Two-Stage Fungal Pre-Treatment for Improved Biogas Production from Sisal Leaf Decortication Residues
Abstract
:1. Introduction
2. Experimental Section
2.1. Substrate and Anaerobic Digestion Inoculum
2.2. Fungal Inocula for Pre-treatment
2.3. Bioreactors
2.4. Pre-treatment of SLDR
2.5. Anaerobic Digestion Experimental Set-Up
2.6. Analytical Methods
3. Results and Discussion
4. Conclusions
Acknowledgments
References
- Bradon, TW. Treatment and disposal of waste waters from the decortication of sisal. East Afr. Agric. J. East 1949, 15, 3–11. [Google Scholar]
- Björnsson, L; Mshandete, A; Mattiasson, B. Pre-treatment methods for enhanced biogas production from sisal waste. Proceedings of the 4th International Symposium on Anaerobic Digestion of Solid Waste, Copenhagen, Denmark; Ahring, BK, Hartmann, H, Eds.; August 31–September 2, 2005; 1, pp. 116–123. [Google Scholar]
- Mshandete, AM; Björnsson, L; Kivaisi, AK; Rubindamayugi, MST; Mattiasson, B. Two-stage anaerobic digestion of aerobic pre-treated sisal leaf decortications residues: Hydrolases activities and biogas production profile. Afr. J. Biochem. Res 2008, 2, 211–218. [Google Scholar]
- Chan, ASK; Parkin, TB. Methane oxidation and production activity in soils from natural and agricultural ecosystems. J. Environ. Qual 2001, 30, 1896–1903. [Google Scholar]
- Adney, WS; Rivard, CJ; Shiang, M; Himmel, ME. Anaerobic digestion of lignocellulosic biomass and wastes. Cellulases and related enzymes. Appl. Biochem. Biotechnol 1991, 30, 165–183. [Google Scholar]
- Lynd, LR; Weimer, PJ; van Zyl, WH; Pretorius, IS. Microbial cellulose utilization; Fundamentals and biotechnology. Microbiol. Mol. Biol. Rev 2002, 77, 506–577. [Google Scholar]
- Ballerini, D; Desmarquest, JP; Pourquie, J. Ethanol production from lignocellulosics: Large scale experimentation and economics. Bioresour. Technol 1994, 5, 17–23. [Google Scholar]
- Chen, H; Liu, L; Yang, Z; Li, Z. New process of Maize stalk amination treatment by steam explosion. Biomass Bioenergy 2005, 28, 411–417. [Google Scholar]
- Mshandete, A; Björnsson, L; Kivaisi, AK; Rubindamayugi, MST; Mattiasson, B. Effect of particles size on biogas yield from sisal fibres waste. Renew. Energ 2006, 31, 2385–2392. [Google Scholar]
- Lissens, G; Ahring, B; Verstraete, W. Pre-treatment technologies for enhanced energy and material recovery of agricultural and municipal organic waste in anaerobic digestion. In Proceedings of European Biogas Workshop—The Future of Biogas in Europe II; Esbjerg, Denmark, October 24 2003; Al Seadi, T, Holm-Nielson, JB, Eds.; pp. 79–85. [Google Scholar]
- Muthangya, M; Mshandete, AM; Kivaisi, AK. Enhancement of anaerobic digestion of sisal leaf decortication residues by biological pre-treatment. ARPN J Agr Biol Sci 2009, 4, 66–73. [Google Scholar]
- Debosz, K; Petersen, SO; Kure, LK; Ambus, P. Evaluating effects of sewage sludge and household compost on soil physical, chemical and microbiological properties. Appl. Soil. Ecol 2002, 19, 237–248. [Google Scholar]
- Dhouib, A; Hamza, M; Zouari, H; Mechichi, T; H’midi, R; Labat, M; Martínez, MJ; Sayadi, S. Autochthonous fungal strains with high ligninolytic activities from Tunisian biotopes. Afr. J. Biotehnol 2005, 4, 431–436. [Google Scholar]
- Stamets, P. Growing Gourmet and Medicinal Mushrooms, 3rd ed; Ten Speed Press: Berekely, CA, USA, 2000; pp. 201–325. [Google Scholar]
- Mshandete, A; Björnsson, L; Kivaisi, AK; Rubindamayugi, MST; Mattiasson, B. Enhancement of anaerobic batch digestion of sisal pulp waste by mesophilic aerobic pre-treatment. Water Res 2005, 39, 1569–1575. [Google Scholar]
- Ergüder, TH; Tezel, U; Güven, E; Demirer, GN. Anaerobic biotransformation and methane generation potential of cheese whey in batch and UASB reactors. Waste. Manage 2001, 21, 643–650. [Google Scholar]
- American Public Health Association, Standard Methods for Examination of Water and Wastewater, 19th ed; APHA: Washington DC, USA, 1995.
- Allen, SE. Chemical Analysis of Ecological Materials, 2nd ed; Blackwell Scientific Publications: Oxford, UK, 1989; p. 368. [Google Scholar]
- Lyimo, TJ; Pol, A; Op den Camp, HJM. Methane emission, sulphide concentration and redox potential profiles in Mtoni mangrove sediment, Tanzania. West Indian Ocean J. Ma. Sci 2002, 1, 71–80. [Google Scholar]
- Goering, HK; van Soest, PJ. Forage fibre analysis (apparatus, reagents, procedures and some applications). In Agricultural Handbook; Agricultural Research Service, United States Department of Agriculture: Washington DC, USA, 1970. [Google Scholar]
- Hammel, KE. Fungal degradation of lignin. In Driven by Nature: Plant Litter Quality and Decomposition; Cadisch, G, Giller, KE, Eds.; CAB International: Wallingford, UK, 1997; Chapter 2pp. 33–45. [Google Scholar]
- Mtui, G; Nakamura, Y. Bioconversion of lignocellulosic waste from selected dumping sites in Dar es Salaam, Tanzania. Biodegradation 2005, 16, 493–499. [Google Scholar]
- Okano, K; Kitagaw, M; Sasaki, Y; Watanabe, T. Conversion of Japanese red cedar (Cryptomeria japonica) into a feed for ruminants by white-rot basidiomycetes. Anim. Feed Sci. Technol 2005, 120, 235–243. [Google Scholar]
- Jung, HG; Valdez, FR; Hatfield, RD; Blanchette, RA. Cell wall composition and degradability of forage stem following chemical and biological treatment. J. Sci. Food Agric 1992, 58, 347–355. [Google Scholar]
- Odlare, M. Organic Residues—A Resource for Arable Soil PhD Dissertation; Swedish University of Agricultural Sciences: Uppsala, Sweden, 2005. [Google Scholar]
Determination | Untreated SLDR | Pre-treated (a) | Pre-treated (b) |
---|---|---|---|
Total solids (TS)% | 14.66 ± 0.14 | 11.19 ± 0.24 | 11.82 ± 1.19 |
Volatile solids (VS) (% of TS) | 81.89 ± 2.67 | 82.21 ± 0.35 | 80.70 ± 2.01 |
Organic carbona | 48.19 ± 3.87 | 47.22 ± 3.93 | 48.82 ± 2.73 |
Neutral detergent fibres (NDF)a | 44.5 ± 0.8 | 37.16 ± 1.65 | 36.00 ± 1.19 |
Acid detergent fibres (ADF)a | 41.0 ± 0.7 | 29.2 ± 1.27 | 29.2 ± 1.27 |
Lignina | 7.2. ± 1.6 | 6.03 ± 0.42 | 6.73 ± 0.98 |
Cellulosea | 64.1 ± 2.1 | 77.6 ± 3.6 | 66.5 ± 4.11 |
Hemicellulosea | 3.5 ± 0.3 | 7.96 ± 0.31 | 4.96 ± 0.31 |
Parameter | Untreated (mg/g) | Pre-treated (mg/g) | Mshandete et al. [3] |
---|---|---|---|
Phosphorous | 0.114 | 0.187 | 0.012 |
Sodium | 15.7 | 19.5 | 1.44 |
Potassium | 16.9 | 21.1 | 3.78 |
Total nitrogena | 1.46 | 1.54 | 0.01 |
Calcium | 32.1 | 23.9 | 0.59 |
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Muthangya, M.; Manoni Mshandete, A.; Kajumulo Kivaisi, A. Two-Stage Fungal Pre-Treatment for Improved Biogas Production from Sisal Leaf Decortication Residues. Int. J. Mol. Sci. 2009, 10, 4805-4815. https://doi.org/10.3390/ijms10114805
Muthangya M, Manoni Mshandete A, Kajumulo Kivaisi A. Two-Stage Fungal Pre-Treatment for Improved Biogas Production from Sisal Leaf Decortication Residues. International Journal of Molecular Sciences. 2009; 10(11):4805-4815. https://doi.org/10.3390/ijms10114805
Chicago/Turabian StyleMuthangya, Mutemi, Anthony Manoni Mshandete, and Amelia Kajumulo Kivaisi. 2009. "Two-Stage Fungal Pre-Treatment for Improved Biogas Production from Sisal Leaf Decortication Residues" International Journal of Molecular Sciences 10, no. 11: 4805-4815. https://doi.org/10.3390/ijms10114805
APA StyleMuthangya, M., Manoni Mshandete, A., & Kajumulo Kivaisi, A. (2009). Two-Stage Fungal Pre-Treatment for Improved Biogas Production from Sisal Leaf Decortication Residues. International Journal of Molecular Sciences, 10(11), 4805-4815. https://doi.org/10.3390/ijms10114805