Next Issue
Volume 30, May-1
Previous Issue
Volume 30, April-1
 
 
molecules-logo

Journal Browser

Journal Browser

Molecules, Volume 30, Issue 8 (April-2 2025) – 213 articles

Cover Story (view full-size image): This study reports the application of three copper(II) coordination polymers, based on a Schiff base ligand, as catalysts for the degradation of dyes from both simple and binary solutions. The impact of photocatalyst type, hydrogen peroxide presence, reaction time, dye concentration, and catalyst dose on photodegradation yield was studied. Under visible light irradiation, the CP1 complex demonstrated the highest photodegradation efficiency—92.40% and 80.50% for Acid Orange 7 and Methyl Orange, respectively. CP1 also achieved a degradation efficiency of more than 75% after five cycles and higher than 72% for the degradation of dyes from the binary system, demonstrating its photocatalytic capacity. A photocatalytic mechanism was proposed, and the stability of the CP1 complex after the photodegradation process was investigated and confirmed. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
25 pages, 1685 KiB  
Review
Harnessing the Power of Alchemilla: A Natural Solution for Skin Health and Dermatological Disorders
by Sebastian Kanak, Barbara Krzemińska, Anna Berecka-Rycerz, Monika Kopeć and Katarzyna Dos Santos Szewczyk
Molecules 2025, 30(8), 1861; https://doi.org/10.3390/molecules30081861 - 21 Apr 2025
Abstract
Skin diseases are prevalent and encompass a wide range of disorders with varying clinical manifestations and diverse etiopathogenesis. The response to the necessity of multidirectional treatment is provided by species belonging to the genus Alchemilla, which is used in traditional medicine as [...] Read more.
Skin diseases are prevalent and encompass a wide range of disorders with varying clinical manifestations and diverse etiopathogenesis. The response to the necessity of multidirectional treatment is provided by species belonging to the genus Alchemilla, which is used in traditional medicine as well as in cosmetic formulations. Responsible for the healing properties of these plants for skin diseases are mainly compounds such as tannins, phenolic acids, flavonoids, and anthocyanins. The aim of the study was to analyze and synthesize the published literature on the Alchemilla species in skincare with a timeframe of December 2024. The literature indicates that due to antioxidant, anti-inflammatory, astringent, antimicrobial, elastase activity and tyrosinase inhibitory properties of various Alchemilla species, extracts obtained from these plants can be successfully applied in skin rashes, acne, stretch marks, eczema, psoriasis, wrinkles and other dermatological issues. To the best of our knowledge, this is the first review of the cosmetic activities of Alchemilla species. Full article
(This article belongs to the Special Issue Natural Products with Pharmaceutical Activities)
Show Figures

Figure 1

21 pages, 3164 KiB  
Article
Influence of the Type of Macrocycle on the Stabilisation of the High Oxidation State of the Manganese Ion and Electrode Processes
by Danuta Tomczyk, Sławomira Skrzypek and Piotr Seliger
Molecules 2025, 30(8), 1860; https://doi.org/10.3390/molecules30081860 - 21 Apr 2025
Abstract
Dinuclear di-µ-oxo complexes of Mn3+ and Mn4+ ions, and mononuclear complexes of Mn3+ ions with tetraazamacrocycles ([12]aneN4, [14]aneN4, [15]aneN4) and C-substituted derivative (Me6[14]aneN4) as well as mononuclear [...] Read more.
Dinuclear di-µ-oxo complexes of Mn3+ and Mn4+ ions, and mononuclear complexes of Mn3+ ions with tetraazamacrocycles ([12]aneN4, [14]aneN4, [15]aneN4) and C-substituted derivative (Me6[14]aneN4) as well as mononuclear complexes of Mn2+ ions with N-substituted derivatives ((N-Me)2[14]aneN4, (N-Me)4[14]aneN4, (N-Me)Me2py [14]aneN4) and with oxo2[14]aneN4 were studied. Based on spectroscopic (UV VIS and IR) and conductometric studies, the types of synthesised complexes (cis or trans isomers of mononuclear Mn3+ complexes, oxygen bridges and class II according to Robin and Day classification for dinuclear complexes) were determined. On the basis of voltammetric and spectroelectrochemical studies, trans-cis isomerisation at the level of Mn2+ ion complexes and cis-trans isomerisation at the level of Mn3+ ion complexes were demonstrated for complexes of ligands with free C positions. The N-substituted derivatives oxidise according to the EC mechanism, in which the follow-up reaction is a disproportionation reaction. The thermodynamic stabilisation of Mn3+ ions was determined by comparing the formal potentials (Ef0), the disproportionation constants (k1) and the formation constants (βIII). The study showed the possibility of oxidation of mononuclear, pseudo-octahedral Mn3+ ion complexes to dinuclear complexes and the greatest stabilisation of Mn3+ ions, both in monomers and dimers of ligands with free N positions. Full article
(This article belongs to the Special Issue The Influence of Organic Compounds on Electrode Processes)
Show Figures

Figure 1

17 pages, 9147 KiB  
Article
Media Composition Effects on Hairy Root Biomass and Tetrandrine Production in Stephania tetrandra
by Chia-Hung Kuo, Hsuan-Chieh Liu, Parushi Nargotra, Hsiao-Sung Chan, Hsin-Der Shih and Yung-Chuan Liu
Molecules 2025, 30(8), 1859; https://doi.org/10.3390/molecules30081859 - 21 Apr 2025
Abstract
Stephania tetrandra S. MOORE, a medicinal plant, is recognized for tetrandrine production, which is extensively accepted for its therapeutic benefits. However, the slow growth of S. tetrandra limits tetrandrine’s availability, which can be addressed by in vitro hairy root cultivation using Rhizobium rhizogenes [...] Read more.
Stephania tetrandra S. MOORE, a medicinal plant, is recognized for tetrandrine production, which is extensively accepted for its therapeutic benefits. However, the slow growth of S. tetrandra limits tetrandrine’s availability, which can be addressed by in vitro hairy root cultivation using Rhizobium rhizogenes and optimization of medium components. The present study attempted the three-step optimization of three components of woody plant medium (ammonium nitrate, calcium nitrate, and sucrose), including two-level factorial design, path of steepest ascent (PSA), and central composite design (CCD) to obtain high hairy root biomass and tetrandrine production. The CCD-based optimization for enhanced hairy root biomass resulted in a hairy root biomass of 9.75 g dw/L at optimal concentrations of ammonium nitrate (NH4NO3), calcium nitrate (Ca(NO3)2), and sucrose of 631.96 mg/L, 651 mg/L, and 41.35 g/L, respectively. The optimal concentration of 550.31 mg/L, 862.88 mg/L, and 25.89 g/L for NH4NO3, Ca(NO3)2, and sucrose, respectively, obtained after CCD analysis for enhanced tetrandrine production led to the maximum tetrandrine of 70.48 mg/L. Medium optimization resulted in a 1.47-fold increase in hairy root biomass and a 1.37-fold increase in tetrandrine production under individually optimized conditions. The present study findings confirmed the important role of process optimization for enhanced product yield. Full article
(This article belongs to the Special Issue Molecules in 2025)
Show Figures

Figure 1

11 pages, 1398 KiB  
Article
On the Total Synthesis of 7,8(S,S)-Epoxy-17(S)-hydroxy-4(Z),9(E),11(E),13(Z),15(E),19(Z)-docosahexaenoic Acid Derivative
by Robert Nshimiyimana, Charles N. Serhan and Nicos A. Petasis
Molecules 2025, 30(8), 1858; https://doi.org/10.3390/molecules30081858 - 21 Apr 2025
Abstract
The stereoselective total synthesis of an allylic epoxide-containing polyunsaturated fatty acid, in its triethylsilyl (TES) ether and methyl ester form, is described. Key features include a Sharpless enantioselective epoxidation to install the oxirane unit and Wittig coupling reactions to forge critical alkenyl configuration [...] Read more.
The stereoselective total synthesis of an allylic epoxide-containing polyunsaturated fatty acid, in its triethylsilyl (TES) ether and methyl ester form, is described. Key features include a Sharpless enantioselective epoxidation to install the oxirane unit and Wittig coupling reactions to forge critical alkenyl configuration and secure the core carbon skeleton. The deprotected epoxy acid was recently demonstrated to play a central role as the precursor to biologically active resolvins D1, D2, and the cysteinyl conjugate in tissue regeneration (RCTR1) by human leukocytes. These natural products belong to a family of cell signaling molecules termed specialized pro-resolving mediators (SPMs). Full article
Show Figures

Graphical abstract

17 pages, 10726 KiB  
Article
Superhydrophilic Silica Coatings via a Sequential Dipping Process
by Junbao Xie, Anqi Liang, Qin Lin, Nantian Chen, Abbas Ahmed, Xiaoyan Li, Rongkun Jian, Luyi Sun and Fuchuan Ding
Molecules 2025, 30(8), 1857; https://doi.org/10.3390/molecules30081857 - 21 Apr 2025
Abstract
A superhydrophilic silica coating was prepared using a sequential dipping process involving acid-catalyzed silica, base-catalyzed silica, and 3-(trihydroxysilyl)propanesulfonic acid. Acid-catalyzed and base-catalyzed silica particles with varying diameters were synthesized by hydrolyzing tetraethyl orthosilicate using HCl and NH3·H2O as catalysts, [...] Read more.
A superhydrophilic silica coating was prepared using a sequential dipping process involving acid-catalyzed silica, base-catalyzed silica, and 3-(trihydroxysilyl)propanesulfonic acid. Acid-catalyzed and base-catalyzed silica particles with varying diameters were synthesized by hydrolyzing tetraethyl orthosilicate using HCl and NH3·H2O as catalysts, respectively. 3-(Trihydroxysilyl)propanesulfonic acid was obtained by oxidizing mercaptopropyl trimethoxysilane with hydrogen peroxide under acidic conditions. The resulting silica coating exhibited exceptional superhydrophilicity, with a water static contact angle of 5.0°, and demonstrated underwater superoleophobicity, with a hexadecane underwater contact angle exceeding 140°. Surfaces coated with the superhydrophilic silica coatings showed excellent performances in oil–water separation, anti-protein adsorption, and anti-fogging applications. Full article
Show Figures

Graphical abstract

34 pages, 13159 KiB  
Review
A Review of Phytochemical and Pharmacological Studies on Galium verum L., Rubiaceae
by Margarita Koleva Petkova, Neli Hristova Grozeva, Milena Tankova Tzanova and Mima Hristova Todorova
Molecules 2025, 30(8), 1856; https://doi.org/10.3390/molecules30081856 - 21 Apr 2025
Abstract
Galium verum (Yellow Bedstraw) is a rhizomatous perennial herb belonging to the Rubiaceae family. It is native to Eurasia and Africa but has also been introduced to southern Canada and the northern U.S. Widely used in traditional medicine, G. verum has been recognized [...] Read more.
Galium verum (Yellow Bedstraw) is a rhizomatous perennial herb belonging to the Rubiaceae family. It is native to Eurasia and Africa but has also been introduced to southern Canada and the northern U.S. Widely used in traditional medicine, G. verum has been recognized for its diuretic, anti-inflammatory, antimicrobial, analgesic, and anticancer properties. Phytochemical studies have shown that the plant is rich in significant bioactive compounds, such as flavonoids, phenolic acids, iridoids, anthraquinones, phytosterols, coumarins, and tannins. Research suggests that G. verum exhibits strong antioxidant activity, protecting cells from oxidative stress and inflammation. Its antimicrobial potential has been demonstrated against various bacterial and fungal pathogens, supporting its traditional use in wound healing and infection treatment. Moreover, modern studies indicate its cytotoxic effects on cancer cells, suggesting potential applications in oncology. Additionally, its hepatoprotective and neuroprotective properties highlight its promise for treating metabolic and neurodegenerative disorders. Despite its well-known therapeutic potential, further studies are required to fully clarify its mechanisms of action and ensure its safety for medicinal use. Given the variety of bioactive compounds found in G. verum and their pharmacological benefits, this review emphasizes the importance of this species as a valuable medicinal plant, encouraging further scientific research for its application in pharmacology. Full article
(This article belongs to the Special Issue Bioactive Compounds from Functional Foods, 2nd Edition)
Show Figures

Figure 1

15 pages, 867 KiB  
Article
Deep Eutectic Solvents (DESs) as Alternative Sustainable Media for the Extraction and Characterization of Bioactive Compounds from Winemaking Industry Wastes
by Vincenzo Roselli, Rosalba Leuci, Gianluca Pugliese, Alexia Barbarossa, Antonio Laghezza, Marco Paparella, Alessia Carocci, Vincenzo Tufarelli, Lucia Gambacorta and Luca Piemontese
Molecules 2025, 30(8), 1855; https://doi.org/10.3390/molecules30081855 - 21 Apr 2025
Abstract
The increasing pollution and wastage of food and byproducts from agro-industrial production is an increasingly worrying issue. Grape is one of the most diffused fruit crops cultivated, and grape pomace is the main solid byproduct obtained in the winemaking process; interestingly, it is [...] Read more.
The increasing pollution and wastage of food and byproducts from agro-industrial production is an increasingly worrying issue. Grape is one of the most diffused fruit crops cultivated, and grape pomace is the main solid byproduct obtained in the winemaking process; interestingly, it is rich in health-beneficial bioactive molecules. In order to recover these molecules, in this work, a green method has been developed, considering two grape pomaces from different cultivars, namely, Petit Verdot and Cabernet Sauvignon. The extraction procedure, as the first step of this process, was carried out with seven selected deep eutectic solvents (DESs). Then, analysis using HPLC-DAD allowed the detection and quantification of eight out of fifteen different phenolic compounds under examination in the extracts produced, including three quercetin glucosides. The evaluation of antioxidant activity, through the DPPH photometric assay, led to the selection of choline chloride/urea 1:2 + 40% water DES extracts as the extracts with the most promising results. Moreover, significant antibacterial activity was also achieved, in particular, for the betaine/lactic acid 1:4 + 40% water DES extract. Further studies will employ this method for numerous cultivars of grape pomaces with the ambitious aim of the production of polyphenol-enriched food and feed supplements. Full article
(This article belongs to the Special Issue Extraction and Analysis of Natural Products in Food—2nd Edition)
Show Figures

Figure 1

33 pages, 6958 KiB  
Article
Development of Fucoxanthin-Enriched Yogurt Using Nanoliposomal Carriers: A Strategy for Functional Dairy Products with Antioxidant and Erythroprotective Benefits
by Miguel Ángel Robles-García, Carmen Lizette Del-Toro-Sánchez, Germán Limón-Vargas, Melesio Gutiérrez-Lomelí, María Guadalupe Avila-Novoa, Fridha Viridiana Villalpando-Vargas, Brenda Vega-Ruiz, Ariadna Thalía Bernal-Mercado, Rey David Iturralde-García, Abril Ivett Priscilla Gómez-Guzman, Ernesto Ramírez-Briones, Reyna Guadalupe López-Berrellez and Ricardo Iván González-Vega
Molecules 2025, 30(8), 1854; https://doi.org/10.3390/molecules30081854 - 21 Apr 2025
Abstract
In pursuing functional foods that promote health, nanoliposomal carriers have been used to enhance the stability and functionality of dairy products such as yogurt, promising therapeutic benefits. This study aimed to evaluate the impact of fucoxanthin-loaded nanoliposomes in yogurt on its antioxidant, physicochemical, [...] Read more.
In pursuing functional foods that promote health, nanoliposomal carriers have been used to enhance the stability and functionality of dairy products such as yogurt, promising therapeutic benefits. This study aimed to evaluate the impact of fucoxanthin-loaded nanoliposomes in yogurt on its antioxidant, physicochemical, and rheological properties under cold storage (21 days). Fucoxanthin-loaded nanoliposomes were prepared using the ultrasonic film dispersion technique and added at concentrations of 0%, 5%, and 10% in the yogurt (Y-C, Y-FXN-5, Y-FXN-10). Homogeneous and uniform nanoliposomes (98.28 nm) were obtained, preserving their integrity and functionality and ensuring the prolonged release and bioavailability of fucoxanthin. Y-FXN-10 maintained the highest antioxidant activity according to the DPPH (52.96%), ABTS (97.97%), and FRAP (3.16 mmol ET/g) methods. This formulation exhibited enhanced erythroprotective potential, inhibiting hemolysis, photohemolysis, and heat-induced hemolysis. However, viscosity and firmness decreased, affecting the texture and appearance. Sensory properties such as the color, flavor, aftertaste, texture, and overall acceptance improved with the 10% fucoxanthin-enriched yogurt formulation. These results suggest that nanoliposomes are suitable for carrying fucoxanthin. Their incorporation into food matrices is critical to developing functional foods. Regulatory approvals and consumer perceptions regarding nanotechnology-based products must be addressed, emphasizing their safety and health benefits. Full article
Show Figures

Graphical abstract

17 pages, 4980 KiB  
Article
Synthesis, Evaluation of Biological Activity, and Structure–Activity Relationships of New Amidrazone Derivatives Containing Cyclohex-1-ene-1-Carboxylic Acid
by Renata Paprocka, Jolanta Kutkowska, Ewelina Paczkowska, Godwin Munroe Mwaura, Andrzej Eljaszewicz and Anna Helmin-Basa
Molecules 2025, 30(8), 1853; https://doi.org/10.3390/molecules30081853 - 21 Apr 2025
Abstract
In recent years, the incidence of acute and chronic inflammatory diseases has increased significantly worldwide, intensifying the search for new therapeutic agents, especially anti-inflammatory drugs. Therefore, the aim of this work was to synthesize, biologically assess, and explore the structure–activity relationships of new [...] Read more.
In recent years, the incidence of acute and chronic inflammatory diseases has increased significantly worldwide, intensifying the search for new therapeutic agents, especially anti-inflammatory drugs. Therefore, the aim of this work was to synthesize, biologically assess, and explore the structure–activity relationships of new compounds containing the cyclohex-1-ene-1-carboxylic acid moiety. Six new derivatives, 2a2f, were synthesized through the reaction of amidrazones 1a1f with 3,4,5,6-tetrahydrophthalic anhydride. Their toxicity was evaluated in cultures of human peripheral blood mononuclear cells (PBMCs). Additionally, their antiproliferative properties and effects on the synthesis of TNF-α, IL-6, IL-10, and IL-1β were assessed in mitogen-stimulated PBMCs. The antimicrobial activity of derivatives 2a2f was determined by measuring the minimal inhibitory concentration (MIC) values against five bacterial strains—Staphylococcus aureus, Mycobacterium smegmatis, Escherichia coli, Yersinia enterocolitica, and Klebsiella pneumoniae—and the fungal strain Candida albicans. All compounds demonstrated antiproliferative activity, with derivatives 2a, 2d, and 2f at a concentration of 100 µg/mL being more effective than ibuprofen. Compound 2f strongly inhibited the secretion of TNF-α by approximately 66–81% at all studied doses (10, 50, and 100 µg/mL). Derivative 2b significantly reduced the release of cytokines, including TNF-α, IL-6, and IL-10, at a high dose (by approximately 92–99%). Compound 2c exhibited bacteriostatic activity against S. aureus and M. smegmatis, while derivative 2b selectively inhibited the growth of Y. enterocolitica (MIC = 64 µg/mL). Some structure–activity relationships were established for the studied compounds. Full article
(This article belongs to the Special Issue Design, Synthesis, and Analysis of Potential Drugs, 3rd Edition)
Show Figures

Graphical abstract

34 pages, 7374 KiB  
Review
The Application of 2D Graphitic Carbon Nitride (g-C3N4) and Hexagonal Boron Nitride (h-BN) in Low-Temperature Fuel Cells: Catalyst Supports, ORR Catalysts, and Membrane Fillers
by Ermete Antolini
Molecules 2025, 30(8), 1852; https://doi.org/10.3390/molecules30081852 - 20 Apr 2025
Abstract
In recent years, two-dimensional (2D) graphitic carbon nitride (g-C3N4) and hexagonal boron nitride (h-BN) have gained remarkable attention due to their resemblance to graphene. These materials have a wide range of applications in energy and other sustainable fields, including [...] Read more.
In recent years, two-dimensional (2D) graphitic carbon nitride (g-C3N4) and hexagonal boron nitride (h-BN) have gained remarkable attention due to their resemblance to graphene. These materials have a wide range of applications in energy and other sustainable fields, including heterogeneous catalysis and photocatalysis. g-C3N4 and h-BN can play different roles in low-temperature fuel cells. They can be used as catalyst supports, catalysts for oxygen reduction, and membrane fillers. In this work, the application of pure and doped g-C3N4 and h-BN, alone or as composite materials, in low-temperature fuel cells is overviewed. Full article
(This article belongs to the Special Issue Research on Heterogeneous Catalysis—2nd Edition)
Show Figures

Figure 1

21 pages, 8553 KiB  
Article
Synthesis and Antifungal Activity of 1,2,4-Oxadiazole Derivatives
by Lili Yu, Kuan Yang, Lin Yao, Nana Wang, Hui Kang, Guangda Yao, Xiaomeng Li and Bei Qin
Molecules 2025, 30(8), 1851; https://doi.org/10.3390/molecules30081851 - 20 Apr 2025
Abstract
1,2,4-Oxadiazole derivatives containing anisic acid or cinnamic acid were designed and synthesized, which were expected to be an effective Succinate dehydrogenase (SDH) inhibitor, and their structures were characterized by 1H NMR, 13C NMR, and ESI-MS. The antifungal activity of the compounds [...] Read more.
1,2,4-Oxadiazole derivatives containing anisic acid or cinnamic acid were designed and synthesized, which were expected to be an effective Succinate dehydrogenase (SDH) inhibitor, and their structures were characterized by 1H NMR, 13C NMR, and ESI-MS. The antifungal activity of the compounds against plant pathogenic fungi was screened by the mycelial growth inhibition test in vitro. Compounds 4f and 4q showed significant antifungal activities against Rhizoctonia solani (R. solani), Fusarium graminearum (F. graminearum), Exserohilum turcicum (E. turcicum), Botrytis cinerea (B. cinerea), and Colletotrichum capsica (C. capsica). The EC50 values of 4q were 38.88 μg/mL, 149.26 μg/mL, 228.99 μg/mL, and 41.67 μg/mL against R. solani, F. graminearum, E. turcicum, and C. capsica, respectively, and the EC50 values of 4f were 12.68 μg/mL, 29.97 μg/mL, 29.14 μg/mL, and 8.81 μg/mL, respectively. Compound 4f was better than commercial carbendazim against Exserohilum turcicum. Compounds 4f and 4q showed an antifungal effect on C. capsica of capsicum in vivo. Molecular docking simulation showed that 4f and 4q interacted with the target protein through the hydrogen bond and hydrophobic interaction, in which 4q can form hydrogen bonds with TRP173 and ILE27 of SDH, and 4f had hydrogen bonds with TYR58, TRP173, and SER39. This also explains the possible mechanism of action between the inhibitor and target protein. Full article
Show Figures

Figure 1

40 pages, 4058 KiB  
Review
Bioactive Polysaccharides from Hericium erinaceus: Extraction, Structure, Bioactivities, and Applications
by Fangzhi Ge, Yan Chen, Binshuo Wang, Wenxin Zhou, Baoxiang Du and Lin Hou
Molecules 2025, 30(8), 1850; https://doi.org/10.3390/molecules30081850 - 20 Apr 2025
Abstract
Hericium erinaceus, an edible fungus belonging to the family Odontaceae, is predominantly found in Western Europe, North America, and East Asia. In China, it primarily thrives in the mountainous and forested regions in the northeast, north, and southwest. Historically, Hericium erinaceus has [...] Read more.
Hericium erinaceus, an edible fungus belonging to the family Odontaceae, is predominantly found in Western Europe, North America, and East Asia. In China, it primarily thrives in the mountainous and forested regions in the northeast, north, and southwest. Historically, Hericium erinaceus has served as a medicinal and nutritional entity. Its mycelia and fruiting bodies are the products of its vegetative growth stage and reproductive growth stage, respectively. The principal active components are different Hericium erinaceus polysaccharides (HEPs), which are a group of polysaccharides primarily composed of galactose, glucose, and a small amount of mannose and fucose. An extremely small number of HEPs contain fructose, glucuronic acid, xylose, arabinose, and other components. The common extraction method employed is water extraction followed by alcohol precipitation. HEPs exhibit a diverse array of biological activities, including immune enhancement, anti-tumor effects, anti-inflammatory properties, antioxidant capabilities, and antiviral functions. This paper provides a comprehensive review of recent advancements in the extraction, separation, purification, structural analysis, biological activity, and toxicity assessments of HEPs. Additionally, it discusses the opportunities and challenges associated with scientific research and practical applications in this field. Full article
Show Figures

Figure 1

22 pages, 2210 KiB  
Article
Berberine and Palmatine Distribution Across Plant Organs in Berberis darwinii: Basis for Selecting Superior-Producing Accessions
by Manuel Chacón-Fuentes, César Burgos-Díaz, Mauricio Opazo-Navarrete, Alan Mercado and Fernando Westermeyer
Molecules 2025, 30(8), 1849; https://doi.org/10.3390/molecules30081849 - 20 Apr 2025
Abstract
Berberis darwinii, known for its bioactive alkaloids like berberine and palmatine, has gained attention for its medicinal properties. However, comprehensive studies on the specific bioactive molecules of Michay are lacking, as previous research has primarily focused on wild plants. Therefore, this study [...] Read more.
Berberis darwinii, known for its bioactive alkaloids like berberine and palmatine, has gained attention for its medicinal properties. However, comprehensive studies on the specific bioactive molecules of Michay are lacking, as previous research has primarily focused on wild plants. Therefore, this study proposes to evaluate the alkaloid content in various tissues of B. darwinii collected from different locations, aiming to identify high-yielding accessions suitable for consistent bioactive alkaloid production. This research focuses on plants from a cultivated Michay orchard established five years ago. Leaves, stems, roots, and fruits from 96 accessions of Michay were collected to obtain an alkaloidal extract used for the characterization and comprehensive analysis of bioactive alkaloids through high-performance liquid chromatography. Based on these results, a search for the main outliers was conducted to identify the accessions with the highest alkaloid production. The results showed that roots had the highest concentrations of both berberine and palmatine, followed by stems, while leaves and seeds had lower levels, and the pulp from fruits had no detectable alkaloids. Notably, alkaloid concentrations reached up to 30,806 µg/g in roots, with accession C2P18 standing out for its combined total of 20,827.74 µg/g of berberine and 9978.27 µg/g of palmatine. Accession C3P26 showed the highest berberine concentration at 26,482.20 µg/g. These values underscore the wide variation in alkaloid accumulation and highlight the potential for selecting elite accessions with exceptionally high yields. These findings highlight the importance of plant selection for optimal alkaloid extraction. Choosing high-yielding accessions and standardizing cultivation practices will ensure a stable supply of berberine and palmatine for pharmaceutical, nutraceutical, and food industry applications. Full article
Show Figures

Figure 1

15 pages, 7624 KiB  
Article
Microenvironment Self-Adaptive Ce-Ag-Doped Mesoporous Silica Nanomaterials (CA@MSNs) for Multidrug-Resistant Bacteria-Infected Diabetic Wound Treatment
by Wuhao Yang, Hui Yuan, Hao Sun, Jiangshan Hu, Yaping Xu, Yuhang Li and Yan Qiu
Molecules 2025, 30(8), 1848; https://doi.org/10.3390/molecules30081848 - 20 Apr 2025
Abstract
Chronic wound healing remains a major challenge in diabetes management due to prolonged inflammation, autonomic neuropathy, and bacterial infections. In particular, multidrug-resistant bacterial infections are important to the development of diabetic wounds, leading to persistent inflammation and delayed healing. To address this issue, [...] Read more.
Chronic wound healing remains a major challenge in diabetes management due to prolonged inflammation, autonomic neuropathy, and bacterial infections. In particular, multidrug-resistant bacterial infections are important to the development of diabetic wounds, leading to persistent inflammation and delayed healing. To address this issue, we developed a self-adaptive nanozyme designed to modulate infectious and inflammatory microenvironments by doping Ce and Ag into mesoporous silicon nanomaterials (MSNs). The resulting CA@MSNs exhibited strong bacterial capture capabilities via electrostatic attraction. Additionally, the synergistic effects of Ce and Ag endowed CA@MSNs with peroxidase (POD)-like activity, enabling the generation of reactive oxygen species (ROS) to eradicate bacteria in infectious microenvironments. Notably, CA@MSNs also demonstrated the ability to scavenge a broad spectrum of ROS, including hydroxyl free radicals, hydrogen peroxide, and superoxide radicals, in inflammatory microenvironments. This dual functionality helped mitigate inflammation and promote endothelial cell migration. Consequently, treatment with CA@MSNs significantly reduced inflammation, enhanced fibroblast activation, and facilitated collagen deposition, ultimately accelerating the healing of methicillin-resistant Staphylococcus aureus (MRSA)-infected wounds in diabetic mice. In conclusion, this study presents a promising therapeutic strategy for chronic diabetic wounds, offering a novel approach to overcoming infection-related healing delays. Full article
(This article belongs to the Special Issue Recent Advances in Porous Materials, 2nd Edition)
Show Figures

Figure 1

19 pages, 3964 KiB  
Article
Tuning 2,3-Bis(arylimino)butane-nickel Precatalysts for High-Molecular-Weight Polyethylene Elastomers
by Dongzhi Zhu, Dedong Jia, Qiuyue Zhang, Yanping Ma, Qaiser Mahmood and Wen-Hua Sun
Molecules 2025, 30(8), 1847; https://doi.org/10.3390/molecules30081847 - 20 Apr 2025
Viewed by 6
Abstract
The catalytic performance of α-diiminonickel complexes is highly sensitive to structural modifications in their ligand frameworks. In this study, a series of unsymmetrical 2,3-bis(arylimino)butane-nickel complexes featuring ortho-2,6-dibenzhydryl groups as sterically demanding motifs and para-methyl groups as electron-donating enhancers were proposed and [...] Read more.
The catalytic performance of α-diiminonickel complexes is highly sensitive to structural modifications in their ligand frameworks. In this study, a series of unsymmetrical 2,3-bis(arylimino)butane-nickel complexes featuring ortho-2,6-dibenzhydryl groups as sterically demanding motifs and para-methyl groups as electron-donating enhancers were proposed and synthesized. These nickel complexes were thoroughly characterized using FTIR, elemental analysis, and single-crystal X-ray diffraction (for Ni4 and Ni5), revealing deviations from ideal tetrahedral geometry. Upon activation with Et2AlCl, these complexes demonstrated exceptional ethylene polymerization activity, achieving a remarkable value of 13.67 × 106 g PE mol−1 (Ni) h−1 at 20 °C. Notably, even at 80 °C, the nickel complexes maintained a high activity of 1.97 × 106 g PE mol−1 (Ni) h−1, showcasing superiority compared to previously reported unsymmetrical 2,3-bis(arylimino)butane-nickel complexes. The resulting polyethylenes exhibited ultra-high molecular weights (Mw: 3.33–19.47 × 105 g mol−1) and tunable branching densities (84–217/1000C), which were effectively controlled by polymerization temperature. Moreover, the mechanical properties of the polyethylenes, including tensile strength (σb = 0.74–16.83 MPa), elongation at break (εb = 271–475%), and elastic recovery (SR = 42–74%), were finely tailored by optimizing molecular weight, crystallinity, and branching degree. The prepared polyethylenes displayed outstanding elastic recovery, a hallmark of high-performance thermoplastic elastomers, making them promising candidates for advanced material applications. Full article
(This article belongs to the Special Issue Featured Papers in Organometallic Chemistry—2nd Edition)
Show Figures

Figure 1

17 pages, 2035 KiB  
Article
Physical and Functional Properties of Sweet Potato Flour: Influence of Variety and Drying Method
by Nelson Pereira, Ana Cristina Ramos, Marco Alves, Vítor D. Alves, Margarida Moldão and Marta Abreu
Molecules 2025, 30(8), 1846; https://doi.org/10.3390/molecules30081846 - 20 Apr 2025
Viewed by 29
Abstract
Sweet potato (Ipomoea batatas (L.) Lam.; SP) flour enhances food nutrition and bioactivity while functioning as a thickening/gelling agent. This study investigated the impact of two drying methods [hot-air (75 °C/20 h) and freeze-drying (−41–30 °C/70 h)] on the physical–functional properties of [...] Read more.
Sweet potato (Ipomoea batatas (L.) Lam.; SP) flour enhances food nutrition and bioactivity while functioning as a thickening/gelling agent. This study investigated the impact of two drying methods [hot-air (75 °C/20 h) and freeze-drying (−41–30 °C/70 h)] on the physical–functional properties of flours from three SP varieties: Bonita (white-fleshed), Bellevue (orange-fleshed), and NP1648 (purple-fleshed). Particle size, morphology, water/oil absorption capacities (WAC/OAC), bulk density, swelling power (SwP), water solubility (WS), foaming/emulsifying properties, least gelation concentration (LGC), and gelatinisation temperature (GT) were analysed. Both the drying method and variety significantly influenced these properties. Hot-air-dried flours exhibited bimodal particle distribution, compact microstructure, and aggregated starch granules, yielding higher WAC (≈3.2 g/g) and SwP (≈3.6 g/g). Freeze-dried flours displayed smaller particles, porous microstructure, and fragmented granules, enhancing OAC (≈3.0 g/g) and foaming capacity (≈17.6%). GT was mainly variety-dependent, increasing as Bellevue (74.3 °C) < NP1648 (78.5 °C) < Bonita (82.8 °C), all exceeding commercial potato starch (68.7 °C). NP1648 required lower LGC (10% vs. 16% for others). All flours exhibited high WS (24–39.5%) and emulsifying capacity (≈44%). These results underscore the importance of selecting the appropriate drying method and variety to optimise SP flour functionality for targeted food applications. Freeze-dried flours might suit aerated/oil-retentive products, while hot-air-dried flours could be ideal for moisture-sensitive formulations. Full article
Show Figures

Figure 1

20 pages, 3758 KiB  
Article
Study of Natural Dyes’ Liposomal Encapsulation in Food Dispersion Model Systems via High-Pressure Homogenization
by Lubomír Lapčík, Barbora Lapčíková, Tomáš Valenta, Martin Vašina, Pavlína Dudová and Miroslav Fišera
Molecules 2025, 30(8), 1845; https://doi.org/10.3390/molecules30081845 - 20 Apr 2025
Viewed by 42
Abstract
The aim of this study was to investigate the encapsulation of natural food dyes incorporated into liposomes in terms of particle size, rheological and colour properties, zeta potential, and encapsulation efficiency. The liposomes contained dye substances of anthocyanins from freeze-dried raspberry powder (R), [...] Read more.
The aim of this study was to investigate the encapsulation of natural food dyes incorporated into liposomes in terms of particle size, rheological and colour properties, zeta potential, and encapsulation efficiency. The liposomes contained dye substances of anthocyanins from freeze-dried raspberry powder (R), copper complexes of chlorophyllins (C), or commercial-grade β-carotene (B). The phospholipid envelope was composed of sunflower lecithin and carboxymethylcellulose sodium salt as a surface stabilizer treated by high-pressure homogenization. The median particle diameter of R and C systems fluctuated around 200 nm, while B systems showed a broader range of 165–405 nm. The rheological results demonstrated a specific flow behaviour pattern dependent on the rotational shear applied, indicating a flow-induced structural change in the dispersions. Samples were characterized by a translucent profile with relatively high lightness, accompanied by a hue angle (h*) typical of the dye encapsulated. The zeta potential was approx. −30 mV, showing electrokinetically stabilized dispersions. The encapsulation efficiency (EE) varied significantly, with the highest EE observed for anthocyanins, ranging from 36.17 to 84.61%. The chlorophyll encapsulation was the least effective, determined in the range between 1.82 and 16.03%. Based on the suitability index, optimal liposomal formulations were evaluated by means of the Central Composite Design (CCD). Full article
Show Figures

Graphical abstract

17 pages, 3117 KiB  
Article
Explosives Analysis Using Thin-Layer Chromatography–Quantum Cascade Laser Spectroscopy
by John R. Castro-Suarez, Luis A. Pérez-Almodóvar, Doris M. Laguer-Martínez, José L. Ruiz-Caballero, José A. Centeno-Ortiz, Tamara Felix-Massa, Leonardo C. Pacheco-Londoño and Samuel P. Hernández-Rivera
Molecules 2025, 30(8), 1844; https://doi.org/10.3390/molecules30081844 - 19 Apr 2025
Viewed by 97
Abstract
A new hyphenated technique using thin-layer chromatography (TLC) to separate analytes in mixtures, coupled with mid-infrared (MIR) laser spectroscopy for identification and quantification, is presented. The method, which provides a means for rapid screening of analytes that is practical, low-cost, fast, robust, and [...] Read more.
A new hyphenated technique using thin-layer chromatography (TLC) to separate analytes in mixtures, coupled with mid-infrared (MIR) laser spectroscopy for identification and quantification, is presented. The method, which provides a means for rapid screening of analytes that is practical, low-cost, fast, robust, and reproducible, was tested using nitroaromatic and aliphatic nitro high explosives (HEs) as target analytes. HEs are anthropogenic contaminants containing an -NO2 group. For validation of the new technique, a direct comparison of the 2,4,6-trinitrotoluene (TNT) spectrum, obtained by attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy coupled with TLC, was carried out. The MIR laser spectroscopy-based method was evaluated by calculating the analytical figures of merit regarding the calibration curves’ linearity and the method’s sensitivity and precision. The TNT spectrum obtained by the MIR laser method showed two prominent and characteristic bands of the explosive at approximately 1350 cm−1 and 1550 cm−1 compared to the spectrum acquired by ATR-FTIR. The detection limit calculated for TNT was 84 ng, while the quantification limit was 252 ng. Multivariate analysis was used to evaluate the spectroscopic data to identify sources of variation and determine their relation. Partial least squares (PLS) regression analysis and PLS combined with discriminant analysis (PLS-DA) were used for quantification and classification. The new technique, TLC-QCL, is amenable to a smaller footprint with further developments in MIR laser technology, making it portable for fieldwork. Full article
(This article belongs to the Special Issue Molecular Spectroscopy in Applied Chemistry)
Show Figures

Figure 1

24 pages, 5572 KiB  
Review
Research Progress on Microwave Synthesis of 3d Transition Metal (Mn, Fe, Co, and Ni) Oxide Nanomaterials for Supercapacitors
by Chengqi Sun, Maosheng Ge, Shuhuang Tan, Yichen Liu, Haowei Wang, Wenhao Jiang, Shoujun Zhang and Yin Sun
Molecules 2025, 30(8), 1843; https://doi.org/10.3390/molecules30081843 - 19 Apr 2025
Viewed by 53
Abstract
3d transition metal oxides composed of Mn, Fe, Co, and Ni have emerged as promising candidates for supercapacitor electrode materials due to their high theoretical specific capacitance, abundant redox-active sites, variable oxidation states, environmental friendliness, and low cost. Various synthesis strategies have been [...] Read more.
3d transition metal oxides composed of Mn, Fe, Co, and Ni have emerged as promising candidates for supercapacitor electrode materials due to their high theoretical specific capacitance, abundant redox-active sites, variable oxidation states, environmental friendliness, and low cost. Various synthesis strategies have been developed to fabricate these nanostructures, including hydrothermal/solvothermal methods, sol–gel processing, and microwave-assisted synthesis. Among them, microwave irradiation technology, with its rapid heating characteristics and unique thermal/non-thermal effects, offers significant advantages in controlling crystallinity and particle size distribution, suppressing particle agglomeration, and enhancing material purity. Furthermore, microwave effects facilitate the self-assembly and morphological evolution of transition metal oxides, promote the formation of crystal defects, and strengthen interfacial interactions. These effects enable precise microstructural tuning, leading to an increased specific surface area and a higher density of active sites, ultimately enhancing specific capacitance, rate capability, and cycling stability. In recent years, microwave-assisted synthesis has made significant progress in constructing 3d transition metal oxides and their composites, particularly in the development of single-metal and binary-metal oxides, as well as their hybrids with carbon-based materials (e.g., graphene and carbon nanotubes) and other metal oxides. This review systematically summarizes the research progress on microwave-assisted techniques for 3d transition metal oxide-based nanomaterials, with a particular focus on the role of microwave effects in morphology control, interfacial optimization, and electrochemical performance enhancement. Additionally, key challenges in current research are critically analyzed, and potential optimization strategies are proposed. This review aims to provide new insights and perspectives for advancing microwave-assisted synthesis of 3d transition metal oxides in energy storage applications. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

20 pages, 7495 KiB  
Article
New Antioxidant Triphenol-Derived Hydrazide-Hydrazone Thiazole: Formation and Analysis of Inclusion Complex with β-CD Using Experimental and Computational Approaches
by Adrian Pîrnău, Mihaela Mic, Călin G. Floare, Ovidiu Oniga, Smaranda Dafina Oniga, Ovidiu Crișan, Laurian Vlase and Gabriel Marc
Molecules 2025, 30(8), 1842; https://doi.org/10.3390/molecules30081842 - 19 Apr 2025
Viewed by 131
Abstract
A new water-soluble not-colored antioxidant (Z)-N′-(4-(3,4-dihydroxyphenyl)-3-ethylthiazol-2(3H)-ylidene)-4-hydroxybenzohydrazide hydrochloride (DHTH) was obtained and characterized. The interaction between DHTH and β-CD was studied by experimental thermodynamic methods such as isothermal titration calorimetry (ITC) and 1H NMR spectroscopy and confirmed by in silico calculations. Thermodynamic data [...] Read more.
A new water-soluble not-colored antioxidant (Z)-N′-(4-(3,4-dihydroxyphenyl)-3-ethylthiazol-2(3H)-ylidene)-4-hydroxybenzohydrazide hydrochloride (DHTH) was obtained and characterized. The interaction between DHTH and β-CD was studied by experimental thermodynamic methods such as isothermal titration calorimetry (ITC) and 1H NMR spectroscopy and confirmed by in silico calculations. Thermodynamic data indicated that the inclusion process is driven by enthalpy, predominantly as a result of the guest–host hydrophobic interactions. 1H NMR measurements were applied to study the interaction with β-CD by changing the studied compound concentration in the solution. UV-vis titration and in vitro antiradical assay were performed, to study the antioxidant activity of DHTH, free and included in β-CD. A molecular docking study added supplementary insight to the experimental analyses regarding the binding conformation of the new polyphenolic compound to β-CD. Full article
Show Figures

Figure 1

14 pages, 1550 KiB  
Article
The Properties of the Monolayers of Sorbitan Lipids as Informative Factors on the Hydrophilic–Lipophilic Balance Value of Their Mixtures, Proposed for Dermatological Applications
by Remigiusz Zapolski, Monika Gasztych, Beata Jastrząb-Miśkiewicz, Alina Jankowska-Konsur and Witold Musiał
Molecules 2025, 30(8), 1841; https://doi.org/10.3390/molecules30081841 - 19 Apr 2025
Viewed by 103
Abstract
This study investigates the correlation between the hydrophilic–lipophilic balance (HLB) values and the π–A isotherm parameters of surfactant monolayers composed of sorbitan esters, specifically sorbitan monopalmitate, sorbitan tristearate, sorbitan monooleate, and sorbitan sesquioleate. The surfactant mixtures were prepared, and their π-A isotherms were [...] Read more.
This study investigates the correlation between the hydrophilic–lipophilic balance (HLB) values and the π–A isotherm parameters of surfactant monolayers composed of sorbitan esters, specifically sorbitan monopalmitate, sorbitan tristearate, sorbitan monooleate, and sorbitan sesquioleate. The surfactant mixtures were prepared, and their π-A isotherms were recorded. The HLB values calculated for each mixture were in the range 2.10–6.70. The HLB values were compared to compression parameters, including the ratios of the slopes and the ratios of the intercepts, which were between 0.19 and 4.00 and between 0.64 and 1.77, respectively, across the monolayer compression stages. The findings indicate a significant relationship between HLB values and isotherm parameters, particularly for systems with sorbitan monooleate and sorbitan sesquioleate. A value of determination coefficient of 0.95 was found for the linear equation representing the slope ratios as a function of HLB, whereas the intercept ratios, as a linear function of HLB, gave a lower value of 0.71. The results allow for the use of the π–A Langmuir isotherm to experimentally estimate the value of the HLB in mixtures of the sorbitol esters of fatty acids, whose value is an important parameter in the selection of optimized topical and transdermal formulations, highlighting the specific formulations that enhance active substance delivery while minimizing skin irritation potential. Full article
(This article belongs to the Special Issue Amphiphilic Molecules, Interfaces and Colloids: 2nd Edition)
Show Figures

Figure 1

19 pages, 6017 KiB  
Article
Construction of a Covalent Crosslinked Membrane Exhibiting Superhydrophilicity and Underwater Superoleophobicity for the Efficient Separation of High-Viscosity Oil–Water Emulsion Under Gravity
by Mengxi Zhou, Peiqing Yuan, Xinru Xu and Jingyi Yang
Molecules 2025, 30(8), 1840; https://doi.org/10.3390/molecules30081840 - 19 Apr 2025
Viewed by 109
Abstract
The separation of high-viscosity oil–water emulsions remains a global challenge due to ultra-stable interfaces and severe membrane fouling. In this paper, SiO2 micro–nanoparticles coated with polyethyleneimine (PEI) were initially loaded onto a stainless steel substrate. This dual-functional design simultaneously modifies surface roughness [...] Read more.
The separation of high-viscosity oil–water emulsions remains a global challenge due to ultra-stable interfaces and severe membrane fouling. In this paper, SiO2 micro–nanoparticles coated with polyethyleneimine (PEI) were initially loaded onto a stainless steel substrate. This dual-functional design simultaneously modifies surface roughness and wettability. Furthermore, a covalent crosslinking network was created through the Schiff base reaction between PEI and glutaraldehyde (GA) to enhance the stability of the membrane. The membrane exhibits extreme wettability, superhydrophilicity (WCA = 0°), and underwater superoleophobicity (UWOCA = 156.9°), enabling a gravity-driven separation of pump oil emulsions with 99.9% efficiency and a flux of 1006 L·m−2·h−1. Moreover, molecular dynamics (MD) simulations demonstrate that the SiO2-PEI-GA-modified membrane promotes the formation of a stable hydration layer, reduces the oil–layer interaction energy by 85.54%, and exhibits superior underwater oleophobicity compared to the unmodified SSM. Efficiency is maintained at 99.8% after 10 cycles. This study provides a scalable strategy that combines covalent crosslinking with hydrophilic particle modification, effectively addressing the trade-off between separation performance and membrane longevity in the treatment of viscous emulsions. Full article
Show Figures

Figure 1

16 pages, 5985 KiB  
Article
Mechanistic Study of Substituent Effect on Photoinduced O-C Bond Activation in Polycarbonate
by Xiao Huang, Yuuichi Orimoto and Yuriko Aoki
Molecules 2025, 30(8), 1839; https://doi.org/10.3390/molecules30081839 - 19 Apr 2025
Viewed by 101
Abstract
Photodegradation of polycarbonate (PC) is investigated based on quantum chemical methods with PC models to clarify the effect of substituents at different positions of phenyl rings on the carbonate O-C bond cleavage. Compared to the results without substituents on phenyl rings, the breakage [...] Read more.
Photodegradation of polycarbonate (PC) is investigated based on quantum chemical methods with PC models to clarify the effect of substituents at different positions of phenyl rings on the carbonate O-C bond cleavage. Compared to the results without substituents on phenyl rings, the breakage of the carbonate O-C bond is promoted or suppressed when the electron-donating or electron-withdrawing group is placed on the meta- or ortho-positions of the gem-dimethyl groups of phenyl rings, respectively. Moreover, the promotion and suppression of carbonate O-C bond scission are more significant if the substituents are located on the ortho-positions of the gem-dimethyl groups. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Physical Chemistry, 3nd Edition)
Show Figures

Graphical abstract

22 pages, 1431 KiB  
Review
Quantitative Nuclear Magnetic Resonance for Small Biological Molecules in Complex Mixtures: Practical Guidelines and Key Considerations for Non-Specialists
by Eva Drevet Mulard, Véronique Gilard, Stéphane Balayssac and Gilles J. P. Rautureau
Molecules 2025, 30(8), 1838; https://doi.org/10.3390/molecules30081838 - 19 Apr 2025
Viewed by 57
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a powerful analytical approach that enables both the structural determination and precise quantification of small molecules, such as metabolites. However, achieving precise quantification with NMR involves more than simply comparing integrals derived from NMR peaks to a [...] Read more.
Nuclear magnetic resonance (NMR) spectroscopy is a powerful analytical approach that enables both the structural determination and precise quantification of small molecules, such as metabolites. However, achieving precise quantification with NMR involves more than simply comparing integrals derived from NMR peaks to a concentration reference; quantitative NMR (qNMR) is a distinct and specialized application within the field. To obtain absolute quantitative results, spectra must be acquired under strict experimental conditions. Unfortunately, these acquisition parameters can be challenging to implement experimentally and often require trade-offs that compromise high throughput or practicality. In such situations, alternative strategies based on relative quantification and advanced software tools offer valuable solutions. This review aims to provide non-specialists with the key concepts and methodologies required for accurate NMR-based quantification in biomedical research, focusing on practical guidelines and experimental considerations. Unlike prior reviews, it prioritizes accessibility and practical implementation for researchers outside the field, emphasizing key experimental workflows and applications in biological and clinical studies. It clarifies the distinctions between absolute and relative concentration determinations and emphasizes the critical importance of sample preparation, pulse sequence selection, and rigorous control of experimental parameters. Recent technological advancements, such as high-field spectrometers and cryoprobes, have significantly enhanced the sensitivity and accuracy of NMR, enabling the reliable detection of low-concentration metabolites. Quantitative NMR thus offers critical potential in elucidating metabolic processes, supporting drug development, and aiding disease diagnosis. Full article
Show Figures

Figure 1

23 pages, 2986 KiB  
Article
Optimization and Impact of Ultrasound-Assisted Extraction on Pomegranate Seed Oil Quality: A Comparative Study of Bioactive Potential and Oxidation Parameters
by Marta Siol, Iga Piasecka, Diana Mańko-Jurkowska, Agata Górska and Joanna Bryś
Molecules 2025, 30(8), 1837; https://doi.org/10.3390/molecules30081837 - 19 Apr 2025
Viewed by 65
Abstract
Pomegranate seed oil (PSO), a by-product of juice production, is rich in bioactive compounds, especially punicic acid, and has significant potential for health and industrial applications. The present study aimed to optimize an ultrasound-assisted extraction (UAE) of PSO and compare its effectiveness with [...] Read more.
Pomegranate seed oil (PSO), a by-product of juice production, is rich in bioactive compounds, especially punicic acid, and has significant potential for health and industrial applications. The present study aimed to optimize an ultrasound-assisted extraction (UAE) of PSO and compare its effectiveness with conventional methods such as cold pressing and Soxhlet extraction. A Box–Behnken design was used to determine the optimal UAE parameters (amplitude 46%, 12 min, L/S ratio 19 mL/g), yielding 12.67% oil with the highest oxidative stability (τmax = 5.44 min). Compared to Soxhlet and cold-pressed methods, UAE gave the highest yield, but slightly lower levels of total polyphenols and antioxidant activity. Cold-pressed oil retained the most bioactive compounds, but showed reduced oxidative stability and higher susceptibility to degradation. Soxhlet extraction provided moderate antioxidant capacity and the highest punicic acid content, but exceeded the recommended limits for acid value. Overall, the UAE offers an effective balance between yield, quality, and sustainability, with minimal thermal degradation and reduced solvent consumption. The results confirm that UAE is a promising alternative for high-quality PSO extraction, although cold pressing remains superior in preserving sensitive bioactive components. Ultimately, this study underscores that the extraction method plays a decisive role in determining the functional quality and oxidative stability of PSO, with UAE standing out as the most efficient and environmentally favorable approach. Full article
Show Figures

Figure 1

21 pages, 3914 KiB  
Article
Effect of Ultra-High Pressure on the Extraction of the Free, Esterified, and Bound Phenolics from Dendrobium fimbriatum Hook: Chemical Constituents and Antioxidant Ability
by Qinge Su, Junbo Hu, Huimin Cui, Fangyuan Zheng, Yaping Liu, Zhengxuan Wang and Guiguang Cheng
Molecules 2025, 30(8), 1836; https://doi.org/10.3390/molecules30081836 - 19 Apr 2025
Viewed by 124
Abstract
This study explores the antioxidant activity and antioxidant mechanism of phenolic compounds (including free (FP), esterified (EP), and bound phenolic (BP)) from Dendrobium fimbriatum Hook (DFH) stems, before and after ultra-high pressure (UHP) treatment. A total of 374 compounds were identified, with 149 [...] Read more.
This study explores the antioxidant activity and antioxidant mechanism of phenolic compounds (including free (FP), esterified (EP), and bound phenolic (BP)) from Dendrobium fimbriatum Hook (DFH) stems, before and after ultra-high pressure (UHP) treatment. A total of 374 compounds were identified, with 149 showing significant differences in DFH phenolic extracts before and after UHP treatment. UHP treatment significantly increased the total phenolic content (TPC) and total flavonoid content (TFC) and enhanced antioxidant activity in vitro. Particularly, the UEP-DFH, IC50 values in ABTS and DPPH were reduced by 49.6% and 64.1%, respectively. In H2O2-treated HepG2 cells, the extracts demonstrated significant cytoprotective effects, including increased cell viability, ROS reduction, and enhanced GSH levels by 17.8% (UFP-DFH) and 12.5% (UEP-DFH). The activities of GS, GCL, GR, GSH-Px, SOD, CAT, NQO1, and HO-1 were also elevated in UHP-treated extracts. DAPI staining indicated that the extracts promoted nuclear Nrf2 expression, particularly UFP-DFH and UEP-DFH. Molecular docking indicated that vanillic acid could competitively bind to the Keap1-Kelch domain, facilitating activation of the antioxidant pathway. Overall, UHP treatment enhanced both extraction efficiency and antioxidant activity, making it a promising method for improving the bioactivity of DFH in the food and functional food industries. Full article
Show Figures

Figure 1

14 pages, 1851 KiB  
Article
Mechanochemical Sequential Deoxygenative Cross-Coupling Reactions of Phenols Under Ruthenium-Nickel Catalysis
by Satenik Mkrtchyan, Vishal B. Purohit, Michał Jakubczyk, Vaibhav D. Prajapati, Ronak V. Prajapati, Michael G. Garcia, Eugene Karpun, Vitaliy Yepishev, Manoj K. Saini, Sehrish Sarfaraz, Khurshid Ayub, Gabriela Addová, Juraj Filo and Viktor O. Iaroshenko
Molecules 2025, 30(8), 1835; https://doi.org/10.3390/molecules30081835 - 19 Apr 2025
Viewed by 235
Abstract
Herein, we report the first mechanochemical strategy for the Ru-catalyzed deoxygenative borylation of free phenols via C–O bond cleavage. This Ru-catalyzed phenolic borylation approach has been successfully extended to the Suzuki–Miyaura-type cross-coupling of phenols with aryl bromides. The protocol accepts a wide scope [...] Read more.
Herein, we report the first mechanochemical strategy for the Ru-catalyzed deoxygenative borylation of free phenols via C–O bond cleavage. This Ru-catalyzed phenolic borylation approach has been successfully extended to the Suzuki–Miyaura-type cross-coupling of phenols with aryl bromides. The protocol accepts a wide scope of phenolic substrates, allowing the synthesis of aryl pinacolboranes and biphenyl structures in excellent yields and serving as a better alternative to classical cross-coupling reactions in the context of pot, atom, and step economy synthesis. Full article
Show Figures

Graphical abstract

20 pages, 3434 KiB  
Article
Investigating the Effects of Gossypetin on Liver Health in Diet-Induced Pre-Diabetic Male Sprague Dawley Rats
by Karishma Naidoo and Andile Khathi
Molecules 2025, 30(8), 1834; https://doi.org/10.3390/molecules30081834 - 19 Apr 2025
Viewed by 158
Abstract
The rising prevalence of non-alcoholic fatty liver disease among patients with type 2 diabetes mellitus has emerged as a global health challenge. Gossypetin (GTIN) is a natural flavonoid which has recently demonstrated antihyperglycaemic, antioxidant, and anti-inflammatory effects. Despite these findings, no studies have [...] Read more.
The rising prevalence of non-alcoholic fatty liver disease among patients with type 2 diabetes mellitus has emerged as a global health challenge. Gossypetin (GTIN) is a natural flavonoid which has recently demonstrated antihyperglycaemic, antioxidant, and anti-inflammatory effects. Despite these findings, no studies have investigated its effects on liver health in the pre-diabetic state. Hence, this study aimed to investigate the effects of GTIN on liver health in diet-induced pre-diabetic male rats in the presence and absence of dietary intervention and to compare these effects with those of metformin (MET). Following 20 weeks of pre-diabetes induction, the animals were divided into six groups (n = 6) as follows: non-pre-diabetic (NPD) control, pre-diabetic (PD) control, and PD groups treated with GTIN (15 mg/kg body weight (bw)) or metformin (500 mg/kg bw) on either a normal diet or a high-fat, high-carbohydrate diet for 12 weeks. The results showed that the PD group had significantly higher liver triglycerides (TAG), liver weights, sterol regulatory binding element regulatory protein-1c (SREBP-1c), malondialdehyde (MDA) levels, and liver injury enzyme levels, along with decreased liver superoxide dismutase (SOD) activity, glutathione peroxidase (GPx) activity, and plasma bilirubin levels in comparison to NPD. Histologically, there was an increased lipid droplet accumulation and structural disarray in the PD group. GTIN treatment significantly reduced liver TAGs, liver weights, and plasma SREBP-1c levels, as well as improved liver SOD and GPx activity while decreasing liver MDA levels and liver injury enzymes in comparison to the PD control. Notably, GTIN treatment increased plasma bilirubin levels. Liver histology in the GTIN-treated groups revealed decreased lipid droplet accumulation and improved tissue integrity. Similar results were observed for the liver parameters in the MET-treated groups. The findings of this study may suggest that GTIN and MET exhibit therapeutic effects on liver health in diet-induced pre-diabetes in both the presence and absence of diet intervention. Dietary intervention may confer beneficial effects on liver health, with the most favorable therapeutic outcomes observed through a combination of treatment with dietary intervention. Additionally, GTIN may exhibit greater hepatoprotective effects than MET in rats without dietary intervention. Full article
(This article belongs to the Special Issue Natural Products with Pharmaceutical Activities)
Show Figures

Figure 1

25 pages, 8308 KiB  
Review
Construction of MXene-Based Heterostructured Hybrid Separators for Lithium–Sulfur Batteries
by Xiao Zhang, Guijie Jin, Min Mao, Zirui Wang, Tianyu Xu, Tongtao Wan and Jinsheng Zhao
Molecules 2025, 30(8), 1833; https://doi.org/10.3390/molecules30081833 - 19 Apr 2025
Viewed by 206
Abstract
The advancement of lithium–sulfur (Li-S) batteries has been hindered by the shuttle effect of lithium polysulfides (LiPSs) and sluggish redox kinetics. The engineering of functional hybrid separators is a relatively simple and effective coping strategy. Layered transition-metal carbides, nitrides, and carbonitrides, a class [...] Read more.
The advancement of lithium–sulfur (Li-S) batteries has been hindered by the shuttle effect of lithium polysulfides (LiPSs) and sluggish redox kinetics. The engineering of functional hybrid separators is a relatively simple and effective coping strategy. Layered transition-metal carbides, nitrides, and carbonitrides, a class of emerging two-dimensional materials termed MXenes, have gained popularity as catalytic materials for Li-S batteries due to their metallic conductivity, tunable surface chemistry, and terminal groups. Nonetheless, the self-stacking flaws and easy oxidation of MXenes pose disadvantages, and developing MXene-based heterostructures is anticipated to circumvent these issues and yield other remarkable physicochemical characteristics. Herein, recent advances in the construction of MXene-based heterostructured hybrid separators for improving the performance of Li-S batteries are reviewed. The diverse conformational forms of heterostructures and their constitutive relationships with LiPS conversion are discussed, and the general principles of MXene surface chemistry alterations and heterostructure designs for enhancing electrochemical performance are summarized. Lastly, tangible challenges are addressed, and advisable insights for future research are shared. This review aims to highlight the immense superiority of MXene-based heterostructures in Li-S battery separator modification and inspire researchers. Full article
Show Figures

Figure 1

20 pages, 5330 KiB  
Article
Metal-Free Catalytic Synthesis of Tetrasubstituted Furans from α-Hydroxy Ketones and Cyano Compounds
by Yu Zeng, Shi-Hang Yang, Ji-Lin Guo, Yun Li, Ting Lin and Zhao-Yang Wang
Molecules 2025, 30(8), 1832; https://doi.org/10.3390/molecules30081832 - 19 Apr 2025
Viewed by 157
Abstract
A novel method for the efficient and straightforward synthesis of tetrasubstituted furans is presented, employing a base-catalyzed reaction of α-hydroxy ketones and cyano compounds. The reaction proceeds under relatively mild conditions, utilizes readily available starting materials, and exhibits good functional group tolerance [...] Read more.
A novel method for the efficient and straightforward synthesis of tetrasubstituted furans is presented, employing a base-catalyzed reaction of α-hydroxy ketones and cyano compounds. The reaction proceeds under relatively mild conditions, utilizes readily available starting materials, and exhibits good functional group tolerance and high yields. Notably, this reaction obviates the need for expensive metal catalysts and introduces crucial functional groups such as amino and cyano moieties. Furthermore, it avoids the prerequisite functionalization of substrates, thereby enhancing atomic economy. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop