Tumour Cell Membrane Poration and Ablation by Pulsed Low-Intensity Electric Field with Carbon Nanotubes
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Established Electroporation Apparatus
2.2. Effect of MWCNTs on Cell Membrane Permeability by the Two Electric Fields
2.3. Effect of the Field Strength on Cell Membrane Poration Enhanced by the MWCNT
2.4. Influence of Pulse Number and Frequency on MWCNT-Enhanced Cell Membrane Poration
Electroporation Condition | Pulse Frequency (Hz) | |||
---|---|---|---|---|
1 | 5 | |||
Pulse number | 100 | 200 | 500 | 500 |
EP | 7.46 ± 0.91 * | 13.61 ± 8.37 | 12.22 ± 2.28 * | 13.92 ± 1.61 |
EP + CNT | 12.20 ± 6.36 * | 16.73 ± 0.68 # | 23.03 ± 2.84 *,#,** | 38.62 ± 11.30 ** |
Fold of EP + CNT/EP | 1.64 | 1.23 | 1.88 | 2.77 |
2.5. Cell Viability upon Application of the Optimized Electric Field Parameters in the Absence and Presence of a Cytotoxic Drug
3. Experimental Section
3.1. Custom-Designed Electroporation System
3.2. Cell Culture and Cell Electroporation
3.3. Analysis of Cell Membrane Permeabilization
3.4. Evaluation of Cell Viability upon Electrical Pulse Application
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Chang, F.; Minc, N. Electrochemical control of cell and tissue polarity. Annu. Rev. Cell Dev. Biol. 2014, 30, 317–336. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Song, B. Electric field regulated signaling pathways. Int. J. Biochem. Cell Biol. 2014, 55, 264–268. [Google Scholar] [CrossRef] [PubMed]
- Reid, B.; Zhao, M. The electrical response to injury: Molecular mechanisms and wound healing. Adv. Wound Care 2014, 3, 184–201. [Google Scholar] [CrossRef]
- Rols, M.-P. Electropermeabilization, a physical method for the delivery of therapeutic molecules into cells. Biochim. Biophys. Acta Biomembr. 2006, 1758, 423–428. [Google Scholar] [CrossRef]
- Gehl, J. Electroporation: Theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiol. Scand. 2003, 177, 437–447. [Google Scholar] [CrossRef] [PubMed]
- Neumann, E.; Rosenheck, K. Permeability changes induced by electric impulses in vesicular membranes. J. Membr. Biol. 1972, 10, 279–290. [Google Scholar] [CrossRef] [PubMed]
- Scheffer, H.J.; Nielsen, K.; de Jong, M.C.; van Tilborg, A.A.; Vieveen, J.M.; Bouwman, A.R.; Meijer, S.; van Kuijk, C.; van den Tol, P.M.; Meijerink, M.R. Irreversible electroporation for nonthermal tumor ablation in the clinical setting: A systematic review of safety and efficacy. J. Vasc. Interv. Radiol. 2014, 25, 997–1011. [Google Scholar] [CrossRef] [PubMed]
- Al-Sakere, B.; Andre, F.; Bernat, C.; Connault, E.; Opolon, P.; Davalos, R.V.; Rubinsky, B.; Mir, L.M. Tumor ablation with irreversible electroporation. PLoS ONE 2007, 2, e1135. [Google Scholar] [CrossRef] [PubMed]
- Beebe, S.J.; Sain, N.M.; Ren, W. Induction of cell death mechanisms and apoptosis by nanosecond pulsed electric fields (nsPEFs). Cells 2013, 2, 136–162. [Google Scholar] [CrossRef]
- Raffa, V.; Ciofani, G.; Vittorio, O.; Pensabene, V.; Cuschieri, A. Carbon nanotube-enhanced cell electropermeabilisation. Bioelectrochem 2010, 79, 136–141. [Google Scholar] [CrossRef]
- Yantzi, J.D.; Yeow, J.T.W. Carbon nanotube enhanced pulsed electric field electroporation for biomedical applications. In Proceedings of the IEEE International Conference on Mechatronics and Automation, Niagara Falls, ON, Canada, 29 July–1 August 2005; pp. 1872–1877.
- Lacerda, L.; Raffa, S.; Prato, M.; Bianco, A.; Kostarelos, K. Cell-penetrating CNTs for delivery of therapeutics. Nano Today 2007, 2, 38–43. [Google Scholar] [CrossRef]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Iijima, S.; Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. Nature 1993, 363, 603–605. [Google Scholar] [CrossRef]
- Chavan, R.; Desai, U.; Mhatre, P.; Chinchole, R. A review: Carbon nanotubes. Int. J. Pharm. Sci. Rev. Res. 2012, 13, 125–134. [Google Scholar]
- Odom, T.W.; Huang, J.-L.; Kim, P.; Lieber, C.M. Structure and electronic properties of carbon nanotubes. J. Phys. Chem. B 2000, 104, 2794–2809. [Google Scholar] [CrossRef]
- Benedict, L.X.; Louie, S.G.; Cohen, M.L. Static polarizabilities of single-wall carbon nanotubes. Phys. Rev. B 1995, 52, 8541–8548. [Google Scholar] [CrossRef]
- Liu, D.; Wang, Z.; Wang, L.; Cuschieri, A. Finite element study of carbon nanotube induced cell membrane poration for drug and gene delivery. J. Med. Imaging Health Inform. 2012, 2, 132–138. [Google Scholar] [CrossRef]
- Rojas-Chapana, J.A.; Correa-Duarte, M.A.; Ren, Z.; Kempa, K.; Giersig, M. Enhanced introduction of gold nanoparticles into vital acidothiobacillus ferrooxidans by carbon nanotube-based microwave electroporation. Nano Lett. 2004, 4, 985–988. [Google Scholar] [CrossRef]
- Liu, D.; Wang, L.; Wang, Z.; Cuschieri, A. Magnetoporation and magnetolysis of cancer cells via carbon nanotubes induced by rotating magnetic fields. Nano Lett. 2012, 12, 5117–5121. [Google Scholar] [CrossRef] [PubMed]
- Marty, M.; Sersa, G.; Garbay, J.R.; Gehl, J.; Collins, C.G.; Snoj, M.; Billard, V.; Geertsen, P.F.; Larkin, J.O.; Miklavcic, D.; et al. Electrochemotherapy—An easy, highly effective and safe treatment of cutaneous and subcutaneous metastases: Results of ESOPE (European Standard Operating Procedures of Electrochemotherapy) study. Eur. J. Cancer 2006, 4, 3–13. [Google Scholar]
- Daud, A.I.; DeConti, R.C.; Andrews, S.; Urbas, P.; Riker, A.I.; Sondak, V.K.; Munster, P.N.; Sullivan, D.M.; Ugen, K.E.; Messina, J.L.; et al. Phase I trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma. J. Clin. Oncol. 2008, 26, 5896–5903. [Google Scholar]
- Neal, R.E., II; Rossmeis, J.H., Jr.; Garcia, P.A.; Lanz, O.I.; Henao-Guerrero, N.; Davalos, R.V. Successful treatment of a large soft tissue sarcoma with irreversible electroporation. J. Clin. Oncol. 2011, 29, 372–377. [Google Scholar]
- Vernhes, M.C.; Cabanes, P.A.; Teissie, J. Chinese hamster ovary cells sensitivity to localized electrical stresses. Bioelectrochem. Bioenerg 1999, 48, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Wang, L.; Wang, Z.; Cuschieri, A. Different cellular response mechanisms contribute to the length-dependent cytotoxicity of multi-walled carbon nanotubes. Nanoscale Res. Lett. 2012, 7, 361–370. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Liu, D.; Zhou, R.; Wang, Z.; Cuschieri, A. Tumour Cell Membrane Poration and Ablation by Pulsed Low-Intensity Electric Field with Carbon Nanotubes. Int. J. Mol. Sci. 2015, 16, 6890-6901. https://doi.org/10.3390/ijms16046890
Wang L, Liu D, Zhou R, Wang Z, Cuschieri A. Tumour Cell Membrane Poration and Ablation by Pulsed Low-Intensity Electric Field with Carbon Nanotubes. International Journal of Molecular Sciences. 2015; 16(4):6890-6901. https://doi.org/10.3390/ijms16046890
Chicago/Turabian StyleWang, Lijun, Dun Liu, Ru Zhou, Zhigang Wang, and Alfred Cuschieri. 2015. "Tumour Cell Membrane Poration and Ablation by Pulsed Low-Intensity Electric Field with Carbon Nanotubes" International Journal of Molecular Sciences 16, no. 4: 6890-6901. https://doi.org/10.3390/ijms16046890
APA StyleWang, L., Liu, D., Zhou, R., Wang, Z., & Cuschieri, A. (2015). Tumour Cell Membrane Poration and Ablation by Pulsed Low-Intensity Electric Field with Carbon Nanotubes. International Journal of Molecular Sciences, 16(4), 6890-6901. https://doi.org/10.3390/ijms16046890