Organic and Conventional Coffee Beans, Infusions, and Grounds as a Rich Sources of Phenolic Compounds in Coffees from Different Origins
Abstract
:1. Introduction
2. Results
2.1. Antioxidant Capacity
2.2. Caffeine Content
2.3. Polyphenol Content
2.4. PCA
3. Discussion
3.1. Polyphenols in Coffee
3.2. Caffeine in Coffee
3.3. Individual Phenolics in Coffee
3.4. Antioxidant Activity
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Materials
4.2.1. Coffee Beans
4.2.2. Coffee Brewing Method
4.3. Analysis of the Antioxidant Potential Using ABTS•+
4.4. Individual Polyphenols and Caffeine Analysis
4.5. Statistical Analysis
5. Conclusions
5.1. Findings
5.2. Future Directions for Research
5.3. Practical Recommendations for Coffee Producers and Consumers
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cortés-Macías, E.T.; López, C.F.; Gentile, P.; Girón-Hernández, J.; López, A.F. Impact of post-harvest treatments on physicochemical and sensory characteristics of coffee beans in Huila. Colombia. Postharvest Biol. Technol. 2022, 187, 111852. [Google Scholar] [CrossRef]
- Peshev, D.; Mitev, D.; Peeva, L.; Peev, G. Valorization of spent coffee grounds—A new approach. Sep. Purif. Technol. 2018, 192, 271–277. [Google Scholar] [CrossRef]
- Schmidt Rivera, X.C.; Gallego-Schmid, A.; Najdanovic-Visak, V.; Azapagic, A. Life cycle environmental sustainability of valorisation routes for spent coffee grounds: From waste to resources. Resour. Conserv. Recycl. 2020, 157, 104751. [Google Scholar] [CrossRef]
- Batali, M.E.; Cotter, A.R.; Frost, S.C.; Ristenpart, W.D.; Guinard, J.-X. Titratable acidity, perceived sourness, and liking of acidity in drip brewed coffee. ACS Food Sci. Technol. 2021, 1, 559–569. [Google Scholar] [CrossRef]
- Zabaniotou, A.; Kamaterou, P. Food Waste valorization advocating circular bioeconomy. A critical review of potentialities and perspectives of spent coffee grounds biorefinery. J. Clean. Prod. 2018, 211, 1553–1566. [Google Scholar] [CrossRef]
- Lin, H.; Tello, E.; Simons, C.T.; Peterson, D.G. Identification of non-volatile compounds generated during storage that impact flavor stability of ready-to-drink coffee. Molecules 2022, 27, 2120. [Google Scholar] [CrossRef]
- Manzo, J. Machines, people, and social interaction in “third-wave” coffeehouses. J. Arts Humanit. 2014, 3, 1–12. [Google Scholar]
- Samoggia, A.; Riedel, B. Coffee consumption and purchasing behavior review: Insights for further research. Appetite 2018, 129, 70–81. [Google Scholar] [CrossRef]
- Król, K.; Gantner, M.; Tatarak, A.; Hallmann, E. The content of polyphenols in coffee beans as roasting. origin and storage effect. Eur. Food Res. Technol. 2020, 246, 33–39. [Google Scholar] [CrossRef]
- Ulrih, N.P. Effects of caffeic, ferulic, and p-coumaric acids on lipid membranes. In Coffee in Health and Disease Prevention; Academic Press: Cambridge, MA, USA, 2015; pp. 813–821. [Google Scholar]
- Lardeau, A.; Poquet, L. Phenolic acid metabolites derived from coffee consumption are unlikely to cross the blood–brain barrier. J. Pharm. Biomed. Anal. 2013, 76, 134–138. [Google Scholar] [CrossRef]
- El-Nabi, S.H.; Dawoud, G.T.M.; El-Garawani, I.; El-Shafey, S. HPLC analysis of phenolic acids, antioxidant activity and in vitro effectiveness of green and roasted Caffea arabica bean extracts: A comparative study. Curr. Med. Chem. Anticancer. Agents 2018, 18, 1281–1288. [Google Scholar] [CrossRef]
- Canwat, V.; Onakuse, S. Organic agriculture: A fountain of alternative innovations for social, economic, and environmental challenges of conventional agriculture in a developing country context. Clean. Circ. Bioecon. 2022, 3, 100025. [Google Scholar] [CrossRef]
- Meemken, E.M.; Qaim, M. Organic agriculture, food security, and the environment. Annu. Rev. Resour. Econ. 2018, 10, 39–63. [Google Scholar] [CrossRef]
- Li, W.; Chen, H.; Xu, B.; Wang, Y.; Zhang, C.; Cao, Y.; Xing, X. Research progress on classification. sources and functions of dietary polyphenols for prevention and treatment of chronic diseases. J. Future Foods 2023, 3, 289–305. [Google Scholar] [CrossRef]
- Zabelina, D.L.; Silvia, P.J. Percolating ideas: The effects of caffeine on creative thinking and problem solving. Conscious. Cogn. 2020, 79, 102899. [Google Scholar] [CrossRef] [PubMed]
- Alimyar, O.; Nahiz, A.; Monib, A.W.; Baseer, A.Q.; Hassand, M.H.; Kakar, U.M.; Sediqi, S.; Sarwari, A.; Hejran, A.B.; Rahimi, M.; et al. Coffea plant (Caffeine): Examining its impact on physical and mental health. Eur. J. Med. Res. 2024, 2, 143–154. [Google Scholar] [CrossRef]
- Annuar, N.A.; Shia, J.K.S.; Yob, N.J.; Zakaria, Y.; Hussin, S.H. Caffeine intake and its association with mental health status among pharmacy students at UiTM Puncak Alam. Mal. J. Med. Health Sci. 2023, 19, 36–44. [Google Scholar] [CrossRef]
- Machado, S.; Costa, A.S.; Pimentel, F.; Oliveira, M.B.P.; Alves, R.C. A study on the protein fraction of coffee silverskin: Protein/non-protein nitrogen and free and total amino acid profiles. Food Chem. 2020, 326, 126940. [Google Scholar] [CrossRef]
- Ramón-Gonçalves, M.; Gómez-Mejía, E.; Rosales-Conrado, N.; León-González, M.E.; Madrid, Y. Extraction, identification and quantification of polyphenols from spent coffee grounds by chromatographic methods and chemometric analyses. Waste Manag. 2019, 96, 15–24. [Google Scholar] [CrossRef]
- Baeza, G.; Sarriá, B.; Bravo, L.; Mateos, R. Exhaustive qualitative LC-DAD-MSn analysis of arabica green coffee beans: Cinnamoyl-glycosides and cinnamoyl shikimic acids as new polyphenols in green coffee. J. Agric. Food Chem. 2016, 64, 9663–9674. [Google Scholar] [CrossRef]
- Nebesny, E.; Budryn, G. Antioxidative activity of green and roasted coffee beans as influenced by convection and microwave roasting methods and content of certain compounds. Eur. Food Res. Technol. 2003, 217, 157–163. [Google Scholar] [CrossRef]
- Ozuna, C.; Mulík, S.; Valdez-Rodríguez, B.; del Rosario, M.; Juárez, A.; Fernández-López, C.L. The effect of organic farming on total phenols, total flavonoids, brown compounds and antioxidant activity of spent coffee grounds from Mexico. Biol. Agric. Hortic. 2020, 36, 107–118. [Google Scholar] [CrossRef]
- Young, J.E.; Zhao, X.; Carey, E.E.; Welti, R.; Yang, S.-S.; Wang, W. Phytochemical phenolics in organically grown vegetables. Mol. Nutr. Food Res. 2005, 49, 1136–1142. [Google Scholar] [CrossRef]
- Wang, L.; Shan, T.; Xie, B.; Ling, C.; Shao, S.; Jin, P.; Zheng, Y. Glycine betaine reduces chilling injury in peach fruit by enhancing phenolic and sugar metabolisms. Food Chem. 2019, 272, 530–538. [Google Scholar] [CrossRef]
- Xiang, P.; Zhu, Q.; Tukhvatshin, M.; Cheng, B.; Tan, M.; Liu, J.; Wang, X.; Huang, J.; Gao, S.; Lin, D.; et al. Light control of catechin accumulation is mediated by photosynthetic capacity in tea plant (Camellia sinensis). BMC Plant Biol. 2021, 21, 478–491. [Google Scholar] [CrossRef]
- Dybkowska, E.; Sadowska, A.; Rakowska, R.; Dębowska, M.; Świderski, F.; Świąder, K. Assessing polyphenols content and antioxidant activity in coffee beans according to origin and the degree of roasting. Rocz. Panstw. Zakl. Hig. 2017, 68, 347–353. [Google Scholar]
- Ali, A.; Zahid, H.F.; Cottrell, J.J.; Dunshea, F.R. A comparative study for nutritional and phytochemical profiling of Coffea arabica (C. arabica) from different origins and their antioxidant potential and molecular docking. Molecules 2022, 27, 5126. [Google Scholar] [CrossRef]
- Urbańska, B.; Kowalska, J. Comparison of the total polyphenol content and antioxidant activity of chocolate obtained from roasted and unroasted cocoa beans from different regions of the World. Antioxidants 2019, 8, 283. [Google Scholar] [CrossRef]
- Bobková, A.; Hudáček, M.; Jakabová, S.; Belej, Ľ.; Capcarová, M.; Čurlej, J.; Bobko, M.; Árvay, J.; Jakab, I.; Čapla, J.; et al. The effect of roasting on the total polyphenols and antioxidant activity of coffee. J. Environ. Sci. Health Part B 2020, 55, 495–500. [Google Scholar] [CrossRef]
- Mestanza, M.; Mori-Culqui, P.L.; Chave, S.G. Changes of polyphenols and antioxidants of arabica coffee varieties during roasting. Front. Nutr. 2023, 10, 1078701. [Google Scholar]
- Da Silva Oliveira, C.; Maciel, L.F.; Miranda, M.S.; da Silva Bispo, E. Phenolic compounds, flavonoids and antioxidant activity in different cocoa samples from organic and conventional cultivation. Br. Food J. 2011, 113, 1094–1102. [Google Scholar] [CrossRef]
- Uslu, N. The influence of decoction and infusion methods and times on antioxidant activity, caffeine content and phenolic compounds of coffee brews. Eur. Food Res. Technol. 2022, 248, 2021–2030. [Google Scholar] [CrossRef]
- Maharani, S.; Mustikawati, I.; Nailufhar, L.; Istiqomah, S. The effect of brewing time on pH values, polyphenols content, and antioxidant activities of coffee husk tea (cascara tea). J. Phys. Conf. Ser. 2021, 1869, 012050. [Google Scholar] [CrossRef]
- Vamanu, E.; Gatea, F.; Pelinescu, D.R. Bioavailability and bioactivities of polyphenols eco extracts from coffee grounds after in vitro digestion. Foods 2020, 9, 1281. [Google Scholar] [CrossRef]
- Boyadzhieva, S.; Angelov, G.; Georgieva, S.; Yankov, D. Characterization of polyphenol content and antioxidant capacity of spent coffee grounds. Bulg. Chem. Commun. 2018, 50, 85–89. [Google Scholar]
- Cervera-Mata, A.; Navarro-Alarcón, M.; Rufián-Henares, J.Á.; Pastoriza, S.; Montilla-Gómez, J.; Delgado, G. Phytotoxicity and chelating capacity of spent coffee grounds: Two contrasting faces in its use as soil organic amendment. Sci. Total Environ. 2020, 717, 137247. [Google Scholar] [CrossRef]
- Jeon, Y.-J.; Kang, Y.-G.; Eun, J.-A.; Oh, T.-K. Yield, functional properties and nutritional compositions of leafy vegetables with dehydrated food waste and spent coffee grounds. Appl. Biol. Chem. 2024, 67, 22. [Google Scholar] [CrossRef]
- Navajas-Porras, B.; Cervera-Mata, A.; Fernández-Arteaga, A.; Delgado-Osorio, A.; Navarro-Moreno, M.; Hinojosa-Nogueira, D.; Pastoriza, S.; Delgado, G.; Navarro-Alarcón, M.; Rufián-Henares, J.Á. Biochelates from spent coffee grounds increases iron levels in Dutch cucumbers but affects their antioxidant capacity. Antioxidants 2024, 13, 465. [Google Scholar] [CrossRef]
- Forcella, F. Spent coffee grounds as air-propelled abrasive grit for weed control in organic production. Weed Techn. 2017, 31, 769–772. [Google Scholar] [CrossRef]
- Sant’Anna, V.; Biondo, E.; Kolchinski, E.M.; da Silva, L.F.S.; Corrêa, A.P.F.; Bach, E.; Brandelli, A. Total polyphenols, antioxidant, antimicrobial and allelopathic activities of spend coffee ground aqueous extract. Waste Biomass Valori 2016, 8, 439–442. [Google Scholar] [CrossRef]
- Abalo, A. Coffee and caffeine consumption for human health. Nutrients 2021, 13, 2918. [Google Scholar] [CrossRef] [PubMed]
- Yang, A.; Palmer, A.A.; de Wit, H. Genetics of caffeine consumption and responses to caffeine. Psychopharmacology 2010, 211, 245–257. [Google Scholar] [CrossRef] [PubMed]
- Demianová, A.; Bobková, A.; Jurčaga, L.; Bobko, M.; Belej, L.; Árvay, J. Determination of geographical origin of green and roasted coffee based on selected chemical parameters. J. Microbiol. Biotech. Food Sci. 2021, 10, 706–710. [Google Scholar] [CrossRef]
- Bobková, A.; Demianová, A.; Poláková, K.; Capcarová, M.; Lidiková, J.; Árvay, J.; Hegedűsová, A.; Bobko, M.; Jurčaga, L.; Belej, L. Variability of caffeine content in green and roasted Coffea arabica regarding the origin, post-harvest processing, and altitude, and overview of recommended daily allowance. J. Environ. Health Part B 2022, 57, 989–998. [Google Scholar] [CrossRef]
- Deveci, G.; Çelik, E.; Cemali, Ö.; Şahin, T.Ö.; Bayazıt, A.D.; Özbay, S.; Ağagündüz, D.; Karadağ, M.G. Determination of caffeine amount of organic and conventional coffees. Rec. Agric. Food Chem. 2023, 3, 14–20. [Google Scholar]
- Palaniapan, S.P.; Anadurai, K. Organic Farming in Theory and Practice; Scientific Publishers: Jodhpur, India, 2018; pp. 23–52. [Google Scholar]
- Olechno, E.; Puścion-Jakubik, A.; Zujko, M.E.; Socha, K. Influence of various factors on caffeine content in coffee brews. Foods 2021, 10, 1208. [Google Scholar] [CrossRef]
- Rao, N.Z.; Fuller, M.; Grim, M.D. Physiochemical characteristics of hot and cold brew coffee chemistry: The effects of roast level and brewing temperature on compound extraction. Foods 2020, 9, 902. [Google Scholar] [CrossRef]
- Górecki, M.; Hallmann, E. The antioxidant content of coffee and its in vitro activity as an effect of its production method and roasting and brewing time. Antioxidants 2020, 9, 308. [Google Scholar] [CrossRef]
- Tfouni, S.A.V.; Carreiro, L.B.; Teles, C.R.A.; Furlani, R.P.Z.; Cipolli, K.M.V.A.B.; Camargo, M.C.R. Caffeine and chlorogenic acids intake from coffee brew: Influence of roasting degree and brewing procedure. Int. J. Food Sci. 2013, 49, 747–752. [Google Scholar] [CrossRef]
- Stylianou, M.; Agapiou, A.; Omirou, M.; Vyrides, I.; Ioannides, I.M.; Maratheftis, G.; Fasoula, G. Converting environmental risks to benefits by using spent coffee grounds (SCG) as a valuable resource. Environ. Sci. Pollut. Res. 2018, 25, 35776–35790. [Google Scholar] [CrossRef]
- Gurley, B.J.; Steelman, S.C.; Thomas, S.L. Multi-ingredient, caffeine-containing dietary supplements: History, safety, and efficacy. Clin. Ther. 2015, 37, 275–301. [Google Scholar] [CrossRef] [PubMed]
- Bessada, S.M.F.; Alves, R.C.; Oliveira, M.B.P.P. Caffeine-based food supplements and beverages: Trends of consumption for performance purposes and safety concerns. Food Res. Int. 2018, 109, 310–319. [Google Scholar] [CrossRef]
- Vogel, E.M.; Bronoski, M.; Marques, L.L.M.; Cardoso, F.A.R. Challenges of nanotechnology in cosmetic permeation with caffeine. Braz. J. Biol. 2022, 82, e241025. [Google Scholar] [CrossRef]
- Jeszka-Skowron, M.; Sentkowska, A.; Pyrzyńska, K.; Paz De Peña, M. Chlorogenic acids, caffeine content and antioxidant properties of green coffee extracts: Influence of green coffee bean preparation. Eur. Food Res. Technol. 2016, 242, 1403–1409. [Google Scholar] [CrossRef]
- Kulapichitr, F.; Borompichaichartkul, C.; Fang, M.; Suppavorasatit, I.; Cadwallader, K.R. Effect of post-harvest drying process on chlorogenic acids, antioxidant activities and CIE-Lab color of Thai Arabica green coffee beans. Food Chem. 2022, 366, 130504. [Google Scholar] [CrossRef] [PubMed]
- Trugo, L.C.; Macrae, R. A study of the effect of roasting on the chlorogenic acid composition of coffee using HPLC. Food Chem. 1984, 15, 219–227. [Google Scholar] [CrossRef]
- Arah, A.F.; De Paulis, T.; Trugo, L.C.; Martin, P.R. Effect of roasting on the formation of chlorogenic acid lactones in coffee. J. Agric. Food Chem. 2005, 53, 1505–1513. [Google Scholar]
- Moon, J.-K.; Yoo, H.S.; Shibamoto, T. Role of roasting conditions in the level of chlorogenic acid content in coffee beans: Correlation with coffee acidity. J. Agric. Food Chem. 2009, 57, 5365–5369. [Google Scholar] [CrossRef]
- Jeona, J.-S.; Kima, H.-T.; Jeonga, I.-H.; Honga, S.-R.; Oha, M.-S.; Parka, K.-H.; Shimb, J.-H.; Abd El-Atyc, A.M. Determination of chlorogenic acids and caffeine in homemade brewed coffee prepared under various conditions. J. Chromatogr. B 2017, 1064, 115–123. [Google Scholar] [CrossRef]
- Liang, N.; Lu, X.; Hu, Y.; Kitts, D.D. Application of Attenuated Total Reflectance–Fourier Transformed Infrared (ATR-FTIR) spectroscopy to determine the chlorogenic acid isomer profile and antioxidant capacity of coffee beans. J. Agric. Food Chem. 2016, 64, 681–689. [Google Scholar] [CrossRef]
- Muzykiewicz-Szymańska, A.; Nowak, A.; Wira, D.; Klimowicz, A. The effect of brewing process parameters on antioxidant activity and caffeine content in infusions of roasted and unroasted arabica coffee beans originated from different countries. Molecules 2021, 26, 3681. [Google Scholar] [CrossRef] [PubMed]
- Naveed, M.; Hejazi, V.; Abbas, M.; Kamboh, A.A.; Khan, G.J.; Shumzaid, M.; Ahmadg, F.; Babazadeh, D.; FangFang, X.; Modarresi-Ghazani, F.; et al. Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomed. Pharmacother. 2018, 97, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Alkaltham, M.S.; Özcan, M.M.; Uslu, N.; Salamatullah, A.M.; Hayat, K. Effect of microwave and oven roasting methods on total phenol, antioxidant activity, phenolic compounds, and fatty acid compositions of coffee beans. J. Food Process Preserv. 2020, 44, e14874. [Google Scholar] [CrossRef]
- Dawidowicz, A.L.; Typek, R. Transformation of chlorogenic acids during the coffee beans roasting process. Eur. Food Res. Technol. 2017, 243, 379–390. [Google Scholar] [CrossRef]
- An, B.H.; Jeong, H.; Kim, J.-H.; Park, S.; Jeong, J.-H.; Kim, M.J.; Chang, M. Estrogen receptor-mediated transcriptional activities of spent coffee grounds and spent coffee grounds compost, and their phenolic acid constituents. J. Agric. Food Chem. 2019, 67, 8649–8659. [Google Scholar] [CrossRef]
- Li, S.; Pi, J.; Zhu, H.; Yang, L.; Zhang, X.; Ding, W. Caffeic acid in tobacco root exudate defends tobacco plants from infection by Ralstonia solanacearum. Front. Plant Sci. 2021, 12, 690586. [Google Scholar] [CrossRef]
- Pintać, D.; Bekvalac, K.; Mimica-Dukić, N.; Rašeta, M.; Anđelić, N.; Lesjak, M.; Orčić, D. Comparison study between popular brands of coffee, tea and red wine regarding polyphenols content and antioxidant activity. Food Chem. Adv. 2022, 1, 100030. [Google Scholar] [CrossRef]
- Ramanan, M.; Sinha, S.; Sudarshan, K.; Aidhen, I.S.; Doble, M. Inhibition of the enzymes in the leukotriene and prostaglandin pathways in inflammation by 3-aryl isocoumarins. Eur. J. Med. Chem. 2016, 124, 428–434. [Google Scholar] [CrossRef]
- Sudarshan, K.; Kumar, B.A.; Dogra, S.; Bose, I.; Yadav, P.N.; Aidhen, I.S. Discovery of an isocoumarin analogue that modulates neuronal functions via neurotrophin receptor TrkB. Bioorg. Med. Chem. Lett. 2018, 29, 585–590. [Google Scholar] [CrossRef]
- Kim, T.-H.; Lee, S.; Seo, J.W.; Bing, S.H.; Kim, J.I.; Kwon, E.-R.; Jo, G.-H.; Lee, J.-M.; Choi, J.S. Comparison of anti-oxidative activity in a single serving size of the commercial coffees and teas. J. Food Hyg. Saf. 2017, 32, 460–469. [Google Scholar] [CrossRef]
- Ranilla, L.G.; Genovese, M.I.; Lajolo, F.M. Effect of different cooking conditions on phenolic compounds and antioxidant capacity of some selected Brazilian bean (Phaselous vulgaris L.) cultivars. J. Agr. Food Chem. 2009, 57, 5734–5742. [Google Scholar] [CrossRef] [PubMed]
- Kovalcik, A.; Obruca, S.; Marova, I. Valorization of spent coffee grounds: A review. Food Bioprod. Process 2018, 110, 104–119. [Google Scholar] [CrossRef]
- Karmee, S.K. A spent coffee grounds based biorefinery for the production of biofuels, biopolymers, antioxidants and biocomposites. Waste Manag. 2018, 72, 240–254. [Google Scholar] [CrossRef]
- Campos-Vega, R.; Loarca-Piña, G.; Vergara-Castañeda, H.A.; Oomah, B.D. Spent coffee grounds: A review on current research and future prospects. Trends Food Sci. Technol. 2015, 45, 24–36. [Google Scholar] [CrossRef]
- Chung, H.-S.; Kim, D.-H.; Youn, K.-S.; Lee, J.-B.; Moon, K.-D. Optimization of roasting conditions according to antioxidant activity and sensory quality of coffee brews. Food Sci. Biotechnol. 2013, 22, 23–29. [Google Scholar] [CrossRef]
- Liang, N.; Xue, W.; Kennepohl, P.; Kitt, D.D. Interactions between major chlorogenic acid isomers and chemical changes in coffee brew that affect antioxidant activities. Food Chem. 2016, 213, 251–259. [Google Scholar] [CrossRef]
- Balzano, M.; Loizzo, M.R.; Tundis, R.; Lucci, P.; Nunez, O.; Fiorini, D.; Giardinieri, A.; Fregaa, N.G.; Pacetti, D. Spent espresso coffee grounds as a source of anti-proliferative and antioxidant compounds. Innov. Food Sci. Emerg. Technol. 2020, 59, 102254. [Google Scholar] [CrossRef]
Compound Name | Coffee Production System | Origin | p-Value Production System | p-Value Origin | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Organic Coffee | Conventional Coffee | Ethiopia | Sumatra | Peru | ||||||||
sum of polyphenols | 367.29 ± 61.80 a | 404.02 ± 103.99 a | 439.37 ± 25.42 a | 332.32 ± 72.29 a | 385.28 ± 108.99 a | NS | NS | |||||
gallic acid | 173.57 ± 28.10 a | 154.70 ± 31.16 a | 190.80 ± 6.63 a | 153.68 ± 40.29 b | 147.92 ± 13.04 b | NS | 0.0131 | |||||
caffeine | 368.70 ± 103.56 a | 357.75 ± 82.90 | 420.15 ± 112.41 a | 354.25 ± 74.28 a | 315.28 ± 58.02 a | NS | NS | |||||
chlorogenic acid | 108.09 ± 43.23 b | 161.81 ± 73.69 a | 172.40 ± 14.81 a | 85.87 ± 20.03 b | 146. 57 ± 94.45 ab | 0.0382 | 0.0263 | |||||
catechin | 11.09 ± 0.58 b | 14.14 ± 3.75 a | 14.50 ± 14.15 a | 10.35 ± 1.27 b | 12.99 ± 1.39 ab | 0.0082 | 0.0132 | |||||
caffeic acid | 22.72 ± 1.78 a | 24.45 ± 3.06 a | 25.35 ± 3.02 a | 21.18 ± 1.34 b | 24.22 ± 0.85 a | NS | 0.0034 | |||||
epigallocatechin | 44.75 ± 18.32 a | 42.48 ± 5.58 a | 30.62 ± 6.53 c | 50.63 ± 11.76 a | 43.59 ± 2.18 b | NS | 0.0003 | |||||
quercetin | 7.09 ± 2.33 a | 6.44 ± 2.69 b | 5.69 ± 0.14 a | 4.61 ± 0.93 c | 9.99 ± 0.49 a | 0.02 | <0.0001 | |||||
Interactions | ||||||||||||
sum of polyphenols | gallic acid | caffeine | chlorogenic acid | catechin | caffeic acid | epigallocatechin | quercetin | |||||
Ethiopia org | 417.85 ± 4.29 c | 193.69 ± 3.61 a | 491.43 ± 6.04 a | 159.75 ± 5.47 c | 10.72 ± 0.21 c | 22.72 ± 0.30 bcd | 25.28 ± 3.17 d | 5.66 ± 0.12 b | ||||
Ethiopia conv | 460.88 ± 14.45 b | 187.89 ± 8.45 a | 348.86 ± 127.70 a | 185.04 ± 6.20 b | 18.28 ± 0.28 a | 27.98 ± 1.37 a | 35.95 ± 3.35 c | 5.71 ± 0.16 b | ||||
Sumatra org | 398.11 ± 7.46 c | 190.07 ± 9.01 a | 348.62 ± 59.00 a | 104.03 ± 2.09 d | 10.75 ± 0.28 c | 20.71 ± 0.71 e | 67.09 ± 1.70 a | 5.44 ± 0.19 b | ||||
Sumatra conv | 266.53 ± 4.97 d | 117.28 ± 1.72 d | 359.88 ± 101.08 a | 67.71 ± 3.03 e | 9.94 ± 1.86 c | 21.64 ± 1.82 de | 46.17 ± 3.80 b | 3.77 ± 0.21 c | ||||
Peru org | 285.91 ± 2.88 d | 136.93 ± 5.77 c | 266.05 ± 19.42 a | 60.47 ± 3.35 e | 11.79 ± 0.32 c | 24.71 ± 0.37 b | 41.85 ± 0.45 bc | 10.14 ± 0.70 a | ||||
Peru conv | 484.64 ± 8.17 a | 158.91 ± 5.44 b | 364.50 ± 27.72 a | 232.66 ± 7.21 a | 14.18 ± 0.63 b | 23.72 ± 0.97 bc | 45.31 ± 1.64 b | 9.83 ± 0.17 a | ||||
p-value | <0.0001 | <0.0001 | 0.0533 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Coffee Brew | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Compound Name | Coffee Origin | Geographical Area | p-Value Origin | p-Value | |||||||||||
Organic Coffee | Conventional Coffee | Ethiopia | Sumatra | Peru | |||||||||||
sum of polyphenols | 236.32 ± 26.45 a | 196.48 ± 10.99 b | 226.85 ± 46.16 a | 213.10 ± 18.97 a | 209.26 a ± 6.69 | 0.0008 | NS | ||||||||
gallic acid | 110.50 ± 13.09 a | 104.23 ± 12.64 a | 105.55 ± 18.23 a | 100.53 ± 6.62 a | 116.17 ± 6.10 a | NS | NS | ||||||||
caffeine | 99.86 ± 55.27 b | 147.87 ± 80.10 a | 90.94 ± 21.80 b | 67.69 ± 14.29 c | 212.95 ± 44.00 a | <0.0001 | <0.0001 | ||||||||
chlorogenic acid | 73.72 ± 35.21 a | 45.98 ± 11.09 b | 81.35 ± 42.29 a | 46.25 ± 12.39 b | 51.95 ± 8.94 ab | 0.0172 | 0.0312 | ||||||||
catechin | 7.53 ± 2.15 a | 9.93 ± 4.20 a | 10.10 ± 5.50 a | 8.29 ± 0.96 a | 7.80 ± 2.49 a | NS | NS | ||||||||
caffeic acid | 5.15 ± 1.54 b | 6.31 ± 0.53 a | 6.80 ± 0.45 a | 5.46 ± 1.53 b | 4.93 ± 0.82 b | 0.0121 | 0.0056 | ||||||||
epigallocatechin | 36.63 ± 22.31 a | 27.93 ± 8.72 a | 21.18 ± 8.85 b | 50.67 ± 14.78 a | 24.99 ± 8.47 b | NS | 0.0005 | ||||||||
quercetin | 2.69 ± 1.21 a | 2.12 ± 0.36 b | 1.88 ± 0.09 b | 1.89 ± 0.12 b | 3.44 ± 0.95 a | 0.0213 | 0.0001 | ||||||||
Interactions | |||||||||||||||
sum of polyphenols | gallic acid | caffeine | chlorogenic acid | catechin | caffeic acid | epigallocatechin | quercetin | ||||||||
Ethiopia org | 268.92 ± 3.99 a | 121.68 ± 6.90 a | 71.18 ± 3.64 d | 119.87 ± 3.59 a | 5.09 ± 0.16 d | 7.19 ± 0.05 a | 13.11 ± 0.81 f | 1.96 ± 0.02 cd | |||||||
Ethiopia conv | 184.77 ± 1.12 d | 89.41 ± 1.48 d | 110.70 ± 1.73 c | 42.81 ± 1.78 cd | 15.10 ± 0.63 a | 6.40 ± 0.14 b | 29.23 ± 0.31 d | 1.80 ± 0.00 d | |||||||
Sumatra org | 229.75 ± 7.96 b | 95.06 ± 4.39 cd | 55.46 ± 1.81 e | 57.24 ± 4.49 b | 7.43 ± 0.26 c | 4.07 ± 0.21 d | 64.11 ± 1.76 a | 1.81 ± 0.04 cd | |||||||
Sumatra conv | 196.43 ± 1.87 cd | 105.99 ± 0.75 bc | 79.92 ± 7.64 d | 35.26 ± 0.95 d | 9.14 ± 0.25 b | 6.84 ± 0.24 ab | 37.22 ± 0.57 b | 1.97 ± 0.12 c | |||||||
Peru org | 210.29 ± 6.54 c | 115.06 ± 6.47 ab | 172.93 ± 1.60 b | 44.03 ± 0.55 c | 10.04 ± 0.22 b | 4.19 ± 0.18 d | 32.66 ± 0.44 c | 4.30 ± 0.02 a | |||||||
Peru conv | 208.23 ± 8.11 c | 117.27 ± 6.89 ab | 252.97 ± 5.73 a | 59.84 ± 3.41 b | 5.54 ± 0.55 d | 5.67 ± 0.10 c | 17.31 ± 1.51 e | 2.57 ± 0.03 b | |||||||
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Coffee Grounds | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Compound Name | Coffee Origin | Geographical Area | p-Value Origin | p-Value | ||||||||
Organic Coffee | Conventional Coffee | Ethiopia | Sumatra | Peru | ||||||||
sum of polyphenols | 7.63 ± 2.72 a | 6.65 ± 2.36 a | 8.14 ± 0.36 a | 6.94 ± 3.73 a | 6.35 ± 2.46 a | NS | NS | |||||
gallic acid | 2.00 ± 0.61 a | 2.11 ± 0.99 a | 2.73 ± 0.08 a | 1.21 ± 0.46 b | 2.22 ± 0.73 a | NS | 0.0005 | |||||
caffeine | 1.51 ± 0.18 a | 1.48 ± 0.23 a | 1.73 ± 0.06 a | 1.32 ± 0.10 b | 1.43 ± 0.11 b | NS | <0.0001 | |||||
chlorogenic acid | 3.15 ± 1.99 a | 2.43 ± 1.29 a | 2.92 ± 0.10 a | 3.15 ± 2.61 a | 2.30 ± 1.46 a | NS | NS | |||||
catechin | 0.94 ± 0.28 a | 0.73 ± 0.03 b | 0.87 ± 0.16 ab | 0.96 ± 0.28 a | 0.66 ± 0.08 | 0.0127 | 0.0154 | |||||
caffeic acid | 0.77 ± 0.24 a | 0.62 ± 0.07 b | 0.78 ± 0.09 a | 0.78 ± 0.24 a | 0.52 ± 0.06 b | 0.0201 | 0.0043 | |||||
epigallocatechin | 0.46 ± 0.17 a | 0.46 ± 0.08 a | 0.50 ± 0.07 ab | 0.52 ± 0.14 a | 0.34 ± 0.08 b | NS | 0.0266 | |||||
quercetin | 0.32 ± 0.01 a | 0.31 ± 0.03 a | 0.33 ± 0.01 a | 0.31 ± 0.01 b | 0.29 ± 0.01 c | NS | 0.0002 | |||||
Interactions | ||||||||||||
sum of polyphenols | gallic acid | caffeine | chlorogenic acid | catechin | caffeic acid | epigallocatechin | quercetin | |||||
Ethiopia org | 8.34 ± 0.25 b | 2.74 ± 0.08 a | 1.70 ± 0.04 ab | 2.94 ± 0.08 c | 1.01 ± 0.4 b | 0.86 ± 0.03 b | 0.45 ± 0.03 c | 0.33 ± 0.01 a | ||||
Ethiopia conv | 7.93 ± 0.36 b | 2.72 ± 0.10 a | 1.77 ± 0.07 a | 2.90 ± 0.14 c | 0.73 ± 0.03 c | 0.70 ± 0.04 c | 0.55 ± 0.04 b | 0.33 ± 0.01 a | ||||
Sumatra org | 10.34 ± 0.26 a | 1.63 ± 0.04 b | 1.31 ± 0.11 c | 5.54 ± 0.15 a | 1.21 ± 0.04 a | 0.99 ± 0.02 a | 0.65 ± 0.02 a | 0.32 ± 0.01 ab | ||||
Sumatra conv | 3.54 ± 0.27 c | 0.79 ± 0.06 c | 1.32 ± 0.11 c | 0.77 ± 0.08 d | 0.71 ± 0.05 c | 0.56 ± 0.05 d | 0.39 ± 0.03 c | 0.31 ± 0.01 ab | ||||
Peru org | 4.21 ± 0.45 c | 1.62 ± 0.47 b | 1.51 ± 0.06 bc | 0.97 ± 0.03 d | 0.59 ± 0.01 d | 0.47 ± 0.02 e | 0.27 ± 0.01 d | 0.30 ± 0.00 ab | ||||
Peru conv | 8.48 ± 0.24 b | 2.83 ± 0.09 a | 1.35 ± 0.09 c | 3.63 ± 0.12 b | 0.74 ± 0.02 c | 0.58 ± 0.02 d | 0.42 ± 0.02 c | 0.28 ± 0.01 b | ||||
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.0015 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ponder, A.; Krakówko, K.; Kruk, M.; Kuliński, S.; Magoń, R.; Ziółkowski, D.; Jariene, E.; Hallmann, E. Organic and Conventional Coffee Beans, Infusions, and Grounds as a Rich Sources of Phenolic Compounds in Coffees from Different Origins. Molecules 2025, 30, 1290. https://doi.org/10.3390/molecules30061290
Ponder A, Krakówko K, Kruk M, Kuliński S, Magoń R, Ziółkowski D, Jariene E, Hallmann E. Organic and Conventional Coffee Beans, Infusions, and Grounds as a Rich Sources of Phenolic Compounds in Coffees from Different Origins. Molecules. 2025; 30(6):1290. https://doi.org/10.3390/molecules30061290
Chicago/Turabian StylePonder, Alicja, Karol Krakówko, Marcin Kruk, Sebastian Kuliński, Rafał Magoń, Daniel Ziółkowski, Elvyra Jariene, and Ewelina Hallmann. 2025. "Organic and Conventional Coffee Beans, Infusions, and Grounds as a Rich Sources of Phenolic Compounds in Coffees from Different Origins" Molecules 30, no. 6: 1290. https://doi.org/10.3390/molecules30061290
APA StylePonder, A., Krakówko, K., Kruk, M., Kuliński, S., Magoń, R., Ziółkowski, D., Jariene, E., & Hallmann, E. (2025). Organic and Conventional Coffee Beans, Infusions, and Grounds as a Rich Sources of Phenolic Compounds in Coffees from Different Origins. Molecules, 30(6), 1290. https://doi.org/10.3390/molecules30061290