Poly(3-hydroxybutyrate)/ZnO Bionanocomposites with Improved Mechanical, Barrier and Antibacterial Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphological Observations
2.2. FT-IR Study
2.3. Thermal Stability
ZnO (wt %) | Tc (°C) | Tm (°C) | Xc (%) | Ti (°C) | T10 (°C) | Tmax (°C) | CR (%) |
---|---|---|---|---|---|---|---|
0 | 76.3 | 163/174 | 52.5 | 291.2 | 314.7 | 329.6 | 1.7 |
1.0 | 93.4 | 165/173sa | 56.9 | 288.5 | 317.2 | 345.5 | 2.6 |
2.0 | 101.2 | 166/171sa | 59.4 | 299.0 | 324.9 | 348.3 | 3.8 |
5.0 | 106.0 | 167/171sa | 63.2 | 312.2 | 341.6 | 365.7 | 5.9 |
10.0 | 105.6 | 169 | 61.8 | 314.8 | 347.9 | 372.3 | 10.2 |
2.4. Crystallization and Melting Behaviour
2.5. Dynamic Mechanical Study
ZnO (wt %) | Tg (°C) | E'−100 °C (GPa) | E'25 °C (GPa) | E'100 °C (GPa) | 102 tan δmax (a.u.) | FWHM (°C) | tan δarea (a.u.) |
---|---|---|---|---|---|---|---|
0 | 17.9 | 1.81 | 0.78 | 0.24 | 8.11 | 13.9 | 0.79 |
1.0 | 22.1 | 2.27 | 0.93 | 0.30 | 7.23 | 19.2 | 1.06 |
2.0 | 28.4 | 2.39 | 1.11 | 0.37 | 7.98 | 22.9 | 1.13 |
5.0 | 27.7 | 2.59 | 1.11 | 0.36 | 6.35 | 26.8 | 1.18 |
10.0 | 32.6 | 2.78 | 1.18 | 0.39 | 7.19 | 24.5 | 1.11 |
2.6. Tensile Properties
2.7. Impact Strength
2.8. Barrier and Migration Properties
2.9. Antibacterial Properties
3. Experimental Section
3.1. Materials and Preparation of the Nanocomposites
3.2. Characterization Techniques
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Rhim, J.-W.; Park, H.-M.; Ha, C.-S. Bio-nanocomposites for food packaging applications. Prog. Polym. Sci. 2013, 38, 1629–1652. [Google Scholar] [CrossRef]
- Siracusa, V.; Rocculi, P.; Romani, S.; Rosa, M.D. Biodegradable polymers for food packaging: A review. Trends Food Sci. Tech. 2008, 19, 634–643. [Google Scholar]
- Bai, H.; Huang, C.; Xiu, H.; Zhang, Q.; Deng, H.; Wang, K.; Chen, F.; Fu, Q. Significantly improving oxygen barrier properties of polylactide via constructing parallel-aligned shish-kebab-like crystals with well-interlocked boundaries. Biomacromolecules 2014, 15, 1507–1514. [Google Scholar] [CrossRef]
- Keshavarz, T.; Roy, I. Polyhydroxyalkanoates: Bioplastics with a green agenda. Curr. Opin. Microbiol. 2010, 13, 321–326. [Google Scholar] [CrossRef]
- Sudesh, K.; Abe, H.; Doi, Y. Synthesis, structure and properties of polyhydroxyalkanoates: Biological polyesters. Prog. Polym. Sci. 2000, 25, 1503–1555. [Google Scholar]
- Vogel, C.; Wessel, E.; Siester, H.W. FT-IR imaging spectroscopy of phase separation in blends of poly(3-hydroxybutyrate) with poly(l-lactic acid) and poly(ϵ-caprolactone). Biomacromolecules 2008, 9, 523–527. [Google Scholar] [CrossRef]
- Prakalathan, K.; Mohanty, S.; Nayak, S.K. Reinforcing effect and isothermal crystallization kinetics of poly(3-hydroxybutyrate) nanocomposites blended with organically modified montmorillonite. Polym. Compos. 2014, 35, 999–1012. [Google Scholar] [CrossRef]
- Xu, C.; Qiu, Z. Crystallization behavior and thermal property of biodegradable poly(3-hydroxybutyrate)/multi-walled carbon nanotubes nanocomposite. Polym. Adv. Technol. 2011, 22, 538–544. [Google Scholar] [CrossRef]
- Sadat-Shojai, M.; Khorasani, M.-T.; Jamshidi, A.; Irani, S. Nano-hydroxyapatite reinforced polyhydroxybutyrate composites: A comprehensive study on the structural and in vitro biological properties. Mater. Sci. Eng. C 2013, 33, 2776–2787. [Google Scholar] [CrossRef]
- Maiti, P.; Batt, C.A.; Giannelis, P. New biodegradable polyhydroxybutyrate/layered silicate nanocomposites. Biomacromolecules 2007, 11, 3393–3400. [Google Scholar] [CrossRef]
- Jacob, S.; Santhoskumar, A.U.; Bhuvana, K.P.; Palanivelu, K.; Nayak, S.K. Investigation of the properties of ferromagnetic ZnO:Cr2O3 nanocomposites. Mater. Sci. Semicond. Process. 2012, 15, 326–330. [Google Scholar] [CrossRef]
- Therias, S.; Larche, J.-F.; Bussiere, P.-O.; Gardette, J.-L.; Murariu, M.; Dubois, P. Photochemical behavior of polylactide/ZnO nanocomposite films. Biomacromolecules 2012, 13, 3283–3291. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, Y.; Ding, Y.; Povey, M.; York, D. Investigation into the antibacterial behavior of suspensions of ZnO nanoparticles (ZnO nanofluids). J. Nanopart. Res. 2007, 9, 479–489. [Google Scholar] [CrossRef]
- Sawai, J. Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J. Microbiol. Methods 2003, 54, 177–182. [Google Scholar] [CrossRef]
- Yamada, H.; Suzuki, K.; Koizumi, S. Gene expression profile in human cells exposed to zinc. J. Toxicol. Sci. 2007, 32, 193–196. [Google Scholar]
- Ramimoghadam, D.; Hussein, M.Z.B.; Taufiq-Yap, Y.H. The effect of sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB) on the properties of ZnO synthesized by hydrothermal method. Int. J. Mol. Sci. 2012, 13, 13275–13293. [Google Scholar] [CrossRef]
- Diez-Pascual, A.M.; Diez-Vicente, A.L. Development of nanocomposites reinforced with carboxylated poly(ether ether ketone)-grafted to zinc oxide with superior antibacterial properties. ACS Appl. Mater. Interfaces 2014, 6, 3729–3741. [Google Scholar] [CrossRef]
- Diez-Pascual, A.M.; Xu, C.P.; Luque, R. Development and characterization of novel poly(ether ether ketone)/ZnO bionanocomposites. J. Mater. Chem. B 2014, 2, 3065–3078. [Google Scholar] [CrossRef]
- Pantani, R.; Gorrasi, G.; Vigliotta, G.; Murariu, M.; Dubois, P. PLA-ZnO nanocomposite films: Water vapor barrier properties and specific end-use characteristics. Eur. Polym. J. 2013, 49, 3471–3482. [Google Scholar] [CrossRef]
- Murariu, M.; Doumbia, A.; Bonnaud, L.; Dechief, A.L.; Paint, Y.; Ferreira, M.; Campagne, C.; Devaux, E.; Dubois, P. High-performance polylactide/ZnO nanocomposites designed for films and fibers with special end-use properties. Biomacromolecules 2011, 12, 1762–1771. [Google Scholar] [CrossRef]
- Elen, K.; Murariu, M.; Peeters, R.; Dubois, P.; Mullens, J.; Hardy, A.; van Bael, M.K. Towards high-performance biopackaging: Barrier and mechanical properties of dual-action polycaprolactone/zinc oxide nanocomposites. Polym. Adv. Technol. 2012, 23, 1422–1428. [Google Scholar] [CrossRef]
- Yu, W.; Lan, C.-H.; Wang, S.-J.; Fang, P.-F.; Sun, Y.-M. Influence of zinc oxide nanoparticles on the crystallization behaviour of electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanofibers. Polymer 2010, 51, 2403–2409. [Google Scholar]
- Abdolmaleki, A.; Mallakpour, S.; Borandeh, S. Effect of silane-modified ZnO on morphology and properties of bionanocomposites based on poly(ester-amide) containing tyrosine linkages. Polym. Bull. 2012, 69, 15–28. [Google Scholar] [CrossRef]
- Misra, A.K.; Thakur, M.S.; Srinivas, P.; Karanth, N.G. Screening of poly-β-hydroxybutyrate-producing microorganisms using Fourier transform infrared spectroscopy. Biotechnol. Lett. 2000, 22, 1217–1219. [Google Scholar] [CrossRef]
- Zuza, E.; Lejardi, A.; Ugartemendia, J.M.; Monasterio, N.; Meaurio, E.; Sarasua, J.R. Compatibilization through specific interactions and dynamic fragility in poly-(d,l-lactide)/polystyrene blends. Macromol. Chem. Phys. 2008, 209, 2423–2433. [Google Scholar] [CrossRef]
- Kwei, T.K.; Pearce, E.M.; Pennacchia, J.R.; Charton, M. Correlation between the glass transition temperatures of polymer mixtures and intermolecular force parameters. Macromolecules 1987, 20, 1174–1176. [Google Scholar] [CrossRef]
- Grassie, N.; Murray, E.J. The thermal degradation of poly(-(d)-β-hydroxybutyric acid): Part 3—The reaction mechanism. Polym. Degrad. Stab. 1984, 6, 127–134. [Google Scholar] [CrossRef]
- Huang, Z.X.; Tang, Z.A.; Yu, J.; Bai, S. Thermal conductivity of nanoscale polycrystalline ZnO thin films. Phys. B 2011, 406, 811–823. [Google Scholar]
- Patricio, P.S.; Pereira, F.V.; dos Santos, M.C.; de Souza, P.P.; Roa, J.P.B.; Orefice, R.L. Increasing the elongation at break of polyhydroxybutyrate biopolymer: Effect of cellulose nanowhiskers on mechanical and thermal properties. J. Appl. Polym. Sci. 2013, 127, 3613–3621. [Google Scholar] [CrossRef]
- Yeo, S.Y.; Tan, W.L.; Bakar, M.A.; Ismail, J. Silver sulfide/poly(3-hydroxybutyrate) nanocomposites: Thermal stability and kinetic analysis of thermal degradation. Polym. Degrad. Stab. 2010, 95, 1299–1304. [Google Scholar] [CrossRef]
- Gunaratne, L.M.W.K.; Shanks, R.A.; Amarasinghe, G. Thermal history effects on crystallisation and melting of poly(3-hydroxybutyrate). Thermochim. Acta 2004, 423, 127–135. [Google Scholar] [CrossRef]
- Xu, C.; Qui, Z. Nonisothermal melt crystallization and subsequent melting behavior of biodegradable poly(hydroxybutyrate)/multiwalled carbon nanotubes nanocomposites. J. Polym. Sci. Part B 2009, 47, 2238–2246. [Google Scholar] [CrossRef]
- Scandola, M.; Ceccorulli, G.; Pizzoli, M. The physical aging of bacterial poly(d-β-hydroxybutyrate). Macromol. Chem. Rapid Commun. 1989, 10, 47–50. [Google Scholar] [CrossRef]
- Naffakh, M.; Diez-Pascual, A.M.; Marco, C.; Gómez, M.A.; Jiménez, I. Novel melt-processable poly(ether ether ketone)(PEEK)/inorganic Fullerene-like WS2 nanoparticles for critical applications. J. Phys. Chem. B 2010, 114, 11444–11453. [Google Scholar] [CrossRef]
- Liao, H.-T.; Wu, C.-S. Poly(3-hydroxybutyrate)/multi-walled carbon nanotubes nanocomposites: Preparation and characterizations. Des. Monomers Polym. 2013, 16, 99–107. [Google Scholar] [CrossRef]
- Kucheyev, S.O.; Bradby, J.E.; Williams, J.S.; Jagadish, C.; Swain, M.V. Mechanical deformation of single-crystal ZnO. Appl. Phys. Lett. 2002, 80, 956–958. [Google Scholar]
- Krenchel, H. Fibre Reinforcement; Akademisk Forlag: Copenhagen, Denmark, 1964. [Google Scholar]
- Fu, S.-Y.; Feng, X.-Q.; Lauke, B.; Mai, Y.-W. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos. Part B 2008, 39, 933–961. [Google Scholar] [CrossRef]
- Thomas, S.; Zaikov, G.E. Polymer Nanocomposites Research Advances; Nova Science Publishers, Inc.: New York, NY, USA, 2007; p. 9. [Google Scholar]
- Sanchez-Garcia, M.D.; Langaron, J.M.; Hoa, S.V. Effect of addition of carbon nanofibers and carbon nanotubes on properties of thermoplastic biopolymers. Compos. Sci. Technol. 2010, 70, 1095–1105. [Google Scholar] [CrossRef]
- Sanchez-Garcia, M.D.; Langaron, J.M. Novel clay-based nanobiocomposites of biopolyesters with synergistic barrier to UV light, gas, and vapour. J. Appl. Polym. Sci. 2010, 118, 188–199. [Google Scholar] [CrossRef]
- Bucci, D.Z.; Tavares, L.B.B.; Sell, I. Biodegradation and physical evaluation of PHB packaging. Polym. Test. 2007, 26, 908–915. [Google Scholar] [CrossRef]
- Fortunati, E.; Peltzer, M.; Armentano, I.; Torre, L.; Jiménez, C.; Kenny, J.M. Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites. Carbohydr. Polym. 2012, 90, 948–956. [Google Scholar] [CrossRef]
- Liu, H.L.; Yang, T.C.K. Photocatalytic inactivation of Escherichia coli and Lactobacillus helveticus by ZnO and TiO2 activated with ultraviolet light. Process Biochem. 2003, 39, 475–481. [Google Scholar] [CrossRef]
- Brayner, R.; Ferrari-Iliou, R.; Brivois, N.; Djediat, S.; Benedetti, M.F.; Fievet, F. Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett. 2006, 6, 866–870. [Google Scholar] [CrossRef]
- Tam, K.H.; Djurišiæ, A.B.; Chan, C.M.N.; Xi, Y.Y.; Tse, C.W.; Leung, Y.H.; Chan, W.K.; Leung, F.C.C.; Au, D.W.T. Antibacterial activity of ZnO nanorods prepared by a hydrothermal method. Thin Solid Films 2008, 516, 6167–6174. [Google Scholar] [CrossRef]
- Herrera, N.N.; Letoffe, J.-M.; Reymond, J.-P.; Bourgeat-Lami, E. Silylation of laponite clay particles with monofunctional and trifunctional vinyl alkoxysilanes. J. Mater. Chem. 2005, 15, 863–871. [Google Scholar]
- Bressy, C.; Ngo, V.; Ziarelli, F.; Margaillan, A. New insights into the adsorption of 3-(trimethoxysilyl)-propylmethacrylate on hydroxylated ZnO nanopowders. Langmuir 2012, 28, 3290–3297. [Google Scholar]
- Gunaratne, L.M.W.K.; Shanks, R.A. Multiple melting behaviour of poly(3-hydroxybutyrate-co-hydroxyvalerate) using step-scan DSC. Eur. Polym. J. 2005, 41, 2980–2988. [Google Scholar] [CrossRef]
- ASTM D 638–03. Standard Test Method for Tensile Properties of Plastics. In ASTM, Annual Book of ASTM; ASTM International: Philadelphia, PA, USA, 2003; pp. 162–170.
- ASTM D 6110–10. Standard Test Method for Determining the Charpy Impact Resistance of Notched Specimens of Plastics. In ASTM, Annual Book of ASTM; ASTM International: Philadelphia, PA, USA, 2010.
- ASTM E96–95. Standard Test Methods for Water Vapor Transmission of Materials. In ASTM, Annual Book of ASTM; ASTM International: Philadelphia, PA, USA, 1995; pp. 406–413.
- ASTM D3985–05. Standard Test Method for Oxygen Gas Transmission Rate through Plastic Film and Sheeting Using a Coulometric Sensor. In ASTM, Annual book of ASTM; ASTM International: Philadelphia, PA, USA, 2010.
- Commission Regulation No 10/2011/EU. Commission Regulation on Plastic Materials and Articles Intended to Come into Contact with Foodstuffs. In Official Journal of European Communities; EUR-OP: Brussels, Belgium, 2011.
- EN-1186–1. Materials and Articles in Contact with Foodstuffs. In Plastics: Part 1. Guide to the Selection of Conditions and Test Methods for Overall Migration; CEN, European Committee for Standardization: Brussels, Belgium, 2002.
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Díez-Pascual, A.M.; Díez-Vicente, A.L. Poly(3-hydroxybutyrate)/ZnO Bionanocomposites with Improved Mechanical, Barrier and Antibacterial Properties. Int. J. Mol. Sci. 2014, 15, 10950-10973. https://doi.org/10.3390/ijms150610950
Díez-Pascual AM, Díez-Vicente AL. Poly(3-hydroxybutyrate)/ZnO Bionanocomposites with Improved Mechanical, Barrier and Antibacterial Properties. International Journal of Molecular Sciences. 2014; 15(6):10950-10973. https://doi.org/10.3390/ijms150610950
Chicago/Turabian StyleDíez-Pascual, Ana M., and Angel L. Díez-Vicente. 2014. "Poly(3-hydroxybutyrate)/ZnO Bionanocomposites with Improved Mechanical, Barrier and Antibacterial Properties" International Journal of Molecular Sciences 15, no. 6: 10950-10973. https://doi.org/10.3390/ijms150610950
APA StyleDíez-Pascual, A. M., & Díez-Vicente, A. L. (2014). Poly(3-hydroxybutyrate)/ZnO Bionanocomposites with Improved Mechanical, Barrier and Antibacterial Properties. International Journal of Molecular Sciences, 15(6), 10950-10973. https://doi.org/10.3390/ijms150610950