The Photophysical Properties of the Protonation States of SYPRO® Orange in Aqueous Solution
Abstract
:1. Introduction
2. Results and Discussion
2.1. pH Titrations
Transition | ||
---|---|---|
state I/II | 1.7 | 1.5 |
state II/III | 4.9 | 4.3 |
2.2. Aggregation Behavior of States I, II, and III Was Observed
2.3. Properties of the Molecular Aggregates Formed in States II and III
3. Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Steinberg, T.H.; Jones, L.J.; Haugland, R.P.; Singer, V.L. SYPRO orange and SYPRO red protein gel stains: One-step fluorescent staining of denaturing gels for detection of nanogram levels of protein. Anal. Biochem. 1996, 239, 223–237. [Google Scholar]
- Steinberg, T.H.; Haugland, R.P.; Singer, V.L. Applications of SYPRO orange and SYPRO red protein gel stains. Anal. Biochem. 1996, 239, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, T.H. Protein gel staining methods: An introduction and overview. Methods Enzym. 2009, 463, 541–563. [Google Scholar]
- Layton, C.J.; Hellinga, H.W. Thermodynamic analysis of ligand-induced changes in protein thermal unfolding applied to high-throughput determination of ligand affinities with extrinsic fluorescent dyes. Biochemistry 2010, 49, 10831–10841. [Google Scholar] [PubMed]
- Mora, A.K.; Nath, S. Understanding the amyloid sensing mechanism of SYPRO Orange. Dye. Pigment. 2021, 194, 109585. [Google Scholar]
- Mora, A.K.; Nath, S. SYPRO Orange—A new gold standard amyloid probe. J. Mater. Chem. B 2020, 8, 7894–7898. [Google Scholar]
- Lo, M.C.; Aulabaugh, A.; Jin, G.; Cowling, R.; Bard, J.; Malamas, M.; Ellestad, G. Evaluation of fluorescence-based thermal shift assays for hit identification in drug discovery. Anal. Biochem. 2004, 332, 153–159. [Google Scholar]
- Niesen, F.H.; Berglund, H.; Vedadi, M. The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat. Protoc. 2007, 2, 2212–2221. [Google Scholar]
- Holdgate, G.A.; Anderson, M.; Edfeldt, F.; Geschwindner, S. Affinity-based, biophysical methods to detect and analyze ligand binding to recombinant proteins: Matching high information content with high throughput. J. Struct. Biol. 2010, 172, 142–157. [Google Scholar]
- Senisterra, G.; Chau, I.; Vedadi, M. Thermal denaturation assays in chemical biology. Assay. Drug Dev. Technol. 2012, 10, 128–136. [Google Scholar]
- Pantoliano, M.W.; Petrella, E.C.; Kwasnoski, J.D.; Lobanov, V.S.; Myslik, J.; Graf, E.; Carver, T.; Asel, E.; Springer, B.A.; Lane, P.; et al. High-density miniaturized thermal shift assays as a general strategy for drug discovery. J. Biomol. Screen. 2001, 6, 429–440. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Monsma, F. Fluorescence-based thermal shift assays. Curr. Opin. Drug Discov. Devel 2010, 13, 389–402. [Google Scholar] [PubMed]
- Gao, K.; Oerlemans, R.; Groves, M.R. Theory and applications of differential scanning fluorimetry in early-stage drug discovery. Biophys. Rev. 2020, 12, 85–104. [Google Scholar] [PubMed]
- Kroeger, T.; Frieg, B.; Zhang, T.; Hansen, F.K.; Marmann, A.; Proksch, P.; Nagel-Steger, L.; Groth, G.; Smits, S.H.J.; Gohlke, H. EDTA aggregates induce SYPRO orange-based fluorescence in thermal shift assay. PLoS ONE 2017, 12, e0177024. [Google Scholar]
- Bai, H.; Lester, G.M.S.; Petishnok, L.C.; Dean, D.A. Cytoplasmic transport and nuclear import of plasmid DNA. Biosci. Rep. 2017, 37, BSR20160616. [Google Scholar]
- Bhayani, J.A.; Ballicora, M.A. Determination of dissociation constants of protein ligands by thermal shift assay. Biochem. Biophys. Res. Commun. 2022, 590, 1–6. [Google Scholar] [CrossRef]
- Klymchenko, A.S. Solvatochromic and Fluorogenic Dyes as Environment-Sensitive Probes: Design and Biological Applications. Acc. Chem. Res. 2017, 50, 366–375. [Google Scholar]
- Kaur, A.; New, E.J.; Sunde, M. Strategies for the Molecular Imaging of Amyloid and the Value of a Multimodal Approach. ACS Sens. 2020, 5, 2268–2282. [Google Scholar]
- Sarkar, A.; Namboodiri, V.; Kumbhakar, M. Fluorescence correlation spectroscopy measurements on amyloid fibril reveal at least two binding modes for fluorescent sensors. Chem. Phys. Impact 2023, 7, 100369. [Google Scholar] [CrossRef]
- Dong, H.; Du, H.; Wickramasinghe, S.R.; Qian, X. The effects of chemical substitution and polymerization on the pKa values of sulfonic acids. J. Phys. Chem. B 2009, 113, 14094–14101. [Google Scholar] [CrossRef]
- Zalmi, G.A.; Jadhav, R.W.; Mirgane, H.A.; Bhosale, S.V. Recent Advances in Aggregation-Induced Emission Active Materials for Sensing of Biologically Important Molecules and Drug Delivery System. Molecules 2021, 27, 150. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Li, W.; Zhou, T.; Peng, Q.; Zhai, D.; Li, H.; Yuan, W.Z.; Zhang, Y.; Tang, B.Z. Conjugation-Induced Rigidity in Twisting Molecules: Filling the Gap Between Aggregation-Caused Quenching and Aggregation-Induced Emission. Adv. Mater. 2015, 27, 4496–4501. [Google Scholar] [CrossRef]
- Huang, Y.; Xing, J.; Gong, Q.; Chen, L.C.; Liu, G.; Yao, C.; Wang, Z.; Zhang, H.L.; Chen, Z.; Zhang, Q. Reducing aggregation caused quenching effect through co-assembly of PAH chromophores and molecular barriers. Nat. Commun. 2019, 10, 169. [Google Scholar] [CrossRef] [PubMed]
- Prince, R.B.; Saven, J.G.; Wolynes, P.G.; Moore, J.S. Cooperative conformational transitions in phenylene ethynylene oligomers: Chain-length dependence. J. Am. Chem. Soc. 1999, 121, 3114–3121. [Google Scholar] [CrossRef]
- Ye, S.; Hsiung, C.H.; Tang, Y.; Zhang, X. Visualizing the Multistep Process of Protein Aggregation in Live Cells. Acc. Chem. Res. 2022, 55, 381–390. [Google Scholar] [CrossRef]
- Daus, K.; Tharamak, S.; Pluempanupat, W.; Galie, P.A.; Theodoraki, M.A.; Theodorakis, E.A.; Alpaugh, M.L. Fluorescent molecular rotors as versatile in situ sensors for protein quantitation. Sci. Rep. 2023, 13, 20529. [Google Scholar] [CrossRef]
- Paez-Perez, M.; Kuimova, M.K. Molecular Rotors: Fluorescent Sensors for Microviscosity and Conformation of Biomolecules. Angew. Chem. Int. Ed. Engl. 2024, 63, e202311233. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, J.; Siggel, U.; Fuhrhop, J.H.; Röder, B. Excitonic coupling between B and Q transitions in a porphyrin aggregate. J. Phys. Chem. B 2003, 107, 6019–6021. [Google Scholar] [CrossRef]
- Yao, H.; Yamamoto, S.; Kitamura, N.; Kimura, K. Mesoscopic structures of J aggregates of organic dyes at a solid/liquid interface and in solution: Spectroscopic and microscopic studies. In Studies in Surface Science and Catalysis; Iwasawa, Y., Oyama, N., Kunieda, H., Eds.; Elsevier: Amsterdam, The Netherlands, 2001; Volume 132, pp. 173–176. [Google Scholar]
- Mora, A.K.; Hundani, P.Z.; Nath, S. Contrasting complexation behaviour of zwitterionic amyloid probe, SYPRO orange with β-cyclodextrin and captisol. J. Photochem. Photobiol. A-Chem. 2023, 441, 114712. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baxter, C.E.; Khan, A.N.; Starcevic, C.M.; Shkolnik, N.; Zimmermann, J. The Photophysical Properties of the Protonation States of SYPRO® Orange in Aqueous Solution. Molecules 2025, 30, 1691. https://doi.org/10.3390/molecules30081691
Baxter CE, Khan AN, Starcevic CM, Shkolnik N, Zimmermann J. The Photophysical Properties of the Protonation States of SYPRO® Orange in Aqueous Solution. Molecules. 2025; 30(8):1691. https://doi.org/10.3390/molecules30081691
Chicago/Turabian StyleBaxter, Claire E., Ali N. Khan, Christina M. Starcevic, Natalie Shkolnik, and Jörg Zimmermann. 2025. "The Photophysical Properties of the Protonation States of SYPRO® Orange in Aqueous Solution" Molecules 30, no. 8: 1691. https://doi.org/10.3390/molecules30081691
APA StyleBaxter, C. E., Khan, A. N., Starcevic, C. M., Shkolnik, N., & Zimmermann, J. (2025). The Photophysical Properties of the Protonation States of SYPRO® Orange in Aqueous Solution. Molecules, 30(8), 1691. https://doi.org/10.3390/molecules30081691