Exploratory Characterization of Phenolic Compounds with Demonstrated Anti-Diabetic Activity in Guava Leaves at Different Oxidation States
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Phenolic Compounds
2.2. Antioxidant Capacity and Total Phenolic Content
3. Materials and Methods
3.1. Plant Material and Sample Preparation
3.2. Antioxidant Capacity Analysis
3.3. HPLC-DAD-ESI-QTOF-MS Analysis
3.4. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Morton, J.F. Fruits of Warm Climates; Echo Point Books & Media: Miami, FL, USA, 1987. [Google Scholar]
- Deguchi, Y.; Miyazaki, K. Anti-hyperglycemic and anti-hyperlipidemic effects of guava leaf extract. Nutr. Metab. (Lond.) 2010, 7, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.-W.; Hsieh, C.-L.; Wang, H.-Y.; Chen, H.-Y. Inhibitory effects of guava (Psidium guajava L.) leaf extracts and its active compounds on the glycation process of protein. Food Chem. 2009, 113, 78–84. [Google Scholar] [CrossRef]
- Liu, C.-W.; Wang, Y.-C.; Lu, H.-C.; Chiang, W.-D. Optimization of ultrasound-assisted extraction conditions for total phenols with anti-hyperglycemic activity from Psidium guajava leaves. Process Biochem. 2014, 49, 1601–1605. [Google Scholar] [CrossRef]
- Gutiérrez, R.M.P.; Mitchell, S.; Solis, R.V. Psidium guajava: A review of its traditional uses, phytochemistry and pharmacology. J. Ethnopharmacol. 2008, 117, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Bernal, J.; Mendiola, J.A.; Ibáñez, E.; Cifuentes, A. Advanced analysis of nutraceuticals. J. Pharm. Biomed. Anal. 2011, 55, 758–774. [Google Scholar] [CrossRef] [PubMed]
- Salazar, D.M.; Melgarejo, P.; Martínez, R.; Martínez, J.J.; Hernández, F.; Burguera, M. Phenological stages of the guava tree (Psidium guajava L.). Sci. Hortic. (Amsterdam) 2006, 108, 157–161. [Google Scholar] [CrossRef]
- Hao, W. Freezing Tolerance and Cold Acclimation in Guava (Psidium guajava L.). Graduate Theses and Dissertations, Iowa State University, Ames, IA, USA, 2008. [Google Scholar]
- Vargas-Alvarez, D.; Soto-Hernández, M.; González-Hernández, V.A.; Engleman, E.M.; Martínez-Garza, Á. Kinetics of accumulation and distribution of flavonoids in guava (Psidium guajava L.). Agrociencia 2006, 40, 109–115. [Google Scholar]
- Kajdžanoska, M.; Gjamovski, V.; Stefova, M. HPLC-DAD-ESI-MSn identification of phenolic compounds in cultivated strawberries from macedonia. Maced. J. Chem. Chem. Eng. 2010, 29, 181–194. [Google Scholar]
- Heng, M.Y.; Tan, S.N.; Yong, J.W.H.; Ong, E.S. Emerging green technologies for the chemical standardization of botanicals and herbal preparations. TrAC Trends Anal. Chem. 2013, 50, 1–10. [Google Scholar] [CrossRef]
- Nantitanon, W.; Yotsawimonwat, S.; Okonogi, S. Factors influencing antioxidant activities and total phenolic content of guava leaf extract. LWT-Food Sci. Technol. 2010, 43, 1095–1103. [Google Scholar] [CrossRef]
- Venkatachalam, R.N.; Singh, K.; Marar, T. Phytochemical screening in vitro antioxidant activity of Psidium guajava. Free Radic. Antiox. 2012, 2, 31–36. [Google Scholar] [CrossRef]
- Seo, J.; Lee, S.; Elam, M.L.; Johnson, S.A.; Kang, J.; Arjmandi, B.H. Study to find the best extraction solvent for use with guava leaves (Psidium guajava L.) for high antioxidant efficacy. Food Sci. Nutr. 2014, 2, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Mailoa, M.N.; Mahendradatta, M.; Laga, A.; Djide, N. Tannin extract of guava leaves (Psidium guajava L) variation with concentration organic solvents. Int. J. Sci. Technol. Res. 2013, 2, 106–110. [Google Scholar]
- Chang, C.-H.; Hsieh, C.-L.; Wang, H.-E.; Peng, C.-C.; Chyau, C.-C.; Peng, R.Y. Unique bioactive polyphenolic profile of guava (Psidium guajava) budding leaf tea is related to plant biochemistry of budding leaves in early dawn. J. Sci. Food Agric. 2013, 93, 944–954. [Google Scholar] [CrossRef] [PubMed]
- Díaz-de-Cerio, E.; Verardo, V.; Gómez-Caravaca, A.M.; Fernández-Gutiérrez, A.; Segura-Carretero, A. Determination of polar compounds in guava leaves infusions and ultrasound aqueous extract by HPLC-ESI-MS. J. Chem. 2015, 2015, 1–9. [Google Scholar] [CrossRef]
- Díaz-de-Cerio, E.; Gómez-Caravaca, A.M.; Verardo, V.; Fernández-Gutiérrez, A.; Segura-Carretero, A. Determination of guava (Psidium guajava L.) leaf phenolic compounds using HPLC-DAD-QTOF-MS. J. Funct. Food 2016, 22, 376–388. [Google Scholar] [CrossRef]
- Jang, M.; Jeong, S.-W.; Cho, S.K.; Yang, H.J.; Yoon, D.-S.; Kim, J.-C.; Park, K.-H. Improvement in the anti-inflammatory activity of guava (Psidium guajava L.) leaf extracts through optimization of extraction conditions. J. Funct. Foods 2014, 10, 161–168. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, Y.; Zhan, Y.; Liu, L.; Xu, Y.; Xu, T.; Liu, T. Preparative isolation and purification of five flavonoid glycosides and one benzophenone galloyl glycoside from Psidium guajava by high-speed counter-current chromatography (HSCCC). Molecules 2013, 18, 15648–15661. [Google Scholar] [CrossRef] [PubMed]
- Qu, C.; Fu, F.; Lu, K.; Zhang, K.; Wang, R.; Xu, X.; Wang, M.; Lu, J.; Wan, H.; Zhanglin, T.; et al. Differential accumulation of phenolic compounds and expression of related genes in black- and yellow-seeded Brassica napus. J. Exp. Bot. 2013, 64, 2885–2898. [Google Scholar] [CrossRef] [PubMed]
- Holton, T.; Cornish, E. Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 1995, 7, 1071–1083. [Google Scholar] [CrossRef] [PubMed]
- Coley, P.D.; Barone, J.A. Herbivory and plant defenses in tropical forests. Annu. Rev. Ecol. Syst. 1996, 27, 305–335. [Google Scholar] [CrossRef]
- Soltani, N. Prevention of Diabetes Complications. In Type 1 Diabetes Complications; Wagner, D., Ed.; InTech: Rijeka, Croatia, 2011; pp. 353–366. [Google Scholar]
- Chao, H.; Wu, P.; Lo, D.; Wu, W.; Wu, M. Effect of guava (Psidium guajava Linn.) fruit water extract on lipid peroxidation and serum lipid profiles of streptozotocin-nicotinamide induced diabetic rats. Afr. J. Pharm. Pharmacol. 2013, 7, 2299–2305. [Google Scholar] [CrossRef]
- Rai, P.K.; Mehta, S.; Watal, G. Hypolipidaemic & hepatoprotective effects of Psidium guajava raw fruit peel in experimental diabetes. Indian J. Med. Res. 2010, 131, 820–824. [Google Scholar] [PubMed]
- Farinazzi-Machado, F.M.V.; Landgraf Guiguer, É.; Barbalho, S.M.; da Silva Soares de Souza, M.; Cincotto dos Santos Bueno, P.; Gregório Mendes, C.; Cressoni Araújo, A.; Rezende Teixeira Rodrigues, A.; de Lara Lima, L.M.; Sanches Marim, N.; et al. Effects of Psidium guajava on the metabolic profile of Wister rats. J. Med. Plants Res. 2012, 6, 3450–3454. [Google Scholar] [CrossRef]
- Mukhtar, H.M.; Ansari, S.H.; Bhat, Z.A.; Naved, T.; Singh, P. Antidiabetic activity of an ethanol extract obtained from the stem bark of Psidium guajava (Myrtaceae). Die Pharm. Int. J. Pharm. Sci. 2006, 61, 725–727. [Google Scholar]
- Singh, R.; Kaur, N.; Kishore, L.; Gupta, G.K. Management of diabetic complications: A chemical constituents based approach. J. Ethnopharmacol. 2013, 150, 51–70. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Du, Y.-J.; Song, H.-C. α-Glucosidase and α-amylase inhibitory activities of guava leaves. Food Chem. 2010, 123, 6–13. [Google Scholar] [CrossRef]
- Jiménez-Escrig, A.; Rincón, M.; Pulido, R.; Saura-Calixto, F. Guava fruit (Psidium guajava L.) as a new source of antioxidant dietary fiber. J. Agric. Food Chem. 2001, 49, 5489–5493. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro da Silva, L.M.; Teixeira de Figueiredo, E.A.; Silva Ricardo, N.M.P.; Pinto Vieira, I.G.; Wilane de Figueiredo, R.; Brasil, I.M.; Gomes, C.L. Quantification of bioactive compounds in pulps and by-products of tropical fruits from Brazil. Food Chem. 2014, 143, 398–404. [Google Scholar] [CrossRef] [PubMed]
- Gamal, F.M.; Samira, S.M.; Fakhriya, S.T. Antioxidant, antimicrobial and anticarcinogenic properties of Egyptian guava seeds extracts. Nat. Sci. 2011, 9, 32–41. [Google Scholar]
- Aminu, M.; Bello, M.S.; Abbas, O.; Aliyu, M. Comparative in vitro antioxidant studies of ethanolic extracts of Psidium guajava stem bark and Telfairia occidentalis leaf. Int. J. Mod. Biochem. 2012, 1, 18–26. [Google Scholar]
- Oboh, G.; Akinyemi, A.J.; Ademiluyi, A.O. Inhibition of α-amylase and α-glucosidase activities by ethanolic extract of Telfairia occidentalis (fluted pumpkin) leaf. Asian Pac. J. Trop. Biomed. 2012, 2, 733–738. [Google Scholar] [CrossRef]
- Stankovic, M.S.; Niciforovic, N.; Mihailovic, V.; Topuzovic, M.; Solujic, S. Antioxidant activity, total phenolic content and flavonoid concentrations of different plant parts of Teucrium polium L. subsp. polium. Acta Soc. Bot. Pol. 2012, 81, 117–122. [Google Scholar] [CrossRef]
- Yang, C.-H.; Li, R.-X.; Chuang, L.-Y. Antioxidant activity of various parts of Cinnamomum cassia extracted with different extraction methods. Molecules 2012, 17, 7294–7304. [Google Scholar] [CrossRef] [PubMed]
- Beato, V.M.; Orgaz, F.; Mansilla, F.; Montaño, A. Changes in phenolic compounds in garlic (Allium sativum L.) owing to the cultivar and location of growth. Plant Foods Hum. Nutr. 2011, 66, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, M.; Shimada, H.; Nishida, N.; Li, Y.; Toguchida, I.; Yamahara, J.; Matsuda, H. Antidiabetic principles of natural medicines. II. Aldose reductase and α-glucosidase inhibitors from Brazilian natural medicine, the leaves of Myrcia multiflora DC. (Myrtaceae): Structures of myrciacitrins I and II and myrciaphenones A and B. Chem. Pharm. Bull. (Tokyo) 1998, 46, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, T.; Amakura, Y.; Yoshimura, M. Structural features and biological properties of ellagitannins in some plant families of the order myrtales. Int. J. Mol. Sci. 2010, 11, 79–106. [Google Scholar] [CrossRef] [PubMed]
- Eidenberger, T.; Selg, M.; Krennhuber, K. Inhibition of dipeptidyl peptidase activity by flavonol glycosides of guava (Psidium guajava L.): A key to the beneficial effects of guava in type II diabetes mellitus. Fitoterapia 2013, 89, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Chinchansure, A.A.; Korwar, A.M.; Kulkarni, M.J.; Joshi, S.P. Recent development of plant products with anti-glycation activity: A review. RSC Adv. 2015, 5, 31113–31138. [Google Scholar] [CrossRef]
- Sui, X.; Zhang, Y.; Zhou, W. In vitro and in silico studies of the inhibition activity of anthocyanins against porcine pancreatic α-amylase. J. Funct. Foods 2016, 21, 50–57. [Google Scholar] [CrossRef]
- Pinent, M.; Blay, M.; Bladé, M.C.; Salvadó, M.J.; Arola, L.; Ardévol, A. Grape seed-derived procyanidins have an antihyperglycemic effect in streptozotocin-induced diabetic rats and insulinomimetic activity in insulin-sensitive cell lines. Endocrinology 2004, 145, 4985–4990. [Google Scholar] [CrossRef] [PubMed]
- Patel, D.K.; Prasad, S.K.; Kumar, R.; Hemalatha, S. An overview on antidiabetic medicinal plants having insulin mimetic property. Asian Pac. J. Trop. Biomed. 2012, 2, 320–330. [Google Scholar] [CrossRef]
- Takahashi, M.; Miyashita, M.; Suzuki, K.; Bae, S.-R.; Kim, H.-K.; Wakisaka, T.; Matsui, Y.; Takeshita, M.; Yasunaga, K. Acute ingestion of catechin-rich green tea improves postprandial glucose status and increases serum thioredoxin concentrations in postmenopausal women. Br. J. Nutr. 2014, 112, 1542–1550. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Li, S.-K.; Gan, R.-Y.; Song, F.-L.; Kuang, L.; Li, H.-B. Antioxidant capacities and total phenolic contents of infusions from 223 medicinal plants. Ind. Crop Prod. 2013, 51, 289–298. [Google Scholar] [CrossRef]
- Tachakittirungrod, S.; Okonogi, S.; Chowwanapoonpohn, S. Study on antioxidant activity of certain plants in Thailand: Mechanism of antioxidant action of guava leaf extract. Food Chem. 2007, 103, 381–388. [Google Scholar] [CrossRef]
- Nantitanon, W. Comparison of antioxidant activity of compounds isolated from guava leaves and a stability study of the most active compound. Drug Discov. Ther. 2012, 6, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Hawkins Byrne, D. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Dudonne, S.; Vitrac, X.; Coutiere, P.; Woillez, M.; Merillon, J.-M. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J. Agric. Food Chem. 2009, 57, 1768–1774. [Google Scholar] [CrossRef] [PubMed]
- Laporta, O.; Perezfons, L.; Mallavia, R.; Caturla, N.; Micol, V. Isolation, characterization and antioxidant capacity assessment of the bioactive compounds derived from Hypoxis rooperi corm extract (African potato). Food Chem. 2007, 101, 1425–1437. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Caravaca, A.M.; Verardo, V.; Toselli, M.; Segura-Carretero, A.; Fernández-Gutiérrez, A.; Caboni, M.F. Determination of the major phenolic compounds in pomegranate juices by HPLC-DAD-ESI-MS. J. Agric. Food Chem. 2013, 61, 5328–5337. [Google Scholar] [CrossRef] [PubMed]
No. | Compound | High | Medium | Low |
---|---|---|---|---|
Negative mode | Concentration (μg compound/g leaf d.w.) | |||
1 | HHDP glucose Isomer | 526 ± 2 c | 651 ± 19 b | 936 ± 10 a |
2 | HHDP glucose Isomer | 505 ± 3 c | 645 ± 3 b | 823 ± 16 a |
3 | HHDP glucose Isomer | 510 ± 11 c | 645 ± 20 b | 934 ± 2 a |
4 | Prodelphinidin B Isomer | 447.1 ± 0.1 c | 515.7 ± 0.4 b | 715 ± 13 a |
5 | Gallic acid | 153.52 ± 0.09 c | 164 ± 3 b | 175.9 ± 0.7 a |
6 | Pedunculagin/Casuariin Isomer | 158.8 ± 0.6 b | 163.84 ± 0.06 b | 175 ± 3 a |
7 | Pedunculagin/Casuariin Isomer | 464.0 ± 0.8 c | 475.5 ± 0.5 b | 557 ± 2 a |
8 | Prodelphinidin Dimer Isomer | 497 ± 1 b | 529 ± 6 b | 603 ± 30 a |
9 | Gallocatechin | 4913 ± 47 a | 4435 ± 7 b | 4098 ± 84 c |
10 | Vescalagin/castalagin Isomer | 157.59 ± 0.01 a | 136.6 ± 0.3 c | 143 ± 2 b |
11 | Prodelphinidin Dimer Isomer | 1365 ± 7 c | 1560 ± 14 b | 1739 ± 25 a |
12 | Uralenneoside | 2464 ± 4 a | 1911 ± 24 b | 1872 ± 81 b |
13 | Geraniin Isomer | 241 ± 1 b | 264.9 ± 0.5 b | 343 ± 25 a |
14 | Pedunculagin/Casuariin Isomer | 466 ± 3 c | 575 ± 16 b | 683 ± 20 a |
15 | Geraniin Isomer | 260 ± 3 b | 290 ± 7 a,b | 356 ± 48 a |
16 | Procyanidin B Isomer | 4262 ± 12 c | 4742 ± 15 b | 5514 ± 69 a |
17 | Galloyl(epi)catechin-(epi)gallocatechin | <LOQ | 12.60 ± 0.07 b | 38 ± 3 a |
18 | Procyanidin B Isomer | 650 ± 3 c | 708 ± 11 b | 757 ± 23 a |
19 | Tellimagrandin I Isomer | 347 ± 4 c | 367.2 ± 0.7 b | 397 ± 2 a |
20 | Pterocarinin A Isomer | 569 ± 31 b | 617 ± 9 b | 679 ± 7 a |
21 | Pterocarinin A Isomer | 316 ± 2 c | 360 ± 4 b | 376 ± 4 a |
22 | Stenophyllanin A | 853 ± 13 c | 1036 ± 50 b | 1318 ± 24 a |
23 | Procyanidin trimer Isomer | 781 ± 1 a | 706 ± 1 c | 738 ± 4 b |
24 | Catechin | 8486 ± 10 b | 8957 ± 11 a | 6845 ± 24 c |
25 | Procyanidin tetramer | <LOQ | <LOQ | <LOQ |
26 | Procyanidin trimer Isomer | 89 ± 2 c | 108 ± 3 b | 128 ± 1 a |
27 | Guavin A | 263 ± 9 c | 357 ± 8 b | 518 ± 15 a |
28 | Casuarinin/Casuarictin Isomer | 1297 ± 5 c | 1568 ± 10 b | 2089 ± 11 a |
29 | Galloyl(epi)catechin-(epi)gallocatechin | 61 ± 5 c | 135 ± 1 b | 211 ± 12 a |
30 | Procyanidin pentamer | <LOQ | <LOQ | <LOQ |
31 | Galloyl-(epi)catechin trimer Isomer | <LOQ | <LOQ | <LOQ |
32 | Gallocatechin | 2074 ± 2 b | 1526 ± 2 c | 2613 ± 55 a |
33 | Tellimagrandin I Isomer | 463 ± 2 c | 516 ± 6 b | 737 ± 24 a |
34 | Vescalagin | 160 ± 6 b | 159 ± 3 b | 187 ± 1 a |
35 | Stenophyllanin A Isomer | 355.36 ± 0.07 c | 425 ± 13 b | 548 ± 20 a |
36 | Galloyl-(epi)catechin trimer Isomer | <LOQ | <LOQ | <LOQ |
37 | Myricetin hexoside Isomer | 432.10 ± 0.05 c | 555 ± 2 b | 572 ± 7 a |
38 | Stachyuranin A | 207.40 ± 0.04 a | 207 ± 6 a | 216 ± 1 a |
39 | Procyanidin gallate Isomer | 533.2 ± 0.07 c | 799 ± 3 b | 1036 ± 32 a |
40 | Myricetin hexoside Isomer | 213 ± 2 c | 288 ± 2 b | 307.8 ± 0.8 a |
41 | Vescalagin/castalagin Isomer | 152 ± 3 b | 155 ± 2 b | 191 ± 3 a |
42 | Myricetin arabinoside/xylopyranoside Isomer | 241 ± 5 c | 286 ± 2 b | 306 ± 5 a |
43 | Myricetin arabinoside/xylopyranoside Isomer | 608 ± 1 c | 839 ± 8 b | 946 ± 11 a |
44 | Procyanidin gallate Isomer | 11 ± 1 a | 3.7 ± 0.2 b | <LOQ |
45 | Myricetin arabinoside/xylopyranoside Isomer | 688 ± 16 c | 816.0 ± 0.5 b | 874 ± 9 a |
46 | Myricetin hexoside Isomer | 1186 ± 13 a | 1010 ± 3 b | 1012 ± 65 b |
47 | Myricetin hexoside Isomer | 200 ± 3 b | 208 ± 5 b | 224 ± 6 a |
48 | Myricetin arabinoside/xylopyranoside Isomer | 276.0 ± 0.9 a,b | 266 ± 3 b | 282 ± 8 a |
49 | Quercetin galloylhexoside Isomer | 375.0 ± 0.6 b | 380 ± 5 b | 438 ± 18 a |
50 | Ellagic acid deoxyhexoside | 700 ± 1 a | 702 ± 12 a | 733 ± 32 a |
51 | Quercetin galloylhexoside Isomer | 180 ± 2 b | 194 ± 7 a | 205 ± 1 a |
52 | Myricetin arabinoside/xylopyranoside Isomer | 544.3 ± 0.4 b | 525 ± 2 b | 588 ± 18 a |
53 | Morin | 2619 ± 4 c | 3206 ± 11 b | 4474 ± 98 a |
54 | Myricetin arabinoside/xylopyranoside Isomer | 611 ± 4 a | 581 ± 6 b | 559 ± 3 c |
55 | Ellagic acid | 1229 ± 26 c | 1345 ± 34 b | 1759.6 ± 0.9 a |
56 | Hyperin | 11305 ± 27 c | 11906 ± 57 b | 12528 ± 83 a |
57 | Quercetin glucuronide | <LOQ | <LOQ | <LOQ |
58 | Isoquercitrin | 2254 ± 10 b | 2471 ± 16 b | 3410 ± 38 a |
59 | Procyanidin gallate Isomer | <LOQ | 7.3 ± 0.3 b | 73.3 ± 0.2 a |
60 | Reynoutrin | 2641 ± 11 b | 2762 ± 2 b | 3210 ± 104 a |
61 | Guajaverin | 8864 ± 8 b | 9668 ± 64 b | 11813 ± 64 a |
62 | Guavinoside A | 783 ± 5 a,b | 770 ± 4 b | 793 ± 4 a |
63 | Avicularin | 10353 ± 18 a,b | 10173 ± 54 b | 11441 ± 63 a |
64 | Quercitrin | 213 ± 2 b | 208 ± 2 b | 223 ± 1 a |
65 | Myrciaphenone B | 546 ± 6 c | 621 ± 1 b | 715 ± 20 a |
66 | Guavinoside C | 2069 ± 1 b | 1966 ± 21 c | 2209 ± 21 a |
67 | Guavinoside B | 872 ± 17 c | 1035 ± 23 b | 1273 ± 30 a |
68 | Guavinoside A Isomer | 137 ± 1 a | 135.1 ± 0.6 a | 137 ± 3 a |
69 | Guavinoside B Isomer | 120 ± 2 b | 119,6 ± 0.2 b | 129 ± 1 a |
70 | 2,6-dihydroxy-3-methyl-4-O-(6″-O-galloyl-β-d-glucopyranosyl)-benzophenone | 1179 ± 12 b | 1242 ± 33 b | 1365 ± 20 a |
71 | Guavin B | 220.51 ± 0.03 b | 230.1 ± 0.7 a,b | 241 ± 7 a |
72 | Quercetin | 258 ± 4 a | 253 ± 3 a | 255 ± 5 a |
73 | Naringenin | 487 ± 3 c | 638 ± 24 b | 705 ± 6 a |
Positive mode | Concentration (μg compound/g leaf d.w.) | |||
74 | Cyanidin-3-O-glucoside | 441.28 ± 0.04 a | 169.3 ± 0.5 b | 29.5 ± 0.2 c |
Compound | Assay | Activity | Ref. |
---|---|---|---|
Myrciaphenone B | in vivo | Inhibition of aldose reductase α-glucosidase | [39] |
Casuarictin, tellimagrandin I | in vitro | Inhibition of α-glucosidase | [40] |
Cyanidin-3-O-β-glucoside | in vitro/in silico | Inhibition of α-amylase | [43] |
Flavonol glycosides | in vitro | Inhibition of dipeptidyl-peptidase IV, and α-glucosidase and α-amylase | [30,41] |
Geraniin | in vitro | Hypoglycemic activity; inhibition of carbohydrate-hydrolysing enzymes (α-glucosidase and α-amylase); effective in preventing advanced glycation end-products (AGEs) formation | [42] |
Vescalagin | in vivo | Retard AGEs formation | [42] |
Gallic acid | in vitro | Inhibitory effect on the formation of α-dicarbonyl compounds and protein glycation: inhibitory effects on the production of Amadori products and AGEs | [3,42] |
Naringenin | in vitro | Anti-glycation activity | [42] |
Morin | in vitro | Protective activity against glycation | [42] |
Quercetin | in vitro | Inhibitory effect on protein glycation, on the formation of α-dicarbonyl compounds, and on the production of Amadori products and AGEs | [3,30,42] |
Catechin | in vitro/in vivo/clinical trial | Inhibitory effect on the formation of α-dicarbonyl compounds and protein glycation: inhibitory effects on the production of Amadori products and AGEs; improvement of postprandial hyperglycaemia | [42,46] |
Procyanidin B2 | in vitro/in vivo | Inhibitory effects on the formation of AGEs | [42] |
Casuarinin, casuariin | in vitro | Inhibition of insulin-like glucose uptake | [40] |
Procyanidin oligomers | in vitro/in vivo | Insulinomimetic properties | [44] |
Pedunculagin | in vivo | Improvement sensitivity of insulin | [45] |
Gallocatechin | clinical trial | Improvement of postprandial hyperglycaemia | [46] |
Oxidation State | TPC (mg/g leaf d.w.) | TEAC (mM eq Trolox/mg leaf d.w.) | FRAP (mM FeSO4/mg leaf d.w.) |
---|---|---|---|
High | 87.91 ± 0.05 c | 2.2 ± 0.2 c | 3.69 ± 0.03 c |
Medium | 92.0 ± 0.4 b | 2.44 ± 0.05 b | 4.20 ± 0.06 b |
Low | 103 ± 2 a | 3.1 ± 0.1 a | 5.4 ± 0.1 a |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz-de-Cerio, E.; Verardo, V.; Gómez-Caravaca, A.M.; Fernández-Gutiérrez, A.; Segura-Carretero, A. Exploratory Characterization of Phenolic Compounds with Demonstrated Anti-Diabetic Activity in Guava Leaves at Different Oxidation States. Int. J. Mol. Sci. 2016, 17, 699. https://doi.org/10.3390/ijms17050699
Díaz-de-Cerio E, Verardo V, Gómez-Caravaca AM, Fernández-Gutiérrez A, Segura-Carretero A. Exploratory Characterization of Phenolic Compounds with Demonstrated Anti-Diabetic Activity in Guava Leaves at Different Oxidation States. International Journal of Molecular Sciences. 2016; 17(5):699. https://doi.org/10.3390/ijms17050699
Chicago/Turabian StyleDíaz-de-Cerio, Elixabet, Vito Verardo, Ana María Gómez-Caravaca, Alberto Fernández-Gutiérrez, and Antonio Segura-Carretero. 2016. "Exploratory Characterization of Phenolic Compounds with Demonstrated Anti-Diabetic Activity in Guava Leaves at Different Oxidation States" International Journal of Molecular Sciences 17, no. 5: 699. https://doi.org/10.3390/ijms17050699
APA StyleDíaz-de-Cerio, E., Verardo, V., Gómez-Caravaca, A. M., Fernández-Gutiérrez, A., & Segura-Carretero, A. (2016). Exploratory Characterization of Phenolic Compounds with Demonstrated Anti-Diabetic Activity in Guava Leaves at Different Oxidation States. International Journal of Molecular Sciences, 17(5), 699. https://doi.org/10.3390/ijms17050699