Role of Oxidative Stress in Refractory Epilepsy: Evidence in Patients and Experimental Models
Abstract
:1. Introduction
2. Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS); Oxidative Stress and Antioxidant Defense Mechanisms: Biological Importance
2.1. Oxidative Stress
2.1.1. Free Radicals
2.1.2. Formation of Some ROS
2.1.3. Cellular and Extracellular Antioxidant Defense Mechanisms
2.1.3.1. High Molecular Weight Antioxidants
2.1.3.2. Low Molecular Weight Antioxidants
2.2. Participation of Oxidative Stress in Diseases of the Central Nervous System
- In patients with Parkinson’s disease (PD), FRs have been associated with several genes, such as SNCA, parkin, DJ-1, PINK1 and LRRK2, with a defect in complex I of the mitochondrial electron-transport chain and oxidative stress in substantia nigra [39,43]. Moreover, in experimental models, an excessive formation of ROS was found to lead to increased lipid peroxidation, oxidative damage of DNA, GSH depletion and enhanced SOD activity [43–50].
- In patients with Alzheimer’s disease, lipid peroxidation products and increased Aβ production have been shown to induce c-Jun-N-terminal-Kinase (JNK) pathways, leading to neuronal apoptosis, as well as to the production of 4-HNE, malondialdehyde (MDA), and the α,β-unsaturated aldehyde (acrolein). The latter are diffusible and highly reactive with other biomolecules, and are consequently neurotoxic [51–54].
- In patients with amyotrophic lateral sclerosis, several mechanisms have been implicated, including glutamate excitotoxicity; aberrant protein aggregates containing mutant Cu-Zn-SOD, mislocalization and aggregation of neurofilaments; oxidative damage by enhanced FR formation; and, mitochondrial dysfunction [55–60]. Recent evidence highlights the Peroxisome Proliferator-Activated Receptors (PPARs) as critical neuroprotective factors in ALS. PPARs can be activated by lipid peroxidation metabolites in ALS motor neurons, and this can prompt the expression of antioxidant enzymes such as GPx, GR, and Cu-Zn-SOD [61,62].
- In epileptic patients, there are several mechanisms related to FR production, which will be described in the following section.
3. Role of Oxidative Stress in Refractory Epilepsy
3.1. Epilepsy in General
3.1.1. Classification of Seizures
3.1.2. Refractory Epilepsy
Mechanisms Associated with Refractory Epilepsy
- Pharmacokinetic mechanisms (absorption, metabolism and elimination) are those which enable the attainment of antiepileptic drug concentrations at the site of action. They include inadequate dose administration (pseudo-resistance), subtherapeutic serum concentration, despite an appropriate dose, and the insufficient concentration of the active substance in the brain parenchyma, even when serum levels are within the therapeutic range. The biological effect of an antiepileptic drug is determined by the physical properties of the active principle. One of the most important properties is lipid solubility, which affects distribution in the different compartments of the CNS. In general, pharmacokinetic mechanisms influence absorption, metabolism and elimination of the drug with its metabolites [82,83,85–90].
- Pharmacodynamic mechanisms resistance alters the action of antiepileptic drugs at their sites of action (target sites) in the CNS despite adequate serum levels and concentrations in cerebral parenchyma. Pharmacodynamic alterations may occur at the synapses (site of neuronal communication) or at the effector sites located in the neuronal membrane (ion channels and receptors) [82,83].
- The carrier hypothesis emphasizes the seizure focus, where there is an increased expression of proteins that can carry pharmaceuticals. These proteins are mainly P-glycoproteins (PgP) and their increased expression is due to changes in the acquired epileptic focus or because of a genetic variation the gene that encodes it. The drug-refractory state is related to an increased expression of a gene involved in multidrug resistance (MDR, “Multidrug Resistence”) and the gene encoding PgP. The latter is an ATP-dependent protein, which exports drugs and toxic material from the cells into the bloodstream. That is, there is no transport of the drug out of the epileptic focus. These proteins, predominantly expressed in both endothelial cells and astrocytes, regulate the capacity of antiepileptic drugs to cross the blood–brain barrier and the blood-cerebral spinal fluid (CSF) barrier. As a result of the upregulation of PgP, decreased concentrations of phenytoin and oxcarbazepine have been observed in epileptic foci. It is possible that the intracerebral administration of verapamil and PSC833 (PgP inhibitors) could avoid the extracellular transport to the bloodstream of antiepileptic drugs, which would thus facilitate their action in the brain [89,91–96].
- The modification of the drug targets hypothesis on changes in receptor expression, or the amount of ion channels at the cellular level within the epileptic area, makes it less susceptible to antiepileptic drugs. For example, changes have been observed in sodium channels and voltage-dependent calcium channels, as well as Gamma-aminobutyric acid-A (GABA-A) receptors, leading to reduced efficacy of various antiepileptic drugs. These alterations in the structure and/or functionality of the drug target of antiepileptic drugs in the brain can be intrinsic (genetic) and acquired (disease-related) [82,88,92,95].
- The hypothesis called the intrinsic gravity model of epilepsy proposes that there is a continuum of disease severity that determines the patient’s relative response to medication. According to recent studies, a high frequency of seizures in the early phase of epilepsy is the dominant risk factor influencing the possibility of remission of seizures. This risk factor surpasses the contribution of other possible factors associated with prognosis, including the etiology of epilepsy, seizure type, or the result of EEG or imaging. Thus the failure of antiepileptic drugs can be explained, according to this hypothesis, by evaluating differences in the severity of epilepsy based on the frequency of seizures during the early stages of the disease [88,97].
3.2. Evidence of Participation of Oxidative Stress in Refractory Epilepsy
3.2.1. Evidence from Experimental Models
- The ketogenic diet has been used for almost 80 years in the treatment of refractory epilepsy, although the biochemical mechanisms involved are unknown. Ziegler et al. [101] studied the role of the oxidative stress in the effect of this kind of diet on Wistar rats, determining lipoperoxidation levels and enzyme activities of GPx, CAT, and SOD in different brain regions of Wistar rats fed a ketogenic diet. They observed that there were no changes in cerebral cortex, but that in the cerebellum, there was a decrease in total antioxidant capacity, measured by a luminol oxidation assay, in spite of the lack of change in antioxidant enzyme activity. In the hippocampus, they observed an increase in antioxidant activity with an approximately four-fold increase of GPx accompanied by no change in lipoperoxidation levels. These results were the first to suggest that the higher activity of this enzyme in the hippocampus induced by the ketogenic diet could be a mechanism of protection against neurodegenerative damage normally induced by convulsive disorders in this structure [101].
- Lehtinen et al.[102] studied the participation of Cystatin B, an inhibitor of lysosomal Cathepsins, primary genetic cause of the Unverricht-Lundborg type (EPM1), part of progressive myoclonus epilepsies (PME). They studied the role of Cystatin B (an inhibitor of lysosomal Cathepsins) in regulating redox homeostasis and oxidative stress responses in transfected mice, using a plasmid-based method of RNA. Rat granule neurons were transfected with the Cystatin B hpRNA or control U6 plasmid, together with the β-galactosidase expression plasmid. First, they exposed transfected neurons to oxidative conditions before inoculating them into mice. In the neurons transfected with Cystatin B, the damage induced by exposure to oxidants was reduced, evidenced by a decrease in the percentage of cell death. After this experiment, the protective capacity of transfecting neurons with Cystatin B was tested in knockout mice, observing the effects on the Cystatin B −/− gene in oxidative conditions. It was found that these transfected neurons were protected from oxidative damage that can produce cell death (in the presence of H2O2 and glutamate).
3.2.2. Studies in Patients
4. Therapeutic Relevance
5. Conclusions
Acknowledgments
- Conflict of InterestThe authors declare no conflict of interest.
References
- Valko, M.; Rhodes, C.; Moncol, J.; Izakovic, M.; Mazur, M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact 2006, 160, 1–40. [Google Scholar]
- Halliwell, B.; Gutteridge, M. Free Radicals in Biology and Medicine, 3rd ed; Oxford University Press: New York, NY, USA, 1999. [Google Scholar]
- Valko, M.; Izakovic, M.; Mazur, M.; Rhodes, C.; Telser, J. Role of oxygen radicals in DNA damage and cancer incidence. Mol. Cell. Biochem 2004, 266, 37–56. [Google Scholar]
- Inoue, M.; Sato, E.; Nishikawa, M.; Park, A.; Kira, Y.; Imada, I.; Utsumi, K. Mitochondrial generation of reactive oxygen species and its role in aerobic life. Curr. Med. Chem 2003, 10, 2495–2505. [Google Scholar]
- Winterbourn, C. Superoxide as an intracellular radical sink. Free Radic. Biol. Med 1993, 14, 85–90. [Google Scholar]
- Bae, Y.S.; Oh, H.; Rhee, S.G.; Yoo, Y.D. Regulation of reactive oxygen species generation in cell signaling. Mol. Cells 2011, 32, 491–509. [Google Scholar]
- Vandelle, E.; Delledonne, M. Peroxynitrite formation and function in plants. Plant. Sci 2011, 181, 534–539. [Google Scholar]
- Knowles, R.; Moncada, S. Nitric oxide synthases in mammals. Biochem. J 1994, 298, 249–258. [Google Scholar]
- Alderton, W.; Cooper, C.; Knowles, R. Nitric oxide synthases: Structure, function and inhibition. Biochem. J 2001, 357, 593–615. [Google Scholar]
- Van der Veen, B.S.; de Winther, M.P.; Heeringa, P. Myeloperoxidase: Molecular mechanisms of action and their relevance to human health and disease. Antioxid. Redox Signal 2009, 11, 2899–2937. [Google Scholar]
- Burke, K.E.; Wei, H. Synergistic damage by UVA radiation and pollutants. Toxicol. Ind. Health 2009, 25, 219–224. [Google Scholar]
- Ohta, H.; Adachi, T.; Hirano, K. Internalization of human extracellular-superoxide dismutase by bovine aortic endotelial cells. Free Radic. Biol. Med 1994, 16, 501–507. [Google Scholar]
- Marklund, S.; Westman, N.; Lundgren, E.; Ross, G. Copper- and zinc-containing superooxide dismutase, manganese-containing superoxide dismutase, catalase, and glutathione peroxidase in normal and neoplastic human cell lines and normal human tissues. Cancer Res 1982, 42, 1955–1961. [Google Scholar]
- Cheng, L.; Kellog, E.; Packer, L. Photoinactivation of catalase. Photochem. Photobiol 1981, 34, 125–129. [Google Scholar]
- Savaskan, N.E.; Ufer, C.; Kühn, H.; Borchert, A. Molecular biology of glutathione peroxidase 4: From genomic structure to developmental expression and neural function. Biol. Chem 2007, 388, 1007–1017. [Google Scholar]
- Brigelius-Flohe, R. Tissue-Specific functions of individual glutathione peroxidases. Free Radic. Biol. Med 1999, 27, 951–965. [Google Scholar]
- Chu, F.; Esworthy, R.; Doroshow, J. Role of se-dependent glutathione peroxidases in gastrointestinal inflammation and cancer. Free Radic. Biol. Med 2004, 36, 1481–1495. [Google Scholar]
- Comhair, S.; Erzurum, S. The regulation and role of extracellular glutathione peroxidase. Antioxid. Redox Signal 2005, 1, 72–79. [Google Scholar]
- Hirotaka, I.; Yasuhito, N. Biological significance of phospholipid hydroperoxide gluathione peroxidase (PHGPx, GPx4) in mammalian cells. Free Radic. Biol. Med 2003, 2, 145–169. [Google Scholar]
- Untucht-Grau, R.; Schirmer, R.H.; Schirmer, I.; Krauth-Siegel, R.L. Glutathione reductase from human erythrocytes: Amino-Acid sequence of the structurally known FAD-binding domain. Eur. J. Biochem 1981, 120, 407–419. [Google Scholar]
- Harris, D. Regulation of antioxidant enzymes. FASEB J 1992, 6, 2675–2683. [Google Scholar]
- Sharma, R.; Yang, Y.; Sharma, A.; Awasthi, S.; Awasthi, Y. Antioxidant role of glutathione S-transferases: protection against oxidant toxicity and regulation of stress-mediated apoptosis. Antiox. Redox Signal 2004, 6, 289–291. [Google Scholar]
- Higgins, L.G.; Hayes, J.D. Mechanisms of induction of cytosolic and microsomal glutathione transferase (GST) genes by xenobiotics and pro-inflammatory agents. Drug Metab. Rev 2011, 43, 92–137. [Google Scholar]
- Oakley, A. Glutathione transferases: a structural perspective. Drug Metab. Rev 2011, 43, 138–151. [Google Scholar]
- Collet, J.F.; Messens, J. Structure, function, and mechanism of thioredoxin proteins. Antioxid. Redox Signal 2010, 13, 1205–1216. [Google Scholar]
- Nordberg, J.; Arner, E. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic. Biol. Med 2001, 31, 1287–1312. [Google Scholar]
- Hirotsu, S.; Abe, Y.; Okada, K.; Nagahara, N.; Hori, H.; Nishino, T.; Hakoshima, T. Cristal structure of multifunctional 2-Cys peroxiredoxin heme-binding protein 23 kDa/proliferation-associated gene product. Proc. Natl. Acad. Sci. USA 1999, 96, 12333–12338. [Google Scholar]
- Aran, M.; Ferrero, D.S.; Pagano, E.; Wolosiuk, R.A. Typical 2-Cys peroxiredoxins—Modulation by covalent transformations and noncovalent interactions. FEBS J 2009, 276, 2478–2493. [Google Scholar]
- Riccioni, G.; D’Orazio, N.; Salvatore, C.; Franceschelli, S.; Pesce, M.; Speranza, L. Carotenoids and vitamins C and E in the prevention of cardiovascular disease. Int. J. Vitam. Nutr. Res 2012, 82, 15–26. [Google Scholar]
- Da Costa, L.A.; Badawi, A.; El-Sohemy, A. Nutrigenetics and modulation of oxidative stress. Ann. Nutr. Metab 2012, 60, 27–36. [Google Scholar]
- Cos, P.; Ying, L.; Calomme, M.; Hu, J.P.; Cimanga, K.; Van Poel, B.; Pieters, L.; Vlietinck, A.J.; Vanden, B.D. Structure-Activity relationship and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers. J. Nat. Prod 1998, 61, 71–76. [Google Scholar]
- Spencer, J.P. Beyond antioxidants: The cellular and molecular interactions of flavonoids and how these underpin their actions on the brain. Proc. Nutr. Soc 2010, 69, 244–260. [Google Scholar]
- Spencer, J.P. Flavonoids: Modulators of brain function? Br. J. Nutr 2008, 99, ES60–77. [Google Scholar]
- Steffen, Y.; Gruber, C.; Schewe, T.; Sies, H. Mono-O-Methylated flavanols and other flavonoids as inhibitors of endothelial NADPH oxidase. Arch. Biochem. Biophys 2008, 469, 209–219. [Google Scholar]
- Park, S.S.; Bae, I.; Lee, Y.J. Flavonoids-Induced accumulation of hypoxia-inducible factor (HIF)-1alpha/2alpha is mediated through chelation of iron. J. Cell. Biochem 2008, 103, 989–998. [Google Scholar]
- Spencer, J.P. Flavonoids and brain health: Multiple effects underpinned by common mechanisms. Genes Nutr 2009, 4, 243–250. [Google Scholar]
- Lai, H.C.; Wu, M.J.; Chen, P.Y.; Sheu, T.T.; Chiu, S.P.; Lin, M.H.; Ho, C.T.; Yen, J.H. Neurotrophic effect of citrus 5-hydroxy-3,6,7,8,3′,4′-hexamethoxyflavone: Promotion of neurite outgrowth via cAMP/PKA/CREB pathway in PC12 cells. PLoS One 2011, 6, e28280. [Google Scholar]
- Naseer, M.I.; Ullah, I.; Ullah, N.; Lee, H.Y.; Cheon, E.W.; Chung, J.; Kim, M.O. Neuroprotective effect of vitamin C against PTZ induced apoptotic neurodegeneration in adult rat brain. Pak. J. Pharm. Sci 2011, 24, 263–268. [Google Scholar]
- Floyd, R.; Carney, J. Free radical damage to protein and DNA: Mechanisms involved and relevant observations on brain undergoing oxidative stress. Ann. Neurol 1992, 32, S22–S27. [Google Scholar]
- Kosiakov, K.S. Blood catalase activity in brain tumors during the postoperative period. Vop. Neirokthir 1975, 6, 41–44. [Google Scholar]
- Henchcliffe, C.; Beal, M.F. Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nat. Clin. Pract. Neurol 2008, 4, 600–609. [Google Scholar]
- Wood-Kaczmar, A.; Gandhi, S.; Wood, N.W. Understanding the molecular causes of Parkinson’s disease. Trends Mol. Med 2006, 12, 521–528. [Google Scholar]
- Dexter, D.T.; Holley, A.E.; Flitter, W.D.; Slater, T.F.; Wells, F.R.; Daniel, S.E.; Lees, A.J.; Jenner, P.; Marsden, C.D. Increased levels of lipid hydroperoxides in the parkinsonian substantia nigra: An HPLC and ESR study. Mov. Disord 1994, 9, 92–97. [Google Scholar]
- Sanyal, J.; Bandyopadhyay, S.K.; Banerjee, T.K.; Mukherjee, S.C.; Chakraborty, D.P.; Ray, B.C.; Rao, V.R. Plasma levels of lipid peroxides in patients with Parkinson’s disease. Eur. Rev. Med. Pharmacol. Sci 2009, 13, 129–132. [Google Scholar]
- Bolner, A.; Pilleri, M.; de Riva, V.; Nordera, G.P. Plasma and urinary HPLC-ED determination of the ratio of 8-OHdG/2-dG in Parkinson’s disease. Clin. Lab 2011, 57, 859–866. [Google Scholar]
- Gencer, M.; Dasdemir, S.; Cakmakoglu, B.; Cetinkaya, Y.; Varlibas, F.; Tireli, H.; Kucukali, C.I.; Ozkok, E.; Aydin, M. DNA repair genes in Parkinson’s disease. Genet. Test Mol. Biomark 2012, 16, 504–507. [Google Scholar]
- Maetzler, W.; Schmid, S.P.; Wurster, I.; Liepelt, I.; Gaenslen, A.; Gasser, T.; Berg, D. Reduced but not oxidized cerebrospinal fluid glutathione levels are lowered in Lewy body diseases. Mov. Disord 2011, 26, 176–181. [Google Scholar]
- Sofic, E.; Lange, K.W.; Jellinger, K.; Riederer, P. Reduced and oxidized glutathione in the substantia nigra of patients with Parkinson’s disease. Neurosci. Lett 1992, 17, 128–130. [Google Scholar]
- Saggu, H.; Cooksey, J.; Dexter, D.; Wells, F.R.; Lees, A.; Jenner, P.; Marsden, C.D. A selective increase in particulate superoxide dismutase activity in parkinsonian substantia nigra. J. Neurochem 1989, 53, 692–697. [Google Scholar]
- Kushleika, J.; Checkoway, H.; Woods, J.S.; Moon, J.D.; Smith-Weller, T.; Franklin, G.M.; Swanson, P.D. Selegiline and lymphocyte superoxide dismutase activities in Parkinson’s disease. Ann. Neurol 1996, 39, 378–381. [Google Scholar]
- Tang, S.C.; Lathia, J.D.; Selvaraj, P.K.; Jo, D.G.; Mughal, M.R.; Cheng, A.; Siler, D.A.; Markesbery, W.R.; Arumugam, T.V.; Mattson, M.P. Toll-Like receptor-4 mediates neuronal apoptosis induced by amyloidbeta-peptide and the membrane lipid peroxidation product 4-hydroxynonenal. Exp. Neurol 2008, 213, 114–121. [Google Scholar]
- Esterbauer, H.; Schaur, R.J.; Zollner, H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic. Biol. Med 1991, 11, 81–128. [Google Scholar]
- Markesbery, W.R.; Lovell, M.A. 4-Hydroxynonenal, a product of lipid peroxidation, is increased in the brain in Alzheimer’s disease. Neurobiol. Aging 1998, 19, 33–36. [Google Scholar]
- Montine, K.S.; Olson, S.J.; Amarnath, V.; Whetsell, W.O.; Graham, D.G., Jr; Montine, T.J. Immunohistochemical detection of 4-hydroxy-2-nonenal adducts in Alzheimer’s disease is associated with inheritance of APOE4. Am. J. Pathol. 1997, 150, 437–443. [Google Scholar]
- Maragakis, N.J.; Rothstein, J.D. Glutamate transporters in neurologic disease. Arch. Neurol 2001, 58, 365–370. [Google Scholar]
- Rothstein, J.D. Excitotoxic mechanisms in the pathogenesis of amyotrophic lateral sclerosis. Adv. Neurol 1995, 68, 7–20. [Google Scholar]
- Wood, J.D.; Beaujeux, T.P.; Shaw, P.J. Protein aggregation in motor neurone disorders. Neuropathol. Appl. Neurobiol 2003, 29, 529–545. [Google Scholar]
- Lariviere, R.C.; Julien, J.P. Functions of intermediate filaments in neuronal development and disease. J. Neurobiol 2004, 58, 131–148. [Google Scholar]
- Aga, J.; Durham, H. Relevance of oxidative injury in the pathogenesis of motor neuron diseases. Amyotroph Lateral Scler Other Motor Neuron. Disord 2003, 4, 232–242. [Google Scholar]
- Xu, Z.; Jung, C.; Higgins, C.; Levine, J.; Kong, J. Mitochondrial degeneration in amyotrophic lateral sclerosis. J. Bioenerg. Biomembr 2004, 36, 395–399. [Google Scholar]
- Benedusi, V.; Martorana, F.; Brambilla, L.; Maggi, A.; Rossi, D. The Peroxisome Proliferator-Activated Receptor γ (PPARγ) controls natural protective mechanisms against lipid peroxidation in Amyotrophic Lateral Sclerosis. J. Biol. Chem 2012, in press. [Google Scholar]
- Cova, E.; Bongioanni, P.; Cereda, C.; Metelli, M.R.; Salvaneschi, L.; Bernuzzi, S.; Guareschi, S.; Rossi, B.; Ceroni, M. Time course of oxidant markers and antioxidant defenses in subgroups of amyotrophic lateral sclerosis patients. Neurochem. Int 2010, 56, 687–693. [Google Scholar]
- Engel, J.J. Concepts of Epilepsy. Epilepsia 1995, 36, S23–S29. [Google Scholar]
- Hauser, A.W.; Annegers, F.J.; Kurland, T.L. Incidence of epilepsy and unprovoked seizures in Rochester, Minnesota. Epilepsia 1993, 34, 453–468. [Google Scholar]
- Dichter, M.A. Emerging insights into mechanisms of epilepsy: Implications for new anmtiepileptic drug development. Epilepsia 1994, 35, S51–S57. [Google Scholar]
- Newton, C.R.; Garcia, H.H. Epilepsy in poor regions of the world. Lancet 2012, 29, 1193–1201. [Google Scholar]
- Neligan, A.; Hauser, W.A.; Sander, J.W. The epidemiology of the epilepsies. Handb. Clin. Neurol 2012, 107, 113–133. [Google Scholar]
- Téllez-Zenteno, J.F.; Hernández-Roquillo, L. A review of the epidemiology of temporal lobe epilepsy. Epilepsy Res. Treat. 2012, in press. [Google Scholar]
- Berg, A.T. Classification and epilepsy: The future awaits. Epilepsy Curr 2011, 11, 138–140. [Google Scholar]
- Fisher, R.S.; Frost, J. Epilepsy. J. Nucl. Med 1991, 32, 651–659. [Google Scholar]
- Davidson, P.N.; Davidson, K.A. Electroencephalography in the elderly. Neurodiagn. J 2012, 52, 3–19. [Google Scholar]
- Engel, J.J.; Starkman, S. Overview of seizures. Emerg. Med. Clin. North Am 1994, 12, 895–923. [Google Scholar]
- Engel, J.J.; Pedley, A.T. Introduction to the epilepsies. In Epilepsy, A Comprehensive Textbook, 1st ed; Lippincott-Raven, Ed: Philadelphia, PA, USA, 1997; pp. 765–772. [Google Scholar]
- Annergers, J.F.; Grabow, J.D.; Groover, R.V. Seizures after head trauma: A population study. Neurology 1980, 30, 683–689. [Google Scholar]
- ILAE. Commision on classification and terminology of the international league against epilepsy: Proposal for revised classification and electroencephalographic classification of epileptic seizures. Epilepsia 1981, 22, 489–501.
- ILAE. Commision on classification and termnology of the international league against epilepsy: Proposal for revised classification of epilepsies and epileptic syndromes. Epilepsia 1989, 30, 389–399.
- Berg, A.T.; Cross, J.H. Classification of epilepsies and seizures: Historical perspective and future directions. Handb. Clin. Neurol 2012, 107, 99–111. [Google Scholar]
- Cavanna, A.E.; Rickards, H.; Ali, F. What makes a simple partial seizure complex? Epilepsy Behav 2011, 22, 651–658. [Google Scholar]
- Bergamini, L.; Broglia, S.; Riccio, A.; Franchini, V. Favorable results of ACTH therapy in different types of epilepsy resistant to all classical drug therapy (21 cases followed-up for more than 6 months). Riv. Neurol 1966, 36, 49–62. [Google Scholar]
- Falconer, M.A.; Taylor, D.C. Surgical treatment of drug-resistant epilepsy due to mesial temporal sclerosis. Etiology and significance. Arch. Neurol 1968, 19, 353–361. [Google Scholar]
- Brandt, S. Resistant transitory epilepsy in children. Acta Neurol. Scand 1976, 53, 119–127. [Google Scholar]
- Chayasirisobhon, S. The mechanisms of medically refractory temporal lobe epilepsy. Acta Neurol. Taiwan 2009, 18, 155–160. [Google Scholar]
- Zambrano, M.T.; Támara, E.C.; Ballestas, J.M.C. Resistencia farmacológica en epilepsia. Acta Neurol. Colomb 2007, 23, 278–285. [Google Scholar]
- Beleza, P. Refractory Epilepsy: A Clinically Oriented Review. Eur. Neurol 2009, 62, 65–71. [Google Scholar]
- Bachelard, H.S.; Thompson, M.F.; Polkey, C.E. Kinetic properties of hexokinase in resected temporal lobes of patients with drug-resistant epilepsy. Epilepsia 1975, 16, 431–437. [Google Scholar]
- Zaccara, G.; Galli, A.; Rossi, L.; Zappoli, R.; Zatelli, L.; Amaducci, L. Plasma levels of diphenylhydantoin (DPH) and phenobarbitone (PB) in epileptic patients resistant to drug treatment (author’s translation). Riv. Patol. Nerv. Ment 1977, 98, 363–375. [Google Scholar]
- Broeker, H.; Müller, D.; Müller, J.; Walther, H. Serum anticonvulsant levels in therapy-resistant epileptics. Psychiatr. Neurol. Med. Psychol. (Leipz) 1980, 32, 541–549. [Google Scholar]
- Alvarez, J.C.S.; Castro, P.J.S.; Fernández, J.M.S. Clinical implications of mechanisms of resistance to antiepileptic drugs. Neurologist 2007, 13, S38–S46. [Google Scholar]
- Rambeck, B.; Jürgens, U.H.; May, T.W.; Pannek, H.W.; Behne, F.; Ebner, A.; Gorji, A.; Straub, H.; Speckmann, E.J.; Pohlmann-Eden, B.; Löscher, W. Comparison of brain extracellular fluid, brain tissue, cerebrospinal fluid, and serum concentrations of antiepileptic drugs measured intraoperatively in patients with intractable epilepsy. Epilepsia 2006, 47, 681–694. [Google Scholar]
- Höcht, C.; Lazarowski, A.; Gonzalez, N.N.; Auzmendi, J.; Opezzo, J.A.; Bramuglia, G.F.; Taira, C.A.; Girardi, E. Nimodipine restores the altered hippocampal phenytoin pharmacokinetics in a refractory epileptic model. Neurosci. Lett. 2007, 413, 168–172. [Google Scholar]
- Löscher, W.; Potschka, H. Role of multidrug transporters in pharmacoresistance to antiepileptic drugs. J. Pharmacol. Exp. Ther 2002, 301, 7–14. [Google Scholar]
- Löscher, W. Mechanisms of drug resistance. Epileptic Disord 2005, 7, S3–S9. [Google Scholar]
- Ban, J.J.; Jung, K.H.; Chu, K.; Lee, S.T.; Jeon, D.; Park, K.I.; Moon, H.J.; Kim, H.; Kim, S.; Lee, S.K.; Roh, J.K. Profiles of multidrug resistance protein-1 in the peripheral blood mononuclear cells of patients with refractory epilepsy. PLoS One 2012, 7, e36985. [Google Scholar]
- Lazarowski, A.; Czornyj, L. Potential role of multidrug resistant proteins in refractory epilepsy and antiepileptic drugs interactions. Drug Metabol. Drug Interact 2011, 26, 21–26. [Google Scholar]
- Robey, R.W.; Lazarowski, A.; Bates, S.E. P-Glycoprotein—A clinical target in drug-refractory epilepsy? Mol. Pharmacol 2008, 73, 1343–1346. [Google Scholar]
- Volk, H.A.; Löscher, W. Multidrug resistance in epilepsy: Rats with drug-resistant seizures exhibit enhanced brain expression of P-glycoprotein compared with rats with drug-responsive seizures. Brain 2005, 128, 1358–1368. [Google Scholar]
- Schmidt, D.; Löscher, W. New developments in antiepileptic drug resistance: An integrative view. Epilepsy Curr 2009, 9, 47–52. [Google Scholar]
- Choi, B.H. Oxygen, antioxidants and brain dysfunction. Yonsei Med. J 1993, 34, 1–10. [Google Scholar]
- Bondy, S.C. The relation of oxidative stress and hyperexcitation to neurological disease. Proc. Soc. Exp. Biol. Med 1995, 208, 337–345. [Google Scholar]
- Dalton, T.; Pazdernik, T.L.; Wagner, J.; Samson, F.; Andrews, G.K. Temporal spatial patterns of expression of metallothionein-I and -III and other stress related genes in rat brain after kainic acid-induced seizures. Neurochem. Int 1995, 27, 59–71. [Google Scholar]
- Ziegler, D.R.; Ribeiro, L.C.; Hagenn, M.; Siqueira, I.R.; Araújo, E.; Torres, I.L.; Gottfried, C.; Netto, C.A.; Gonçalves, C.A. Ketogenic diet increases glutathione peroxidase activity in rat hippocampus. Neurochem. Res 2003, 28, 1793–1797. [Google Scholar]
- Lehtinen, M.K.; Tegelberg, S.; Schipper, H.; Su, H.; Zukor, H.; Manninen, O.; Kopra, O.; Joensuu, T.; Hakala, P.; Bonni, A.; Lehesjoki, A.E. Cystatin B deficiency sensitizes neurons to oxidative stress in progressive myoclonus epilepsy, EPM1. J. Neurosci 2009, 29, 5910–5915. [Google Scholar]
- Ben-Menachem, E.; Kyllerman, M.; Marklund, S. Superoxide dismutase and glutathione peroxidase function in progressive myoclonus epilepsies. Epilepsy Res 2000, 40, 33–39. [Google Scholar]
- Shiihará, T.; Kato, M.; Ichiyama, T.; Takahashi, Y.; Tanuma, N.; Miyata, R.; Hayasaka, K. Acute encephalopathy with refractory status epilepticus: Bilateral mesial temporal and claustral lesions, associated with a peripheral marker of oxidative DNA damage. J. Neurol. Sci 2006, 250, 159–161. [Google Scholar]
- Hayashi, M.; Tanuma, N.; Miyata, R. The involvement of oxidative stress in epilepsy. In Handbook of Free Radicals: Formation, Types and Effects; Kozyrev, D., Slutsky, V., Eds.; Nova Science Publishers: New York, NY, USA, 2010; pp. 305–318. [Google Scholar]
- López, J.; González, M.E.; Lorigados, L.; Morales, L.; Riverón, G.; Bauzá, J.Y. Oxidative stress markers in surgically treated patients with refractory epilepsy. Clin. Biochem 2007, 40, 292–298. [Google Scholar]
- Faust, K.; Gehrke, S.; Yang, Y.; Yang, L.; Beal, F.; Lu, B. Neuroprotective effects of compounds with antioxidant and anti-inflammatory properties in a Drosophila model of Parkinson’s disease. BMC Neurosci 2009, 10, 109–121. [Google Scholar]
- Löscher, W. Animal models of epilepsy for the development of antiepileptogenic and disease-modifying drugs. A comparison of the pharmacology of kindling and post-status epilepticus models of temporal lobe epilepsy. Epilepsy Res 2002, 50, 105–123. [Google Scholar]
- Pitkänen, A. Drug-Mediated neuroprotection and antiepileptogenesis: Animal data. Neurology 2002, 59, S27–S33. [Google Scholar]
- Engel, J., Jr; Wilson, C.; Bragin, A. Advances in understanding the process of epileptogenesis based on patient material: What can the patient tell us? Epilepsia 2003, 44, 60–71. [Google Scholar]
- Majores, M.; Schoch, S.; Lie, A.; Becker, A.J. Molecular neuropathology of temporal lobe epilepsy: Complementary approaches in animal models and human disease tissue. Epilepsia 2007, 48, 4–12. [Google Scholar]
- Nanjo, F.; Goto, K.; Seto, R.; Suzuki, M.; Sakai, M.; Hara, Y. Scavenging effects of tea catechins and their derivatives on 1,1-diphenyl-2-picrylhydrazyl radical. Free Radic. Biol. Med 1996, 21, 895–902. [Google Scholar]
- Panickar, K.S.; Polansky, M.M.; Anderson, R.A. Green tea polyphenols attenuate glial swelling and mitochondrial dysfunction following oxygen–glucose deprivation in cultures. Nutr. Neurosci 2009, 12, 105–113. [Google Scholar]
- Abdin, A.A.; Hamouda, H.E. Mechanism of the neuroprotective role of coenzyme Q10 with or without l-dopa in rotenone-induced parkinsonism. Neuropharmacology 2008, 55, 1340–1346. [Google Scholar]
- Kooncumchoo, P.; Sharma, S.; Porter, J.; Govitrapong, P.; Ebadi, M. Coenzyme Q(10) provides neuroprotection in iron-induced apoptosis in dopaminergic neurons. J. Mol. Neurosci 2006, 28, 125–141. [Google Scholar]
- Sen, C.K.; Khanna, S.; Roy, S. Tocotrienol: The natural vitamin E to defend the nervous system? Ann. N. Y. Acad. Sci 2004, 1031, 127–142. [Google Scholar]
- Saito, Y.; Nishio, K.; Akazawa, Y.O.; Yamanaka, K.; Miyama, A.; Yoshida, Y.; Noguchi, N.; Niki, E. Cytoprotective effects of vitamin E homologues against glutamate-induced cell death in immature primary cortical neuron cultures: Tocopherols and tocotrienols exert similar effects by antioxidant function. Free Radic. Biol. Med 2010, 49, 1542–1549. [Google Scholar]
- Khanna, S.; Roy, S.; Parinandi, N.L.; Maurer, M.; Sen, C.K. Characterization of the potent neuroprotective properties of the natural vitamin E alpha-tocotrienol. J. Neurochem 2006, 98, 1474–1486. [Google Scholar]
- da Tomé, A. R.; Ferreira, P.M.; Freitas, R.M. Inhibitory action of antioxidants (ascorbic acid or alpha-tocopherol) on seizures and brain damage induced by pilocarpine in rats. Arq. Neuropsiquiatr 2010, 68, 355–361. [Google Scholar]
- Santos, I.M.; da Tomé, A.R.; Saldanha, G.B.; Ferreira, P.M.; Militão, G.C.; Freitas, R.M. Oxidative stress in the hippocampus during experimental seizures can be ameliorated with the antioxidant ascorbic acid. Oxid. Med. Cell Longev 2009, 2, 214–221. [Google Scholar]
- Zaidi, S.M.; Banu, N. Antioxidant potential of vitamins A, E and C in modulating oxidative stress in rat brain. Clin. Chim. Acta 2004, 340, 229–233. [Google Scholar]
- De Freitas, R.M. Lipoic acid alters delta-aminolevulinic dehydratase, glutathione peroxidase and Na+, K+-ATPase activities and glutathione-reduced levels in rat hippocampus after pilocarpine-induced seizures. Cell Mol. Neurobiol 2010, 30, 381–387. [Google Scholar]
- Pence, S.; Erkutlu, I.; Kurtul, N.; Bosnak, M.; Alptekin, M.; Tan, U. Antiepileptogenic effects of glutathione against increased brain ADA in PTZ-induced epilepsy. Int. J. Neurosci 2009, 119, 616–629. [Google Scholar]
- Chung, S.Y.; Han, S.H. Melatonin attenuates kainic acid-induced hippocampal neurodegeneration and oxidative stress through microglial inhibition. J. Pineal Res 2003, 34, 95–102. [Google Scholar]
- Giusti, P.; Lipartiti, M.; Franceschini, D.; Schiavo, N.; Floreani, M.; Manev, H. Neuroprotection by melatonin from kainate-induced excitotoxicity in rats. FASEB J 1996, 10, 891–896. [Google Scholar]
- Bochyńska, A.; Lipczyńska-Łojkowska, W.; Gugała-Iwaniuk, M.; Lechowicz, W.; Restel, M.; Graban, A.; Lipska, B.; Ryglewicz, D. The effect of vitamin B supplementation on homocysteine metabolism and clinical state of patients with chronic epilepsy treated with carbamazepine and valproic acid. Seizure 2012, 21, 276–281. [Google Scholar]
- Belcastro, V.; Striano, P. Vitamin B12, folate and hyperhomocysteinemia in patients with epilepsy. Ann. Neurol 2011, 69, 1067–1068. [Google Scholar]
- Ohtahara, S.; Yamatogi, Y.; Ohtsuka, Y. Vitamin B(6) treatment of intractable seizures. Brain Dev 2011, 33, 783–789. [Google Scholar]
- Rabie, T.; Mühlhofer, W.; Bruckner, T.; Schwab, A.; Bauer, A.T.; Zimmermann, M.; Bonke, D.; Marti, H.H.; Schenkel, J. Transient protective effect of B-vitamins in experimental epilepsy in the mouse brain. J. Mol. Neurosci. 2010, 41, 74–79. [Google Scholar]
- Bacman, S.R.; Williams, S.L.; Hernandez, D.; Moraes, C.T. Modulating mtDNA heteroplasmy by mitochondria-targeted restriction endonucleases in a “differential multiple cleavage-site” model. Gene Ther 2007, 14, 1309–1318. [Google Scholar]
- Chuang, Y.C. Mitochondrial dysfunction and oxidative stress in seizure-induced neuronal cell death. Acta Neurol. Taiwan 2010, 19, 3–15. [Google Scholar]
- Lim, S.T.; Airavaara, M.; Harvey, B.K. Viral vectors for neurotrophic factor delivery: A gene therapy approach for neurodegenerative diseases of the CNS. Pharmacol. Res 2010, 61, 14–26. [Google Scholar]
- Murphy, M.P.; Smith, R.A. Drug delivery to mitochondria: The key to mitochondrial medicine. Adv. Drug Deliv. Rev 2000, 41, 235–250. [Google Scholar]
- Gruber, J.; Fong, S.; Chen, C.B.; Yoon, S.; Pastorin, G.; Schaffer, S.; Cheah, I.; Halliwell, B. Mitochondria-Targeted antioxidants and metabolic modulators as pharmacological interventions to slow. Ageing Biotechnol. Adv. 2012, in press. [Google Scholar]
- Rocha, M.; Hernandez-Mijares, A.; Garcia-Malpartida, K.; Bañuls, C.; Bellod, L.; Victor, V.M. Mitochondria-Targeted antioxidant peptides. Curr. Pharm. Des 2010, 16, 3124–3131. [Google Scholar]
- Camara, A.K.; Lesnefsky, E.J.; Stowe, D.F. Potential therapeutic benefits of strategies directed to mitochondria. Antioxid. Redox Signal 2010, 13, 279–347. [Google Scholar]
- Serviddio, G.; Romano, A.D.; Cassano, T.F.; Altomare, E.; Vendemiale, G. Principles and therapeutic relevance for targeting mitochondria in aging and neurodegenerative diseases. Curr. Pharm. Des 2011, 17, 2036–2055. [Google Scholar]
- Doyl, R.; Chan, C.K. Mitochondrial gene therapy: An evaluation of strategies for the treatment of mitochondrial DNA disorders. Hum. Gene Ther 2008, 19, 1335–1348. [Google Scholar]
- Spencer, S.S. Depth electroencephalography in selection of refractory epilepsy for surgery. Ann. Neurol 1981, 9, 207–214. [Google Scholar]
- Chugani, H.T.; Shewmon, D.A.; Peacock, W.J.; Shields, W.D.; Mazziotta, J.C.; Phelps, M.E. Surgical treatment of intractable neonatal-onset seizures: The role of positron emission tomography. Neurology 1988, 38, 1178–1188. [Google Scholar]
- Gorman, D.G.; Shields, W.D.; Shewmon, D.A.; Chugani, H.T.; Finkel, R.; Comair, Y.G.; Peacock, W.J. Neurosurgical treatment of refractory status epilepticus. Epilepsia 1992, 33, 546–549. [Google Scholar]
- Burch, J.; Hinde, S.; Palmer, S.; Beyer, F.; Minton, J.; Marson, A.; Wieshmann, U.; Woolacott, N.; Soares, M. The clinical effectiveness and cost-effectiveness of technologies used to visualise the seizure focus in people with refractory epilepsy being considered for surgery: A systematic review and decision-analytical model. Health Technol. Assess 2012, 16, 1–157. [Google Scholar]
- Pérez, R.P.; Cuesta, Z.I.; Meix, A.M.; Gallego, S.A. Evaluation of the effectiveness of the ketogenic diet with medium-chain triglycerides, in the treatment of refractory epilepsy in children. Apropos of a series of cases. An. Esp. Pediatr 1989, 30, 155–158. [Google Scholar]
- Lefevre, F.; Aronson, N. Ketogenic diet for the treatment of refractory epilepsy in children: A systematic review of efficacy. Pediatrics 2000, 105, 1–7. [Google Scholar]
- Manso, G.M.; Arellano, M.; Sans, A.; Sanmartí, F.X.; Gómez, L.; Vernet, A.; Campistol, J. A ketogenic diet: Is this a valid alternative in refractory epilepsy. Rev. Neurol 2001, 33, 1010–1014. [Google Scholar]
- Do Kim, Y.; Rho, J.M. The ketogenic diet and epilepsy. Curr. Opin. Clin. Nutr. Metab. Care 2008, 11, 113–120. [Google Scholar]
- Banach, M.; Gurdziel, E.; Jędrych, M.; Borowicz, K.K. Melatonin in experimental seizures and epilepsy. Pharmacol. Rep 2011, 63, 1–11. [Google Scholar]
- Ogunmekan, A.O.; Hwang, P.A. A randomized, double-blind, placebo-controlled, clinical trial of d-alpha-tocopheryl acetate (vitamin E), as add-on therapy, for epilepsy in children. Epilepsia 1989, 30, 84–89. [Google Scholar]
- Ashrafi, M.R.; Shabanian, R.; Abbaskhanian, A.; Nasirian, A.; Ghofrani, M.; Mohammadi, M.; Zamani, G.R.; Kayhanidoost, Z.; Ebrahimi, S.; Pourpak, Z. Selenium and intractable epilepsy: Is there any correlation? Pediatr. Neurol 2007, 36, 25–29. [Google Scholar]
- Ramaekers, V.T.; Calomme, M.; Vanden Berghe, D.; Makropoulos, W. Selenium deficiency triggering intractable seizures. Neuropediatrics 1994, 25, 217–223. [Google Scholar]
- Togha, M.; Akhondzadeh, S.; Motamedi, M.; Ahmadi, B.; Razeghi, S. Allopurinol as adjunctive therapy in intractable epilepsy: A double-blind and placebo-controlled trial. Arch. Med. Res 2007, 38, 313–316. [Google Scholar]
- Bazil, C.W.; Short, D.; Crispin, D.; Zheng, W. Patients with intractable epilepsy have low melatonin, which increases following seizures. Neurology 2000, 55, 1746–1748. [Google Scholar]
- Peled, N.; Shorer, Z.; Peled, E.; Pillar, G. Melatonin effect on seizures in children with severe neurologic deficit disorders. Epilepsia 2001, 42, 1208–1210. [Google Scholar]
- Tada, H.; Morooka, K.; Arimoto, K.; Matsuo, T. Clinical effects of allopurinol on intractable epilepsy. Epilepsia 1991, 32, 279–283. [Google Scholar]
- Marrosu, F.; Marrosu, G.; Rachele, M.G.; Masala, C.; Giagheddu, M. Allopurinol add-on treatment in intractable seizures. Neurological 1990, 12, 207–213. [Google Scholar]
- Sander, J.W.; Patsalos, P.N. Allopurinol as an add-on drug in the management of intractable epilepsy. Epilepsy Res 1988, 2, 223–225. [Google Scholar]
Radical | Non-Radical |
---|---|
Superoxide (O2•−) | Singlet oxygen (1O2) 1Δ and 1∑ form |
Monoatomic oxygen (O·) | Hydrogen peroxide (H2O2) |
Hydroxyl (HO·) | Ozone (O3) |
Peroxyl (RO2·) | Peroxynitrite anion (ONOO−) |
Alkoxyl (RO·) | Hypochlorous acid (HOCl) |
Hydroperoxyl (HO2·) | Hypobromous acid (HOBr) |
© 2013 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Cardenas-Rodriguez, N.; Huerta-Gertrudis, B.; Rivera-Espinosa, L.; Montesinos-Correa, H.; Bandala, C.; Carmona-Aparicio, L.; Coballase-Urrutia, E. Role of Oxidative Stress in Refractory Epilepsy: Evidence in Patients and Experimental Models. Int. J. Mol. Sci. 2013, 14, 1455-1476. https://doi.org/10.3390/ijms14011455
Cardenas-Rodriguez N, Huerta-Gertrudis B, Rivera-Espinosa L, Montesinos-Correa H, Bandala C, Carmona-Aparicio L, Coballase-Urrutia E. Role of Oxidative Stress in Refractory Epilepsy: Evidence in Patients and Experimental Models. International Journal of Molecular Sciences. 2013; 14(1):1455-1476. https://doi.org/10.3390/ijms14011455
Chicago/Turabian StyleCardenas-Rodriguez, Noemi, Bernardino Huerta-Gertrudis, Liliana Rivera-Espinosa, Hortencia Montesinos-Correa, Cindy Bandala, Liliana Carmona-Aparicio, and Elvia Coballase-Urrutia. 2013. "Role of Oxidative Stress in Refractory Epilepsy: Evidence in Patients and Experimental Models" International Journal of Molecular Sciences 14, no. 1: 1455-1476. https://doi.org/10.3390/ijms14011455
APA StyleCardenas-Rodriguez, N., Huerta-Gertrudis, B., Rivera-Espinosa, L., Montesinos-Correa, H., Bandala, C., Carmona-Aparicio, L., & Coballase-Urrutia, E. (2013). Role of Oxidative Stress in Refractory Epilepsy: Evidence in Patients and Experimental Models. International Journal of Molecular Sciences, 14(1), 1455-1476. https://doi.org/10.3390/ijms14011455