Evaluation of the Influence of Coating and Coating Composition on the Sorption Properties of Freeze-Dried Carrot Bars
Abstract
:1. Introduction
2. Results
2.1. The Influence of Coating Composition on Selected Properties of Freeze-Dried Carrot Bars
2.1.1. Dry Matter Content
2.1.2. Water Activity
2.1.3. Porosity and Shrinkage
2.1.4. Sorption Isotherms
2.1.5. Infrared Spectroscopic Analysis (FTIR)
2.1.6. Structure
3. Discussion
4. Materials and Methods
4.1. Research Material
4.2. Preparation of Freeze-Dried Vegetable Bars
4.3. Preparation of Edible Coatings
4.4. Dip Coating Method
4.5. Analytical Methods
4.5.1. Dry Matter Content Measurement
4.5.2. Porosity Measurement
4.5.3. Water Activity Measurement
4.5.4. Real Density
4.5.5. Structure Measurement
4.5.6. Determination of Sorption Isotherms
4.5.7. FT-IR Spectroscopy
4.5.8. Statistical Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karnwal, A.; Kumar, G.; Singh, R.; Selvaraj, M.; Malik, T.; Al Tawaha, A.R.M. Natural biopolymers in edible coatings: Applications in food preservation. Food Chem. X 2025, 25, 102171. [Google Scholar] [CrossRef] [PubMed]
- Abedi, A.; Lakzadeh, L.; Amouheydari, M. Effect of an edible coating composed of whey protein concentrate and rosemary essential oil on the shelf life of fresh spinach. J. Food Process. Preserv. 2021, 45, e15284. [Google Scholar] [CrossRef]
- Pandya, Y.; Sharma, A.; Bakshi, M. Edible coatings in fruits: Effectiveness and applicability: A review. FoodSci Indian J. Res. Food Sci. Nutr. 2023, 10, 1–10. [Google Scholar] [CrossRef]
- Abdelshafy, A.M.; Luo, Z.; Belwal, T.; Ban, Z.; Li, L. A comprehensive review on preservation of shiitake mushroom (Lentinus edodes): Techniques, research advances and influence on quality traits. Food Rev. Int. 2023, 39, 2742–2775. [Google Scholar] [CrossRef]
- Hassan, B.; Chatha, S.A.S.; Hussain, A.I.; Zia, K.M.; Akhtar, N. Recent advances on polysaccharides, lipids and protein based edible films and coatings: A review. Int. J. Biol. Macromol. 2018, 109, 1095–1107. [Google Scholar] [CrossRef]
- Khan, M.K.I.; Mujawar, L.H.; Schutyser, M.A.; Schroën, K.; Boom, R. Deposition of thin lipid films prepared by electrospraying. Food Bioprocess Technol. 2013, 6, 3047–3055. [Google Scholar] [CrossRef]
- Bourtoom, T. Edible films and coatings: Characteristics and properties. Int. Food Res. J. 2008, 15, 237–248. [Google Scholar]
- Sothornvit, R.; Krochta, J.M. Plasticizers in edible films and coatings. In Innovations in Food Packaging; Elsevier: Amsterdam, The Netherlands, 2005; pp. 403–433. [Google Scholar]
- Hanani, Z.N.; McNamara, J.; Roos, Y.H.; Kerry, J.P. Effect of plasticizer content on the functional properties of extruded gelatin-based composite films. Food Hydrocoll. 2013, 31, 264–269. [Google Scholar] [CrossRef]
- Molinaro, S.; Cruz-Romero, M.; Sensidoni, A.; Morris, M.; Lagazio, C.; Kerry, J.P. Combination of high-pressure treatment, mild heating and holding time effects as a means of improving the barrier properties of gelatin-based packaging films using response surface modeling. Innov. Food Sci. Emerg. Technol. 2015, 30, 15–23. [Google Scholar] [CrossRef]
- Liu, C.; Huang, J.; Zheng, X.; Liu, S.; Lu, K.; Tang, K.; Liu, J. Heat sealable soluble soybean polysaccharide/gelatin blend edible films for food packaging applications. Food Packag. Shelf Life 2020, 24, 214–230. [Google Scholar] [CrossRef]
- Said, N.; Howell, N.; Sarbon, N. A review on potential use of gelatin-based film as active and smart biodegradable films for food packaging application. Food Rev. Int. 2021, 39, 1063–1085. [Google Scholar] [CrossRef]
- Lu, Y.; Luo, Q.; Chu, Y.; Tao, N.; Deng, S.; Wang, L.; Li, L. Application of gelatin in food packaging: A review. Polymers 2022, 14, 436. [Google Scholar] [CrossRef] [PubMed]
- Channa, I.; Ashfaq, J.; Siddiqui, M.; Chandio, A.; Shar, M.; Alhazaa, A. Multi-shaded edible films based on gelatin and starch for the packaging applications. Polymers 2022, 14, 5020. [Google Scholar] [CrossRef] [PubMed]
- Qingying, L.; Hossen, A.; Zeng, Y.; Dai, J.; Li, S.; Qin, W.; Liu, Y. Gelatin-based composite films and their application in food packaging: A review. J. Food Eng. 2022, 313, 524–530. [Google Scholar]
- Tufan, E.G.; Borazan, A.A.; Koçkar, Ö.M. A review on edible film and coating applications for fresh and dried fruits and vegetables. Bilecik Şeyh Edebali Üniversitesi Fen Bilim. Derg. 2021, 8, 1073–1085. [Google Scholar] [CrossRef]
- Ciurzyńska, A.; Jasiorowska, A.; Ostrowska-Ligęza, E.; Lenart, A. The influence of the structure on the sorption properties and phase transition temperatures of freeze-dried gels. J. Food Eng. 2019, 252, 18–27. [Google Scholar] [CrossRef]
- Kędzierska, K.; Pałacha, Z. Wpływ temperatury na właściwości sorpcyjne liofilizowanej marchwi. Żywność Nauka Technol. Jakość 2012, 19, 73–83. [Google Scholar]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Furmaniak, S. Sorpcja wody przez produkty żywnościowe. Cz. 2. LAB Lab. Apar. Badania 2013, 18, 18–22. [Google Scholar]
- Blahovec, J.; Yanniotis, S. Modified classification of sorption isotherms. J. Food Eng. 2009, 91, 72–77. [Google Scholar] [CrossRef]
- Ciurzyńska, A.; Galus, S.; Karwacka, M.; Janowicz, M. The sorption properties, structure and shrinkage of freeze-dried multi-vegetable snack bars in the aspect of the environmental water activity. LWT 2022, 171, 114090. [Google Scholar] [CrossRef]
- Brunauer, S.; Deming, L.S.; Deming, W.E.; Teller, E. On a theory of van der Waals adsorption of gases. J. Am. Chem. Soc. 1940, 62, 1723–1732. [Google Scholar] [CrossRef]
- Zambrano, M.V.; Dutta, B.; Mercer, D.; Maclean, H.L.; Touchie, M.F. Assessment of moisture content measurement methods of dried food products in small-scale operations in developing countries: A review. Trends Food Sci. Technol. 2019, 88, 484–496. [Google Scholar] [CrossRef]
- Isengard, H.D. Water content, one of the most important properties of food. Food Control 2001, 12, 395–400. [Google Scholar] [CrossRef]
- Ignaczak, A.; Salamon, A.; Kowalska, J.; Marzec, A.; Kowalska, H. Influence of pre-treatment and drying methods on the quality of dried carrot properties as snacks. Molecules 2023, 28, 6407. [Google Scholar] [CrossRef]
- Ciurzyńska, A.; Janowicz, M.; Karwacka, M.; Galus, S. Analysis of the effect of vegetable broth addition to a gelatin pork edible film and coating method on select physical properties of freeze-dried coated vegetable bars. Appl. Sci. 2024, 14, 5215. [Google Scholar] [CrossRef]
- Labuza, T.P.; Le Roux, J.P.; Fan, T.S.; Tannenbaum, S.R. Engineering factors in single-cell protein production. II. Spray drying and cell viability. Biotechnol. Bioeng. 1970, 12, 135–140. [Google Scholar] [CrossRef]
- Rahman, M.S. Food stability determination by macro–micro region concept in the state diagram and by defining a critical temperature. J. Food Eng. 2010, 99, 402–416. [Google Scholar] [CrossRef]
- Water Activity Explained: What is It and How Does it Differ from Water Content? Available online: https://foodmicrobe-basic.com/water-activity-and-microbial-growth/ (accessed on 19 February 2025).
- Serna-Cock, L.; Vargas-Muñoz, D.P.; Aponte, A.A. Structural, physical, functional and nutraceutical changes of freeze-dried fruit. Afr. J. Biotechnol. 2015, 14, 442–450. [Google Scholar]
- Marabi, A.; Saguy, I.S. Effect of porosity on rehydration of dry food particulates. J. Sci. Food Agric. 2004, 84, 1105–1110. [Google Scholar] [CrossRef]
- Krokida, M.K.; Karathanos, V.T.; Maroulis, Z.B. Effect of freeze-drying conditions on shrinkage and porosity of dehydrated agricultural products. J. Food Eng. 1998, 35, 369–380. [Google Scholar] [CrossRef]
- Lenart, A.; Piotrowski, D. Drying characteristics of osmotically dehydrated fruits coated with semipermeable edible films. Dry. Technol. 2021, 19, 849–877. [Google Scholar] [CrossRef]
- Raharitsifa, N.; Ratti, C. Foam-mat freeze-drying of apple juice part 1: Experimental data and ann simulations. J. Food Process Eng. 2010, 33, 268–283. [Google Scholar] [CrossRef]
- Jakubczyk, E.; Jaskulska, A. The effect of freeze-drying on the properties of Polish vegetable soups. Appl. Sci. 2021, 11, 654. [Google Scholar] [CrossRef]
- Bizot, H.; Jowitt, R.; Escher, F.; Hallstrom, B.; Meffer, H.; Spiess, W.L.; Vos, G. Using the Gab Model to Construct Sorption Isotherms. In Physical Properties of Foods; Applied Sciences Publishers: London, UK, 1983; pp. 43–54. [Google Scholar]
- Peleg, M. Assessment of a semi-empirical four parameter general model for sigmoid moisture sorption isotherms. J. Food Process Eng. 1993, 16, 21–37. [Google Scholar] [CrossRef]
- Lewicki, P.P. A three-parameter equation for food moisture sorption isotherms. J. Food Process. Eng. 1998, 21, 127–144. [Google Scholar] [CrossRef]
- Oswin, C.R. The kinetics of package life III: The isotherm. J. Ind. Eng. Chem. 1946, 65, 419–423. [Google Scholar] [CrossRef]
- Lewicki, P.P. The applicability of the GAB model to food water sorption isotherms. Int. J. Food Sci. Technol. 1997, 32, 550–557. [Google Scholar] [CrossRef]
- Onyeaka, H.; Passaretti, P.; Miri, T.; Al-Sharify, Z.T. The safety of nanomaterials in food production and packaging. Curr. Res. Food Sci. 2022, 5, 763–774. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, K.; Qian, H.; Ramachandran, B.; Jiang, F. The advances of characterization and evaluation methods for the compatibility and assembly structure stability of food soft matter. Trends Food Sci. Technol. 2021, 112, 753–763. [Google Scholar] [CrossRef]
- Przybył, K.; Koszela, K.; Adamski, F.; Samborska, K.; Walkowiak, K.; Polarczyk, M. Deep and Machine Learning Using SEM, FTIR, and Texture Analysis to Detect Polysaccharide in Raspberry Powders. Sensors 2021, 21, 5823. [Google Scholar] [CrossRef] [PubMed]
- Kaur, N.; Aggarwal, P.; Kaur, S. Phytochemical profile and techno-functional properties of black carrot (Daucus carota) pomace powder for the formulation of nutraceutical tablets: An impact of drying methods. Biomass Convers. Biorefinery 2024, 14, 23473–23483. [Google Scholar] [CrossRef]
- Karwacka, M.; Ciurzyńska, A.; Galus, S.; Janowicz, M. Freeze-dried snacks obtained from frozen vegetable by-products and apple pomace–selected properties, energy consumption and carbon footprint. Innov. Food Sci. Emerg. Technol. 2022, 77, 102949. [Google Scholar] [CrossRef]
- Marczak, W. Opracowanie Liofilizowanych Przekąsek Warzywnych na Bazie Mrożonych Warzyw. Master’s Thesis, Warsaw University of Life Sciences, Warsaw, Poland, 2019. [Google Scholar]
- Suchocki, P. 2022: Opracowanie składu i badanie wybranych właściwości białkowych folii jadalnych otrzymanych z wykorzystaniem żelatyny i bulionu wołowego. Engineering’s Thesis, Warsaw University of Life Sciences, Warsaw, Poland, 2022. [Google Scholar]
Parameters | Control Sample | 8_4 | 12_6 | Parameters | Control Sample | 8_4 | 12_6 |
---|---|---|---|---|---|---|---|
GAB | Lewicki | ||||||
um | 40.431546 | 32.62537 | 31.07014 | F | 5.496011 | 4.720322 | 4.488612 |
C | 0.16681736 | 0.18998 | 0.190609 | G | 1.232432 | 1.355493 | 1.370026 |
k | 0.85848702 | 0.892808 | 0.896351 | H | 3.184063 | 3.066408 | 2.943241 |
R2 | 0.997618 | 0.993505 | 0.995416 | R2 | 0.996411 | 0.991468 | 0.993654 |
MRE | 22.41294 | 77.41238 | 47.77109 | MRE | 23.92843 | 86.29329 | 54.26879 |
RSS | 1.735079 | 5.374995 | 3.539097 | RSS | 2.614446 | 7.060499 | 4.899828 |
SEE | 0.465709 | 0.819679 | 0.665122 | SEE | 0.571669 | 0.939448 | 0.78261 |
RMS [%] | 42.10498 | 123.5829 | 71.01446 | RMS [%] | 44.19338 | 138.7996 | 80.71963 |
Oswin | Halsey | ||||||
z | 1.107232 | 1.161321 | 1.164469 | A | −4.55685 | −4.67076 | −4.6613 |
h | 7.857082 | 7.726473 | 7.494353 | B | −1.1535 | −1.19488 | −1.21622 |
R2 | 0.996445 | 0.99244 | 0.99455 | R2 | 0.994352 | 0.989031 | 0.990766 |
MRE | 23.45927 | 73.58709 | 45.94753 | MRE | 72.71449 | 183.8113 | 112.1898 |
RSS | 2.589076 | 6.256256 | 4.207916 | RSS | 4.11365 | 9.077457 | 7.129626 |
SEE | 0.568889 | 0.884326 | 0.725251 | SEE | 0.717082 | 1.065215 | 0.944036 |
RMS [%] | 41.85204 | 115.3061 | 66.83861 | RMS [%] | 167.3527 | 320.5922 | 193.0582 |
Peleg | |||||||
A | 29.5451 | 32.20775 | 31.42587 | ||||
B | 2.877901 | 3.052084 | 3.014451 | ||||
D | 29.5451 | 32.20775 | 31.42587 | ||||
E | 2.89705 | 3.012898 | 3.078407 | ||||
R2 | 0.997101 | 0.999024 | 0.99906 | ||||
MRE | 28.30847 | 22.45165 | 24.10866 | ||||
RSS | 2.111733 | 0.807697 | 0.72588 | ||||
SEE | 0.513777 | 0.317745 | 0.301223 | ||||
RMS [%] | 47.72619 | 39.35506 | 42.36282 |
Parameters | Control Sample | 8_4 | 12_6 |
---|---|---|---|
X4 | 4.600 | 4.351 | 4.188 |
Rfi | 10.578 | 34.359 | 20.570 |
D10 | 10.894 | 3.521 | 5.805 |
Ingredients of the Bars | Percentage Share [%] |
---|---|
Water | 58.6 |
Carrot | 39.8 |
Sodium alginate | 1.5 |
Calcium lactate | 0.1 |
Sample Symbol | Gelatin [%] | Glycerol [%] |
---|---|---|
Control | 0 | 0 |
8_4 | 8 | 4 |
12_6 | 12 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciurzyńska, A.; Karwacka, M.; Janowicz, M.; Galus, S. Evaluation of the Influence of Coating and Coating Composition on the Sorption Properties of Freeze-Dried Carrot Bars. Molecules 2025, 30, 1716. https://doi.org/10.3390/molecules30081716
Ciurzyńska A, Karwacka M, Janowicz M, Galus S. Evaluation of the Influence of Coating and Coating Composition on the Sorption Properties of Freeze-Dried Carrot Bars. Molecules. 2025; 30(8):1716. https://doi.org/10.3390/molecules30081716
Chicago/Turabian StyleCiurzyńska, Agnieszka, Magdalena Karwacka, Monika Janowicz, and Sabina Galus. 2025. "Evaluation of the Influence of Coating and Coating Composition on the Sorption Properties of Freeze-Dried Carrot Bars" Molecules 30, no. 8: 1716. https://doi.org/10.3390/molecules30081716
APA StyleCiurzyńska, A., Karwacka, M., Janowicz, M., & Galus, S. (2025). Evaluation of the Influence of Coating and Coating Composition on the Sorption Properties of Freeze-Dried Carrot Bars. Molecules, 30(8), 1716. https://doi.org/10.3390/molecules30081716