New Insights into Nuclear Magnetic Resonance (NMR) Spectroscopy
Author Contributions
Funding
Conflicts of Interest
References
- Nazarski, R.B. On the use of deuterated organic solvents without TMS to report 1H/13C NMR spectral data of organic compounds: Current State of the method, its pitfalls and benefits, and related issues. Molecules 2023, 28, 4369. [Google Scholar] [CrossRef] [PubMed]
- Bigler, P.; Gjuroski, I.; Chakif, D.; Furrer, J.A. A Versatile broadband attached proton test experiment for routine 13C Nuclear Magnetic Resonance Spectroscopy. Molecules 2024, 29, 809. [Google Scholar] [CrossRef] [PubMed]
- Pérez Varela, I.; Shear, G.; Cobas, C. Molecular melodies: Unraveling the hidden harmonies of NMR spectroscopy. Molecules 2024, 29, 762. [Google Scholar] [CrossRef] [PubMed]
- Duprat, F.; Ploix, J.-L.; Dreyfus, G. Can graph machines accurately estimate 13C NMR chemical shifts of benzenic compounds? Molecules 2024, 29, 3137. [Google Scholar] [CrossRef]
- Hansen, P.E. The synergy between Nuclear Magnetic Resonance and density functional theory calculations. Molecules 2024, 29, 336. [Google Scholar] [CrossRef]
- Venianakis, T.; Siskos, M.G.; Papamokos, G.; Gerothanassis, I.P. Structural studies of monounsaturated and ω-3 polyunsaturated free fatty acids in solution with the combined use οf NMR and DFT calculations—Comparison with the liquid state. Molecules 2023, 28, 6144. [Google Scholar] [CrossRef]
- Maľučká, L.U.; Vilková, M. Spectral assignment in the [3 + 2] cycloadditions of methyl (2E)-3-(Acridin-4-yl)-prop-2-enoate and 4-[(E)-2-Phenylethenyl]acridin with unstable nitrile n-oxides. Molecules 2024, 29, 2756. [Google Scholar] [CrossRef]
- Alexandri, E.; Venianakis, T.; Primikyri, A.; Papamokos, G.; Gerothanassis, I.P. Molecular basis for the selectivity of DHA and EPA in Sudlow’s drug binding sites in human serum albumin with the combined use of NMR and docking calculations. Molecules 2023, 28, 3724. [Google Scholar] [CrossRef]
- Rotondo, A.; Bartolomeo, G.; Spanò, I.M.; La Torre, G.L.; Pellicane, G.; Molinu, M.G.; Culeddu, N. Comparison between traditional and novel NMR methods for the analysis of sicilian monovarietal extra virgin olive oils: Metabolic profile is influenced by micro-pedoclimatic zones. Molecules 2024, 29, 4532. [Google Scholar] [CrossRef]
- Chang, Y.; Chen, J.; Zhu, H.; Huang, R.; Wu, J.; Lin, Y.; Li, Q.; Shen, G.; Feng, J. Metabolic characteristics and discriminative diagnosis of growth hormone deficiency and idiopathic short stature in preadolescents and adolescents. Molecules 2024, 29, 1661. [Google Scholar] [CrossRef]
- Kastani, I.A.; Soltani, P.K.; Baltogiannis, G.G.; Christou, G.A.; Bairaktari, E.T.; Kostara, C.E. Nuclear Magnetic Resonance (NMR)-based lipidomics reveal the association of Altered Red Blood Cell (RBC) membrane lipidome with the presence and the severity of coronary artery stenosis. Molecules 2025, 30, 36. [Google Scholar] [CrossRef] [PubMed]
- Harris, R.K.; Becker, E.D.; de Menezes, S.M.C.; Granger, P.; Hoffman, R.E.; Zilm, K.W. Further conventions for NMR shielding and chemical shifts (IUPAC Recommendations 2008). Pure Appl. Chem. 2008, 80, 59–84. [Google Scholar] [CrossRef]
- Hoffman, R.E. Standardization of chemical shifts of TMS and solvent signals in NMR solvents. Magn. Reson. Chem. 2006, 44, 606–616. [Google Scholar] [CrossRef] [PubMed]
- Granger, P.; Bourdonneau, M.; Assémat, O.; Piotto, M. NMR chemical shift measurements revisited: High precision measurements. Concepts Magn. Reson. A 2007, 30, 184–193. [Google Scholar] [CrossRef]
- Chalmers, B.A.; Chen, A.P.-J.; Savage, G.P.; Williams, C.M. Cubane: A new NMR internal standard. Aust. J. Chem. 2010, 63, 1108–1110. [Google Scholar] [CrossRef]
- Guzman, A.L.; Hoye, T.R. TMS is superior to residual CHCl3 for use as the internal reference for routine 1H NMR spectra recorded in CDCl3. J. Org. Chem. 2022, 87, 905–909. [Google Scholar] [CrossRef]
- Nazarski, R.B. Ambient temperature 1H/13C NMR spectra of sodium 3-(trimethylsilyl)propane-1-sulfonate (DSS) in D2O referenced to external TMS: A discussion of these and closely related results. Corrections for the bulk magnetic susceptibility effect for aqueous NMR samples. Magn. Reson. Chem. 2024, 62, 535–543. [Google Scholar] [CrossRef]
- Breitmaier, E.; Voelter, W. 13C NMR Spectroscopy—Methods and Applications, 3rd ed.; VCH Verlagsgesellschaft mbH: Weinheim, Germany, 1987; p. 109. [Google Scholar]
- Zerbe, O.; Jurt, S. Applied NMR Spectroscopy for Chemists and Life Scientists; Wiley-VCH Verlag GmbH: Weinheim, Germany; KGaA Co.: San Jose, CA, USA, 2014. [Google Scholar]
- Reynolds, W.F.; Burns, D.C. Chapter 1—Getting the Most Out of HSQC and HMBC Spectra. In Annual Reports on NMR Spectroscopy; Webb, G.A., Ed.; Academic Press: Cambridge, MA, USA, 2012; Volume 76, pp. 1–21. [Google Scholar] [CrossRef]
- Ernst, R.R.; Bodenhausen, G.; Wokaun, A. Principles of Nuclear Magnetic Resonance in One and Two Dimensions; Clarendon Press: Oxford, UK, 1987; ISBN 0-19-855629-2. [Google Scholar]
- Meiler, J. PROSHIFT: Protein chemical shift prediction using artificial neural networks. J. Biomol. NMR 2003, 26, 25–37. [Google Scholar] [CrossRef]
- Kuhn, S.; Kolshorn, H.; Steinbeck, C.; Schlörer, N. Twenty years of nmrshiftdb2: A case study of an open database for analytical chemistry. Magn. Reson. Chem. 2023, 62, 74–83. [Google Scholar] [CrossRef]
- Marcarino, M.O.; Zanardi, M.M.; Cicetti, S.; Sarotti, A.M. NMR calculations with quantum methods: Development of new tools for structure elucidation and beyond. Acc. Chem. Res. 2020, 53, 1922–1932. [Google Scholar] [CrossRef]
- Howarth, A.; Ermanis, K.; Goodman, J.M. DP4-AI automated NMR data analysis: Straight from spectrometer to structure. Chem. Sci. 2020, 11, 4351–4359. [Google Scholar] [CrossRef] [PubMed]
- Hansen, P.E.; Saeed, B.A.; Rutu, R.S.; Kupka, T. One-bond 1J(15N,H) coupling constants at sp2-hybridized nitrogen of Schiff bases, enaminones and similar compounds: A theoretical study. Magn. Reson. Chem. 2020, 58, 750–762. [Google Scholar] [CrossRef] [PubMed]
- Amichetti, M.; Franco, B.A.; Zanardi, M.M.; Sarotti, A.M. To Gibbs or not to Gibbs effect on entropic contribution in the NMR calculations of flexible and polar molecules-Updating the DP4+App. Magn. Reson. Chem. 2024, 63, 74–85. [Google Scholar] [CrossRef] [PubMed]
- Charisiadis, P.; Venianakis, T.; Papaemmanouil, C.D.; Primikyri, A.; Tzakos, A.G.; Siskos, M.G.; Gerothanassis, I.P. On the use of strong proton donors as a tool for overcoming line broadening in NMR: A comment. Magn. Reson. Chem. 2025, 63, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Breugst, M.; Reissig, H.U. The Huisgen reaction: Milestones of the 1,3-dipolar cycloaddition. Angew. Chem. Int. Ed. 2020, 59, 12293–12307. [Google Scholar] [CrossRef]
- Claasen, B.; Axmann, M.; Meinecke, R.; Meyer, B. Direct observation of ligand binding to membrane proteins in living cells by a saturation transfer double difference (STDD) NMR spectroscopy method shows a significantly higher affinity of integrin alpha(IIb)beta3 in native platelets than in liposomes. J. Am. Chem. Soc. 2005, 127, 916–919. [Google Scholar] [CrossRef]
- Monaco, S.; Ramírez-Cárdenas, J.; Carmona, A.T.; Robina, I.; Angulo, J. Inter-ligand STD NMR: An efficient 1D NMR approach to probe relative orientation of ligands in a multi-subsite protein binding pocket. Pharmaceuticals 2022, 15, 1030. [Google Scholar] [CrossRef]
- Sanchez-Pedregal, V.M.; Reese, M.; Meiler, J.; Bloomers, M.J.J.; Griesinger, C.; Carlomagno, T. The INPHARMA method: Protein-mediated interligand NOEs for pharmacophore mapping. Angew. Chem. Int. Ed. 2005, 44, 4172–4175. [Google Scholar] [CrossRef]
- Carlomagno, T. NMR in natural products: Understanding conformation, configuration and receptor interactions. Nat. Prod. Rep. 2012, 29, 536–554. [Google Scholar] [CrossRef]
- Alexandri, Ε.; Primikyri, A.; Papamokos, G.; Venianakis, T.; Gkalpinos, V.G.; Tzakos, A.G.; Karydis-Messinis, A.; Moschovas, D.; Avgeropoulos, A.; Gerothanassis, I.P. NMR and computational studies reveal novel aspects in molecular recognition of unsaturated fatty acids with non-labeled serum albumin. FEBS J. 2022, 289, 5617–5636. [Google Scholar] [CrossRef]
- Primikyri, A.; Sayyad, N.; Quilici, G.; Vrettos, E.I.; Lim, K.; Chi, S.-W.; Musco, G.; Gerothanassis, I.P.; Tzakos, A.G. Probing the interaction of a quercetin bioconjugate with Bcl-2 in living human cancer cells with in-cell NMR spectroscopy. FEFS Lett. 2018, 592, 3367–3379. [Google Scholar]
- Bhattacharya, A.A.; Grűne, T.; Curry, S. Crystallographic analysis reveals common modes of binding of medium and long-chain fatty acids to human serum albumin. J. Mol. Biol. 2000, 303, 721–732. [Google Scholar] [CrossRef] [PubMed]
- Petitpas, I.; Grűne, T.; Bhattacharya, A.A.; Curry, S. Crystal structures of human serum albumin complexed with monounsaturated and polyunsaturated fatty acids. J. Mol. Biol. 2001, 314, 955–960. [Google Scholar] [CrossRef]
- Simard, J.R.; Zunszain, P.A.; Ha, C.E.; Yang, J.S.; Bhagavan, H.V.; Petitpas, I.; Curry, S.; Hamilton, J.A. Locating high-affinity fatty acid-binding sites of albumin by X-ray crystallography and NMR spectroscopy. Proc. Natl. Acad. Sci. USA 2005, 102, 17958–17963. [Google Scholar] [CrossRef]
- Mannina, L.; Marini, F.; Gobbino, M.; Sobolev, A.P.; Capitani, D. NMR and chemometrics in tracing European olive oils: The case study of ligurian samples. Talanta 2010, 80, 2141–2148. [Google Scholar] [CrossRef]
- Maestrello, V.; Solovyev, P.; Bontempo, L.; Mannina, L.; Camin, F. Nuclear magnetic resonance spectroscopy in extra virgin oil authentication. Compr. Rev. Food Sci. Food Saf. 2022, 21, 4056–4075. [Google Scholar] [CrossRef]
- Tang, F.; Polari, J.J.; Green, H.S.; Wang, S.C.; Hatzakis, E. NMR-based metabolomics for olive oil cultivar classification: A comparison with standard targeted analysis of fatty acids and triglycerides. Food Control 2022, 137, 108939. [Google Scholar] [CrossRef]
- Wishart, D.S.; Guo, A.; Oler, E.; Wang, F.; Anjum, A.; Peters, H.; Dizon, R.; Sayeeda, Z.; Tian, S.; Lee, B.L.; et al. HMDB 5.0: The human metabolome database for 2022. Nucleic Acids Res. 2022, 50, D622–D631. [Google Scholar] [CrossRef]
- Abdel Rahman, A.M. (Ed.) Clinical Metabolomic Applications in Genetic Diseases; Springer Nature Singapore Pte Ltd.: Singapore, 2023. [Google Scholar]
- Rogol, A.D.; Hayden, G.F. Etiologies and early diagnosis of short stature and growth failure in children and adolescents. J. Pediatr. 2014, 164, S1–S14.e6. [Google Scholar] [CrossRef]
- Vaduganathan, M.; Mensah, G.A.; Turco, J.V.; Fuster, V.; Roth, G.A. The Global burden of cardiovascular diseases and risk: A compass for future health. J. Am. Coll. Cardiol. 2022, 80, 2361–2371. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerothanassis, I.P.; Kupka, T. New Insights into Nuclear Magnetic Resonance (NMR) Spectroscopy. Molecules 2025, 30, 1500. https://doi.org/10.3390/molecules30071500
Gerothanassis IP, Kupka T. New Insights into Nuclear Magnetic Resonance (NMR) Spectroscopy. Molecules. 2025; 30(7):1500. https://doi.org/10.3390/molecules30071500
Chicago/Turabian StyleGerothanassis, Ioannis P., and Teobald Kupka. 2025. "New Insights into Nuclear Magnetic Resonance (NMR) Spectroscopy" Molecules 30, no. 7: 1500. https://doi.org/10.3390/molecules30071500
APA StyleGerothanassis, I. P., & Kupka, T. (2025). New Insights into Nuclear Magnetic Resonance (NMR) Spectroscopy. Molecules, 30(7), 1500. https://doi.org/10.3390/molecules30071500