci. 2007, 48, 396–404. [Google Scholar] [CrossRef]
- Bieri, J.G.; Evarts, R.P. Tocopherols and fatty acids in American diets. The recommended allowance for vitamin E. J. Amer. Diet. Assoc. 1973, 62, 147–151. [Google Scholar] [CrossRef]
- Patel, A.; Hofinger, A.; Rosenau, T. Synthesis and analytical characterization of monomeric N-oxidized derivatives of alpha-tocopheramine. Chem. Monthly 2021, 152, 959–966. [Google Scholar] [CrossRef]
- Patel, A.; Liebner, F.; Netscher, T.; Mereiter, K.; Rosenau, T. Nitration of non-alpha tocopherols – products and mechanistic considerations. J. Org. Chem. 2007, 72, 6504–6512. [Google Scholar] [CrossRef]
- Patel, A.; Rosenau, T. Synthesis and analytical characterization of all N-N-coupled, dimeric oxidation products of α-tocopheramine: Hydrazino-, azo- and azoxy-tocopherol. Chem. Mon. 2021, 152, 1231–1239. [Google Scholar] [CrossRef]
- Schudel, P.; Mayer, H.; Metzger, J.; Rüegg, R.; Isler, O. Über die Chemie des Vitamins E. 2. Mitteilung. Die Struktur des Kaliumferricyanid-Oxydationsproduktes von α-Tocopherol. Helv. Chim. Acta 1963, 46, 636–649. [Google Scholar] [CrossRef]
- Schröder, H.; Netscher, T. Determination of the absolute stereochemistry of vitamin E derived oxa-spiro compounds by NMR spectroscopy. Magn. Reson. Chem. 2001, 39, 701–708. [Google Scholar] [CrossRef]
- Martinez, J.; Cortes, J.F.; Ruvalcaba, R.M. Green Chemistry Metrics, A Review. Processes 2022, 10, 1274. [Google Scholar] [CrossRef]
- Selka, A.; Abidli, A.; Schiavo, L.; Jeanmart, L.; Hanquet, G.; Lubell, W.D. Recent Advances in Sustainable Total Synthesis and Chiral Pool Strategies with Emphasis on (−)-Sclareol in Natural Products Synthesis. Eur. J. Org. Chem. 2024, 28, e202400983. [Google Scholar] [CrossRef]
- Rüegg, R.; Mayer, H.; Schudel, P.; Schwieter, U.; Tamm, R.; Isler, R. Über die Chemie des Vitamins E. 5. Mitteilung. Veröffentl. Deut. Ges. Ernährung 1967, 16, 22–27. [Google Scholar]
- Machlin, L.J. Vitamin E: A Comprehensive Treatise; Marcel Dekker Inc.: New York, NY, USA, 1980. [Google Scholar]
- Rosenau, T.; Böhmdorfer, S. Ortho-Quinone methides in tocopherol chemistry. In Wiley Series on Reactive Intermediates in Chemistry and Biology; Rokita, S., Ed.; Wiley: New York, NY, USA, 2009; Volume 1, pp. 163–216. [Google Scholar]
- Rosenau, T.; Ebner, G.; Stanger, A.; Perl, S.; Nuri, L. From a Theoretical Concept to Biochemical Reactions: Strain Induced Bond Localization (SIBL) in Oxidation of Vitamin E. Chem. Eur. J. 2005, 11, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Rosenau, T.; Hofinger, A.; Potthast, A.; Kosma, P. A general, selective high-yield N-demethylation procedure for tertiary amines by solid reagents in a convenient column chromatography-like setup. Org. Lett. 2004, 6, 541–544. [Google Scholar] [CrossRef]
- Stolze, K.; Udilova, N.; Rosenau, T.; Hofinger, A.; Nohl, H. Synthesis and characterization of EMPO-derived 5,5-disubstituted 1-pyrroline N-oxides as spin traps forming exceptionally stable superoxide spin adducts. Biol. Chem. 2003, 384, 457–500. [Google Scholar] [CrossRef]
- Yokota, S.; Kitaoka, T.; Opietnik, M.; Rosenau, T.; Wariishi, H. Synthesis of Gold Nanoparticles for In Situ Conjugation with Structural Carbohydrates. Angew. Chem. Int. Ed. Engl. 2008, 47, 9866–9869. [Google Scholar] [CrossRef]
- Rosenau, T.; Potthast, A.; Elder, T.; Kosma, P. Novel Tocopheryl Compounds XIII. Stabilization and first direct spectroscopic evidence of the ortho-quinone methide derived from vitamin E. Org. Lett. 2002, 4, 4285–4288. [Google Scholar] [CrossRef]
- Patel, A.; Netscher, T.; Rosenau, T. Stabilization of ortho-quinone methides by a bis(sulfonium ylide) derived from 2,5-dihydroxy-[1,4]benzoquinone. Tetrahedron Lett. 2008, 49, 2442–2445. [Google Scholar] [CrossRef]
- Rosenau, T.; Zhang, J.; Koide, M.; Rinner, U.; Hettegger, H.; Potthast, A.; Gotoh, Y. Chromophores in spinning dopes of cellulose and imidazolium ionic liquids. Cellulose 2024, 31, 4203–4215. [Google Scholar] [CrossRef]
- Lehrhofer, A.F.; Yoneda, Y.; Tran, T.H.; Melikhov, I.; Gille, L.; Hettegger, H.; Böhmdorfer, S.; Potthast, A.; Schottenberger, H.; Rosenau, T. Negative effect and removal of trace amounts of 1,3-dialkylimidazolium ionic liquids in samples from biorefineries. Cellulose 2025, 32, 147–163. [Google Scholar] [CrossRef]
- Barbini, S.; Jaxel, J.; Karlström, K.; Rosenau, T.; Potthast, A. Multistage fractionation of pine bark by liquid and supercritical CO2. Bioresour. Technol. 2021, 341, 125862. [Google Scholar] [CrossRef]
- Barbini, S.; Sriranganadane, D.; España Orozco, S.; Kabrelian, A.; Karlström, K.; Rosenau, T.; Potthast, A. Tools for bark biorefineries: Studies towards improved characterization of wood extractives by combining supercritical fluid chromatography and high-temperature GCMS. ACS Sust. Chem. Eng. 2021, 9, 1323–1332. [Google Scholar] [CrossRef]
- IUPAC-IUB Commission on Biochemical Nomenclature (CBN). Nomenclature of tocopherols and related compounds. Recommendations 1981. Eur. J. Biochem. 1982, 123, 473. [Google Scholar]
- IUPAC-IUB Commission on Biochemical Nomenclature (CBN). Nomenclature of quinones with isoprenoid side chains. Arch. Biochim. Biophys. 1974, 165, 1. [Google Scholar]
- Urano, S.; Hattori, Y.; Yamanoi, S.; Matsuo, M. 13C Nuclear Magnetic Resonance Studies on α-Tocopherol and Its Derivatives. Chem. Pharm. Bull. 1980, 28, 1992–1998. [Google Scholar] [CrossRef]
- Brownstein, S.; Burton, G.W.; Hughes, L.; Ingold, K.U. Chiral effects on the carbon-13 resonances of alpha-tocopherol and related compounds. A novel illustration of Newman’s “rule of six”. J. Org. Chem. 1989, 54, 560–569. [Google Scholar] [CrossRef]
- Mazzini, F.; Netscher, T.; Salvadori, P. Efficient Synthesis of Vitamin E Amines. Eur. J. Org. Chem. 2009, 13, 2063–2068. [Google Scholar] [CrossRef]
Conditions (Solvent, Oxidant and Auxiliaries) 1 | Main Product (Yield%) 2 | Byproduct 14 (Yield%) 2 |
---|---|---|
EMIm-OAc, 2, H2O2 (aq. 30%, 1 eq.) | 46 | 33 |
EMIm-Cl, 2, H2O2 (aq. 30%, 1 eq.) | 54 | 27 |
BMIm-OAc, 2, H2O2 (aq. 30%, 1 eq.) | 33 | 35 |
BMIm-Cl, 2, H2O2 (aq. 30%, 1 eq.) | 48 | 32 |
EMIm-OAc, 2, H2O2*urea (1 eq.) | 82 | 8 |
EMIm-Cl, 2, H2O2*urea (1 eq.) | 84 | 5 |
BMIm-OAc, 2, H2O2*urea (1 eq.) | 74 | 13 |
BMIm-Cl, 2, H2O2*urea (1 eq.) | 82 | 11 |
EMIm-OAc, 2, H2O2*urea (2 eq.) | 83 | 17 |
EMIm-Cl, 2, H2O2*urea (2 eq.) | 88 | 12 |
BMIm-OAc, 2, H2O2*urea (2 eq.) | 74 | 26 |
BMIm-Cl, 2, H2O2*urea (2 eq.) | 82 | 18 |
EMIm-Cl, 2, H2O2*urea (2 eq.), alox 3 (10 eq.) | 92 | 8 |
EMIm-Cl, 2, H2O2*urea (2 eq.), alox (30 eq.) | 98 | 2 |
EMIm-Cl, 2, H2O2*urea (2 eq.), alox (50 eq.) | quant. | 0 |
BMIm-Cl, 2, H2O2*urea (2 eq.), alox (10 eq.) | 85 | 15 |
EMIm-Cl, 3, H2O2*urea (2 eq.), alox (50 eq.) | 92 | 8 |
BMIm-Cl, 3, H2O2*urea (2 eq.), alox (50 eq.) | quant. | 0 |
Dimcarb, 2, H2O2*urea (2 eq.), alox (50 eq.) | quant. | 0 |
Dimcarb, 3, H2O2*urea (2 eq.), alox (50 eq.) | quant. | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patel, A.; Rosenau, T. A Facile, Sustainable One-Pot Synthesis of the Spiro-Dimers of α-Tocopheramine and Its N-Methyl Derivative. Molecules 2025, 30, 1269. https://doi.org/10.3390/molecules30061269
Patel A, Rosenau T. A Facile, Sustainable One-Pot Synthesis of the Spiro-Dimers of α-Tocopheramine and Its N-Methyl Derivative. Molecules. 2025; 30(6):1269. https://doi.org/10.3390/molecules30061269
Chicago/Turabian StylePatel, Anjan, and Thomas Rosenau. 2025. "A Facile, Sustainable One-Pot Synthesis of the Spiro-Dimers of α-Tocopheramine and Its N-Methyl Derivative" Molecules 30, no. 6: 1269. https://doi.org/10.3390/molecules30061269
APA StylePatel, A., & Rosenau, T. (2025). A Facile, Sustainable One-Pot Synthesis of the Spiro-Dimers of α-Tocopheramine and Its N-Methyl Derivative. Molecules, 30(6), 1269. https://doi.org/10.3390/molecules30061269