Phenolic Compounds in the Potato and Its Byproducts: An Overview
Abstract
:1. Introduction
2. Phenolic Compounds in Potatoes
2.1. Phenolic Acids
2.2. Flavonoids
3. Effect of Harvesting, Post-Harvest, and Technological Processes on Phenolic Content
4. Extraction and Determination Methods for Phenolics in Potato
5. Use of Potato Peel Extract as an Antioxidant
6. Health Benefits of the Potato
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Mahgoub, H.; Eisa, G.; Youssef, M. Molecular, biochemical and anatomical analysis of some potato (Solanum tuberosum L.) cultivars growing in Egypt. J. Genet. Eng. Biotechnol. 2015, 13, 39–49. [Google Scholar] [CrossRef]
- FAOSTAT. Potatoes Production in the World. Statistics Division, 2013. Available online: http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor (accessed on 16 March 2016).
- Deußer, H.; Guignard, C.; Hoffmann, L.; Evers, D. Polyphenol and glycoalkaloid contents in potato cultivars grown in Luxembourg. Food Chem. 2012, 135, 2814–2824. [Google Scholar] [CrossRef] [PubMed]
- Burlingame, B.; Mouillé, B.; Charrondière, R. Nutrients, bioactive non-nutrients and anti-nutrients in potatoes. J. Food Comp. Anal. 2009, 22, 494–502. [Google Scholar] [CrossRef]
- Mann, J.; Truswell, A. Essentials of Human Nutrition; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- Holt, S.H.; Miller, J.C.; Petocz, P.; Farmakalidis, E. A satiety index of common foods. Eur. J. Clin. Nutr. 1995, 49, 675–690. [Google Scholar] [PubMed]
- André, C.; Schafleitner, R.; Legay, S.; Lefèvre, I.; Aliaga, C.; Nomberto, G.; Hoffmann, L.; Hausman, J.; Larondelle, Y.; Evers, D. Gene expression changes related to the production of phenolic compounds in potato tubers grown under drought stress. Phytochemistry 2009, 70, 1107–1116. [Google Scholar] [CrossRef] [PubMed]
- Albishi, T.; John, J.; Al-Khalifa, A.; Shahidi, F. Phenolic content and antioxidant activities of selected potato varieties and their processing by-products. J. Funct. Foods 2013, 5, 590–600. [Google Scholar] [CrossRef]
- Habeebullah, S.F.K.; Grejsen, H.D.; Jacobsen, C. Potato peel extract as a natural antioxidant in chilled storage of minced horse mackerel (Trachurus trachurus): Effect on lipid and protein oxidation. Food Chem. 2012, 131, 843–851. [Google Scholar]
- Tierno, R.; López, A.; Riga, P.; Arazuri, S.; Jarén, C.; Benedicto, L.; Ruiz de Galarreta, J. Phytochemicals determination and classification in purple and red fleshed potato tubers by analytical methods and near infrared spectroscopy. J. Sci. Food Agric. 2015, 96, 1888–1899. [Google Scholar] [CrossRef] [PubMed]
- Oreopoulou, V.; Russ, W. Utilization of By-Products and Treatment of Waste in the Food Industry; Springer: New York, NY, USA, 2007. [Google Scholar]
- Mohdaly, A.; Sarhan, M.; Mahmoud, A.; Ramadan, M.; Smetanska, I. Antioxidant efficacy of potato peels and sugar beet pulp extracts in vegetable oils protection. Food Chem. 2010, 123, 1019–1026. [Google Scholar] [CrossRef]
- Al-Weshahy, A.; Venket Rao, A. Isolation and characterization of functional components from peel samples of six potatoes varieties growing in Ontario. Food Res. Int. 2009, 42, 1062–1066. [Google Scholar] [CrossRef]
- Scalbert, A.; Manach, C.; Morand, C.; Rémésy, C.; Jiménez, L. Dietary polyphenols and the prevention of diseases. Crit. Rev. Food Sci. 2005, 45, 287–306. [Google Scholar] [CrossRef] [PubMed]
- Al-Weshahy, A.; El-Nokety, M.; Bakhete, M.; Rao, V. Effect of storage on antioxidant activity of freeze-dried potato peels. Food Res. Int. 2013, 50, 507–512. [Google Scholar] [CrossRef]
- Mohdaly, A.; Sarhan, M.; Smetanska, I.; Mahmoud, A. Antioxidant properties of various solvent extracts of potato peel, sugar beet pulp and sesame cake. J. Sci. Food Agric. 2010, 90, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Navarre, D.; Shakya, R.; Holden, J.; Kumar, S. The effect of different cooking methods on phenolics and vitamin C in developmentally young potato tubers. Am. J. Potato Res. 2010, 87, 350–359. [Google Scholar] [CrossRef]
- Amado, I.; Franco, D.; Sánchez, M.; Zapata, C.; Vázquez, J. Optimisation of antioxidant extraction from Solanum tuberosum potato peel waste by surface response methodology. Food Chem. 2014, 165, 290–299. [Google Scholar] [CrossRef] [PubMed]
- Koduvayur Habeebullah, S.; Nielsen, N.; Jacobsen, C. Antioxidant activity of potato peel extracts in a fish-rapeseed oil mixture and in oil-in-water emulsions. J. Am. Oil Chem. Soc. 2010, 87, 1319–1332. [Google Scholar] [CrossRef]
- Beckman, C. Phenolic-storing cells: Keys to programmed cell death and periderm formation in wilt disease resistance and in general defence responses in plants? Physiol. Mol. Plant Pathol. 2000, 57, 101–110. [Google Scholar] [CrossRef]
- Parr, A.; Bolwell, G. Phenols in the plant and in man. The potential for possible nutritional enhancement of the diet by modifying the phenols content or profile. J. Sci. Food Agric. 2000, 80, 985–1012. [Google Scholar] [CrossRef]
- Valcarcel, J.; Reilly, K.; Gaffney, M.; O’Brien, N. Antioxidant activity, total phenolic and total flavonoid content in sixty varieties of potato (Solanum tuberosum L.) grown in Ireland. Potato Res. 2015, 58, 221–244. [Google Scholar] [CrossRef]
- Ignat, I.; Volf, I.; Popa, V. A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chem. 2011, 126, 1821–1835. [Google Scholar] [CrossRef] [PubMed]
- Lemos, M.; Aliyu, M.; Hungerford, G. Influence of cooking on the levels of bioactive compounds in purple majesty potato observed via chemical and spectroscopic means. Food Chem. 2015, 173, 462–467. [Google Scholar] [CrossRef] [PubMed]
- Alasalvar, C.; Grigor, J.; Zhang, D.; Quantick, P.; Shahidi, F. Comparison of volatiles, phenolics, sugars, antioxidant vitamins, and sensory quality of different colored carrot varieties. J. Agric. Food Chem. 2001, 49, 1410–1416. [Google Scholar] [CrossRef] [PubMed]
- Kroon, P.; Williamson, G. Hydroxycinnamates in plants and food: Current and future perspectives. J. Sci. Food Agric. 1999, 79, 355–361. [Google Scholar] [CrossRef]
- Rytel, E.; Tajner-Czopek, A.; Kita, A.; Aniołowska, M.; Kucharska, A.; Sokół-Łętowska, A.; Hamouz, K. Content of polyphenols in coloured and yellow fleshed potatoes during dices processing. Food Chem. 2014, 161, 224–229. [Google Scholar] [CrossRef] [PubMed]
- Chun, O.; Kim, D.; Smith, N.; Schroeder, D.; Han, J.; Lee, C. Daily consumption of phenolics and total antioxidant capacity from fruit and vegetables in the American diet. J. Sci. Food Agric. 2005, 85, 1715–1724. [Google Scholar] [CrossRef]
- Andre, C.; Ghislain, M.; Bertin, P.; Oufir, M.; del Rosario Herrera, M.; Hoffmann, L.; Hausman, J.; Larondelle, Y.; Evers, D. Andean potato cultivars (Solanum tuberosum L.) as a source of antioxidant and mineral micronutrients. J. Agric. Food Chem. 2007, 55, 366–378. [Google Scholar] [CrossRef] [PubMed]
- Ezekiel, R.; Singh, N.; Sharma, S.; Kaur, A. Beneficial phytochemicals in potato—A review. Food Res. Int. 2013, 50, 487–496. [Google Scholar] [CrossRef]
- Mattila, P.; Hellström, J. Phenolic acids in potatoes, vegetables, and some of their products. J. Food Comp. Anal. 2007, 20, 152–160. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects—A review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Shahidi, F.; Chandrasekara, A. Hydroxycinnamates and their in vitro and in vivo antioxidant activities. Phytochem. Rev. 2009, 9, 147–170. [Google Scholar] [CrossRef]
- Shahidi, F.; McDonald, J.; Chandrasekara, A.; Zhong, Y. Phytochemicals of foods, beverages and fruit vinegars: Chemistry and health effects. Asia Pac. J. Clin. Nutr. 2008, 17, 380–382. [Google Scholar] [PubMed]
- Yeo, J.; Shahidi, F. Critical evaluation of changes in the ratio of insoluble bound to soluble phenolics on antioxidant activity of lentils during germination. J. Agric. Food Chem. 2015, 63, 379–381. [Google Scholar] [CrossRef] [PubMed]
- Mäder, J.; Rawel, H.; Kroh, L. Composition of phenolic compounds and glycoalkaloids α-solanine and α-chaconine during commercial potato processing. J. Agric. Food Chem. 2009, 57, 6292–6297. [Google Scholar] [CrossRef] [PubMed]
- Schieber, A.; Saldaña, M. Potato peels: A source of nutritionally and pharmacologically interesting compounds—A review. Food 2009, 3, 23–29. [Google Scholar]
- Singh, P.; Saldaña, M. Subcritical water extraction of phenolic compounds from potato peel. Food Res. Int. 2011, 44, 2452–2458. [Google Scholar] [CrossRef]
- Finotti, E.; Bertone, A.; Vivanti, V. Balance between nutrients and anti-nutrients in nine Italian potato cultivars. Food Chem. 2006, 99, 698–701. [Google Scholar] [CrossRef]
- Külen, O.; Stushnoff, C.; Holm, D. Effect of cold storage on total phenolics content, antioxidant activity and vitamin c level of selected potato clones. J. Sci. Food Agric. 2013, 93, 2437–2444. [Google Scholar] [CrossRef] [PubMed]
- Im, H.; Suh, B.; Lee, S.; Kozukue, N.; Ohnisi-Kameyama, M.; Levin, C.; Friedman, M. Analysis of phenolic compounds by high-performance liquid chromatography and liquid chromatography/mass spectrometry in potato plant flowers, leaves, stems, and tubers and in home-processed potatoes. J. Agric. Food Chem. 2008, 56, 3341–3349. [Google Scholar] [CrossRef] [PubMed]
- Sánchez Maldonado, A.; Mudge, E.; Gänzle, M.; Schieber, A. Extraction and fractionation of phenolic acids and glycoalkaloids from potato peels using acidified water/ethanol-based solvents. Food Res. Int. 2014, 65, 27–34. [Google Scholar] [CrossRef]
- Kanatt, S.; Chander, R.; Radhakrishna, P.; Sharma, A. Potato peel extracta natural antioxidant for retarding lipid peroxidation in radiation processed lamb meat. J. Agric. Food Chem. 2005, 53, 1499–1504. [Google Scholar] [CrossRef] [PubMed]
- Ngadze, E.; Coutinho, T.; Icishahayo, D.; van der Waals, J. Effect of calcium soil amendments on phenolic compounds and soft rot resistance in potato tubers. Crop Prot. 2014, 62, 40–45. [Google Scholar] [CrossRef]
- Wijngaard, H.; Ballay, M.; Brunton, N. The optimisation of extraction of antioxidants from potato peel by pressurised liquids. Food Chem. 2012, 133, 1123–1130. [Google Scholar] [CrossRef]
- Xu, X.; Li, W.; Lu, Z.; Beta, T.; Hydamaka, A. Phenolic content, composition, antioxidant activity, and their changes during domestic cooking of potatoes. J. Agric. Food Chem. 2009, 57, 10231–10238. [Google Scholar] [CrossRef] [PubMed]
- Blessington, T.; Nzaramba, M.; Scheuring, D.; Hale, A.; Reddivari, L.; Miller, J. Cooking methods and storage treatments of potato: Effects on carotenoids, antioxidant activity, and phenolics. Am. J. Potato Res. 2010, 87, 479–491. [Google Scholar] [CrossRef]
- Brown, C.; Culley, D.; Yang, C.; Durst, R.; Wrolstad, R. Variation of anthocyanin and carotenoid contents and associated antioxidant values in potato breeding lines. J. Am. Soc. Hortic. Sci. 2005, 130, 174–180. [Google Scholar]
- Leo, L.; Leone, A.; Longo, C.; Lombardi, D.; Raimo, F.; Zacheo, G. Antioxidant compounds and antioxidant activity in “early potatoes”. J. Agric. Food Chem. 2008, 56, 4154–4163. [Google Scholar] [CrossRef] [PubMed]
- Reddivari, L.; Hale, A.; Miller, J. Genotype, location, and year influence antioxidant activity, carotenoid content, phenolic content, and composition in specialty potatoes. J. Agric. Food Chem. 2007, 55, 8073–8079. [Google Scholar] [CrossRef] [PubMed]
- Andre, C.; Oufir, M.; Guignard, C.; Hoffmann, L.; Hausman, J.; Evers, D.; Larondelle, Y. Antioxidant profiling of native andean potato tubers (Solanum tuberosum L.) reveals cultivars with high levels of β-carotene, α-tocopherol, chlorogenic acid, and petanin. J. Agric. Food Chem. 2007, 55, 10839–10849. [Google Scholar] [CrossRef] [PubMed]
- Navarre, D.; Pillai, S.; Shakya, R.; Holden, M. HPLC Profiling of phenolics in diverse potato genotypes. Food Chem. 2011, 127, 34–41. [Google Scholar] [CrossRef]
- Shakya, R.; Navarre, D. Rapid screening of ascorbic acid, glycoalkaloids, and phenolics in potato using high-performance liquid chromatography. J. Agric. Food Chem. 2006, 54, 5253–5260. [Google Scholar] [CrossRef] [PubMed]
- Perla, V.; Holm, D.; Jayanty, S. Effects of cooking methods on polyphenols, pigments and antioxidant activity in potato tubers. LWT Food Sci. Technol. 2012, 45, 161–171. [Google Scholar] [CrossRef]
- Burgos, G.; Amoros, W.; Muñoa, L.; Sosa, P.; Cayhualla, E.; Sanchez, C.; Díaz, C.; Bonierbale, M. Total phenolic, total anthocyanin and phenolic acid concentrations and antioxidant activity of purple-fleshed potatoes as affected by boiling. J. Food Comp. Anal. 2013, 30, 6–12. [Google Scholar] [CrossRef]
- Kita, A.; Bąkowska-Barczak, A.; Hamouz, K.; Kułakowska, K.; Lisińska, G. The effect of frying on anthocyanin stability and antioxidant activity of crisps from red- and purple-fleshed potatoes (Solanum tuberosum L.). J. Food Comp. Anal. 2013, 32, 169–175. [Google Scholar] [CrossRef]
- Lachman, J.; Hamouz, K.; Šulc, M.; Orsák, M.; Pivec, V.; Hejtmánková, A.; Dvořák, P.; Čepl, J. Cultivar differences of total anthocyanins and anthocyanidins in red and purple-fleshed potatoes and their relation to antioxidant activity. Food Chem. 2009, 114, 836–843. [Google Scholar] [CrossRef]
- Navarre, D.; Shakya, R.; Holden, J.; Crosslin, J. LC-MS analysis of phenolic compounds in tubers showing zebra chip symptoms. Am. J. Potato Res. 2009, 86, 88–95. [Google Scholar] [CrossRef]
- Han, K.H.; Matsumoto, A.; Shimada, K.; Sekikawa, M.; Fukushima, M. Effects of anthocyanin-rich purple potato flakes on antioxidant status in F344 rats fed a cholesterol-rich diet. Brit. J. Nutr. 2007, 98, 914–921. [Google Scholar] [CrossRef] [PubMed]
- André, C.; Oufir, M.; Hoffmann, L.; Hausman, J.; Rogez, H.; Larondelle, Y.; Evers, D. Influence of environment and genotype on polyphenol compounds and in vitro antioxidant capacity of native andean potatoes (Solanum tuberosum L.). J. Food Comp. Anal. 2009, 22, 517–524. [Google Scholar] [CrossRef]
- Madiwale, G.; Reddivari, L.; Holm, D.; Vanamala, J. Storage elevates phenolic content and antioxidant activity but suppresses antiproliferative and pro-apoptotic properties of colored-flesh potatoes against human colon cancer cell lines. J. Agric. Food Chem. 2011, 59, 8155–8166. [Google Scholar] [CrossRef] [PubMed]
- Barba, A.; Calabretti, A.; d’Amore, M.; Piccinelli, A.; Rastrelli, L. Phenolic constituents levels in cv. Agria potato under microwave processing. LWT Food Sci. Technol. 2008, 41, 1919–1926. [Google Scholar] [CrossRef]
- Stratil, P.; Klejdus, B.; Kubáň, V. Determination of total content of phenolic compounds and their antioxidant activity in vegetables evaluation of spectrophotometric methods. J. Agric. Food Chem. 2006, 54, 607–616. [Google Scholar] [CrossRef] [PubMed]
- Burmeister, A.; Bondiek, S.; Apel, L.; Kühne, C.; Hillebrand, S.; Fleischmann, P. Comparison of carotenoid and anthocyanin profiles of raw and boiled solanum tuberosum and solanum phureja tubers. J. Food Comp. Anal. 2011, 24, 865–872. [Google Scholar] [CrossRef]
- Eichhorn, S.; Winterhalter, P. Anthocyanins from pigmented potato (Solanum tuberosum L.) varieties. Food Res. Int. 2005, 38, 943–948. [Google Scholar] [CrossRef]
- Ieri, F.; Innocenti, M.; Andrenelli, L.; Vecchio, V.; Mulinacci, N. Rapid HPLC/DAD/MS method to determine phenolic acids, glycoalkaloids and anthocyanins in pigmented potatoes (Solanum tuberosum L.) and correlations with variety and geographical origin. Food Chem. 2011, 125, 750–759. [Google Scholar] [CrossRef]
- Lachman, J.; Hamouz, K.; Orsák, M.; Pivec, V.; Hejtmánková, K.; Pazderů, K.; Dvořák, P.; Čepl, J. Impact of selected factors—Cultivar, storage, cooking and baking on the content of anthocyanins in coloured-flesh potatoes. Food Chem. 2012, 133, 1107–1116. [Google Scholar] [CrossRef]
- Stushnoff, C.; Holm, D.; Thompson, M.; Jiang, W.; Thompson, H.; Joyce, N.; Wilson, P. Antioxidant properties of cultivars and selections from the Colorado potato breeding program. Am. J. Potato Res. 2008, 85, 267–276. [Google Scholar] [CrossRef]
- Wang, Q.; Cao, Y.; Zhou, L.; Jiang, C.; Feng, Y.; Wei, S. Effects of postharvest curing treatment on flesh colour and phenolic metabolism in fresh-cut potato products. Food Chem. 2015, 169, 246–254. [Google Scholar] [CrossRef] [PubMed]
- Lombardo, S.; Pandino, G.; Mauromicale, G. The influence of growing environment on the antioxidant and mineral content of “early” crop potato. J. Food Comp. Anal. 2013, 32, 28–35. [Google Scholar] [CrossRef]
- Reyes, L.; Miller, J.; Cisneros-Zevallos, L. Antioxidant capacity, anthocyanins and total phenolics in purple-and red-fleshed potato (Solanum Tuberosum L.) genotypes. Am. J. Potato Res. 2005, 82, 271–277. [Google Scholar] [CrossRef]
- Hamouz, K.; Lachman, J.; Pazderů, K.; Hejtmánková, K.; Cimr, J.; Musilová, J.; Pivec, V.; Orsák, M.; Svobodová, A. Effect of cultivar, location and method of cultivation on the content of chlorogenic acid in potatoes with different flesh colour. Plant Soil Environ. 2013, 59, 465–471. [Google Scholar]
- Castañeda, P.; Pérez, L. Calcium ions promote the response of citrus limon against fungal elicitors or wounding. Phytochemistry 1996, 42, 595–598. [Google Scholar] [CrossRef]
- Andre, C.; Schafleitner, R.; Guignard, C.; Oufir, M.; Aliaga, C.; Nomberto, G.; Hoffmann, L.; Hausman, J.; Evers, D.; Larondelle, Y. Modification of the health-promoting value of potato tubers field grown under drought stress: Emphasis on dietary antioxidant and glycoalkaloid contents in five native andean cultivars (Solanum Tuberosum L.). J. Agric. Food Chem. 2009, 57, 599–609. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Chen, J.; Ye, X.; Chen, S. Health benefits of the potato affected by domestic cooking: A review. Food Chem. 2016, 202, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Mulinacci, N.; Ieri, F.; Giaccherini, C.; Innocenti, M.; Andrenelli, L.; Canova, G.; Saracchi, M.; Casiraghi, M. Effect of cooking on the anthocyanins, phenolic acids, glycoalkaloids, and resistant starch content in two pigmented cultivars of Solanum tuberosum L. J. Agric. Food Chem. 2008, 56, 11830–11837. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Salas, P.; Morales-Soto, A.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Phenolic-compound-extraction systems for fruit and vegetable samples. Molecules 2010, 15, 8813–8826. [Google Scholar] [CrossRef] [PubMed]
- Narváez-Cuenca, C.; Vincken, J.; Zheng, C.; Gruppen, H. Diversity of (dihydro) hydroxycinnamic acid conjugates in Colombian potato tubers. Food Chem. 2013, 139, 1087–1097. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Cai, Y.; Ke, J.; Corke, H. Compositions of phenolic compounds, amino acids and reducing sugars in commercial potato varieties and their effects on acrylamide formation. J. Sci. Food Agric. 2010, 90, 2254–2262. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, V.; Cahyadi, J.; Xu, D.; Saldaña, M. Optimization of phytochemicals production from potato peel using subcritical water: Experimental and dynamic modeling. J. Supercrit. Fluids 2014, 90, 8–17. [Google Scholar] [CrossRef]
- Ji, X.; Rivers, L.; Zielinski, Z.; Xu, M.; MacDougall, E.; Stephen, J.; Zhang, S.; Wang, Y.; Chapman, R.; Keddy, P.; et al. Quantitative analysis of phenolic components and glycoalkaloids from 20 potato clones and in vitro evaluation of antioxidant, cholesterol uptake, and neuroprotective activities. Food Chem. 2012, 133, 1177–1187. [Google Scholar] [CrossRef]
- Wu, T.; Yan, J.; Liu, R.; Marcone, M.; Aisa, H.; Tsao, R. Optimization of microwave-assisted extraction of phenolics from potato and its downstream waste using orthogonal array design. Food Chem. 2012, 133, 1292–1298. [Google Scholar] [CrossRef]
- Yang, W.; Bernards, M. Metabolite profiling of potato (Solanum tuberosum L.) tubers during wound-induced suberization. Metabolomics 2007, 3, 147–159. [Google Scholar] [CrossRef]
- Singh, N.; Rajini, P. Antioxidant-Mediated Protective effect of potato peel extract in erythrocytes against oxidative damage. Chem. Biol. Interact. 2008, 173, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Wallis, C.; Chen, J.; Civerolo, E. Zebra chip-diseased potato tubers are characterized by increased levels of host phenolics, amino acids, and defense-related proteins. Physiol. Mol. Plant Path. 2012, 78, 66–72. [Google Scholar] [CrossRef]
- Wu, Z.; Xu, H.; Ma, Q.; Cao, Y.; Ma, J.; Ma, C. Isolation, identification and quantification of unsaturated fatty acids, amides, phenolic compounds and glycoalkaloids from potato peel. Food Chem. 2012, 135, 2425–2429. [Google Scholar] [CrossRef] [PubMed]
- Mohdaly, A.; Hassanien, M.; Mahmoud, A.; Sarhan, M.; Smetanska, I. Phenolics extracted from potato, sugar beet, and sesame processing by-products. Int. J. Food Prop. 2013, 16, 1148–1168. [Google Scholar] [CrossRef]
- López-Cobo, A.; Gómez-Caravaca, A.; Cerretani, L.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Distribution of phenolic compounds and other polar compounds in the tuber of Solanum tuberosum L. by HPLC-DAD-Q-TOF and study of their antioxidant activity. J. Food Comp. Anal. 2014, 36, 1–11. [Google Scholar] [CrossRef]
- Rostagno, M.; Palma, M.; Barroso, C. Ultrasound-assisted extraction of soy isoflavones. J. Chromatogr. A 2003, 1012, 119–128. [Google Scholar] [CrossRef]
- Vilkhu, K.; Mawson, R.; Simons, L.; Bates, D. Applications and opportunities for ultrasound assisted extraction in the food industry—A review. Innov. Food Sci. Emerg. 2008, 9, 161–169. [Google Scholar] [CrossRef]
- Inoue, T.; Tsubaki, S.; Ogawa, K.; Onishi, K.; Azuma, J. Isolation of hesperidin from peels of thinned citrus unshiu fruits by microwave-assisted Extraction. Food Chem. 2010, 123, 542–547. [Google Scholar] [CrossRef]
- Khajeh, M.; Ghanbari, M. Optimization of microwave-assisted extraction procedure to determine metal in fish muscles using box–behnken design. Food Anal. Method 2010, 4, 431–436. [Google Scholar] [CrossRef]
- Terigar, B.; Balasubramanian, S.; Boldor, D.; Xu, Z.; Lima, M.; Sabliov, C. Continuous microwave-assisted isoflavone extraction system: Design and performance evaluation. Bioresour. Technol. 2010, 101, 2466–2471. [Google Scholar] [CrossRef] [PubMed]
- Hemwimon, S.; Pavasant, P.; Shotipruk, A. Microwave-assisted extraction of antioxidative anthraquinones from roots of morinda citrifolia. Sep. Purif. Technol. 2007, 54, 44–50. [Google Scholar] [CrossRef]
- Cardoso, L.; Serrano, C.; Quintero, E.; López, C.; Antezana, R.; Martínez de la Ossa, E. High pressure extraction of antioxidants from Solanum stenotomun peel. Molecules 2013, 18, 3137–3151. [Google Scholar] [CrossRef] [PubMed]
- Mendiola, J.; Herrero, M.; Cifuentes, A.; Ibañez, E. Use of compressed fluids for sample preparation: Food applications. J. Chromatogr. A 2007, 1152, 234–246. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Wang, B.; Eaves, D.; Shikany, J.; Pace, R. Phenolic compound profile of selected vegetables frequently consumed by African Americans in the southeast United States. Food Chem. 2007, 103, 1395–1402. [Google Scholar] [CrossRef]
- Anastácio, A.; Carvalho, I. Phenolics extraction from sweet potato peels: Key factors screening through a placket–burman design. Ind. Crop. Prod. 2013, 43, 99–105. [Google Scholar] [CrossRef]
- Arun, K.; Chandran, J.; Dhanya, R.; Krishna, P.; Jayamurthy, P.; Nisha, P. A comparative evaluation of antioxidant and antidiabetic potential of peel from young and matured potato. Food Biosci. 2015, 9, 36–46. [Google Scholar] [CrossRef]
- O’Shea, N.; Arendt, E.; Gallagher, E. Dietary fibre and phytochemical characteristics of fruit and vegetable by-products and their recent applications as novel ingredients in food products. Innov. Food Sci. Emerg. 2012, 16, 1–10. [Google Scholar] [CrossRef]
- Wijngaard, H.; Rößle, C.; Brunton, N. A survey of Irish fruit and vegetable waste and by-products as a source of polyphenolic antioxidants. Food Chem. 2009, 116, 202–207. [Google Scholar] [CrossRef]
- Alamed, J.; Chaiyasit, W.; McClements, D.; Decker, E. Relationships between free radical scavenging and antioxidant activity in foods. J. Agric. Food Chem. 2009, 57, 2969–2976. [Google Scholar] [CrossRef] [PubMed]
- Al-Weshahy, A.; Rao, V. Potato peel as a source of important phytochemical antioxidant nutraceuticals and their role in human health—A review. In Phytochemicals as Nutraceuticals—Global Approaches to Their Role in Nutrition and Health; InTech: Rijeka, Croatia, 2012; pp. 207–224. [Google Scholar]
- Moure, A.; Cruz, J.; Franco, D.; Domı́nguez, J.; Sineiro, J.; Domı́nguez, H.; José Núñez, M.; Parajó, J. Natural antioxidants from residual sources. Food Chem. 2001, 72, 145–171. [Google Scholar] [CrossRef]
- Maqsood, S.; Benjakul, S.; Abushelaibi, A.; Alam, A. Phenolic compounds and plant phenolic extracts as natural antioxidants in prevention of lipid oxidation in seafood: A detailed review. Compr. Rev. Food Sci. Food Saf. 2014, 13, 1125–1140. [Google Scholar] [CrossRef]
- Friedman, M. Potato Glycoalkaloids and metabolites: Roles in the plant and in the diet. J. Agric. Food Chem. 2006, 54, 8655–8681. [Google Scholar] [CrossRef] [PubMed]
- Liu, R. Health-promoting components of fruits and vegetables in the diet. Adv. Nutr. 2013, 4, 384S–392S. [Google Scholar] [CrossRef] [PubMed]
- Friedman, M.; Lee, K.; Kim, H.; Lee, I.; Kozukue, N. Anticarcinogenic effects of glycoalkaloids from potatoes against human cervical, liver, lymphoma, and stomach cancer cells. J. Agric. Food Chem. 2005, 53, 6162–6169. [Google Scholar] [CrossRef]
- McGill, C.; Kurilich, A.; Davignon, J. The role of potatoes and potato components in cardiometabolic health: A review. Ann. Med. 2013, 45, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Brown, C.; Wrolstad, R.; Durst, R.; Yang, C.; Clevidence, B. Breeding studies in potatoes containing high concentrations of anthocyanins. Am. J. Potato Res. 2003, 80, 241–249. [Google Scholar] [CrossRef]
- Thompson, M.; Thompson, H.; McGinley, J.; Neil, E.; Rush, D.; Holm, D.; Stushnoff, C. Functional food characteristics of potato cultivars (Solanum tuberosum L.): Phytochemical composition and inhibition of 1-methyl-1-nitrosourea induced breast cancer in rats. J. Food Comp. Anal. 2009, 22, 571–576. [Google Scholar] [CrossRef]
- Kaspar, K.; Park, J.; Brown, C.; Mathison, B.; Navarre, D.; Chew, B. Pigmented potato consumption alters oxidative stress and inflammatory damage in men. J. Nutr. 2010, 141, 108–111. [Google Scholar] [CrossRef] [PubMed]
- Madiwale, G.; Reddivari, L.; Stone, M.; Holm, D.; Vanamala, J. Combined effects of storage and processing on the bioactive compounds and pro-apoptotic properties of color-fleshed potatoes in human colon cancer cells. J. Agric. Food Chem. 2012, 60, 11088–11096. [Google Scholar] [CrossRef] [PubMed]
- Plazas, M.; López-Gresa, M.; Vilanova, S.; Torres, C.; Hurtado, M.; Gramazio, P.; Andújar, I.; Herráiz, F.; Bellés, J.; Prohens, J. Diversity and relationships in key traits for functional and apparent quality in a collection of eggplant: Fruit phenolics content, antioxidant activity, polyphenol oxidase activity, and browning. J. Agric. Food Chem. 2013, 61, 8871–8879. [Google Scholar] [CrossRef] [PubMed]
- Andre, C.; Legay, S.; Iammarino, C.; Ziebel, J.; Guignard, C.; Larondelle, Y.; Hausman, J.; Evers, D.; Miranda, L. The potato in the human diet: A complex matrix with potential health benefits. Potato Res. 2014, 57, 201–214. [Google Scholar] [CrossRef]
- Ong, K.; Hsu, A.; Tan, B. Anti-diabetic and anti-lipidemic effects of chlorogenic acid are mediated by AMPK activation. Biochem. Pharmacol. 2013, 85, 1341–1351. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Kamath, V.; Rajini, P. Attenuation of hyperglycemia and associated biochemical parameters in STZ-induced diabetic rats by dietary supplementation of potato peel powder. Clin. Chim. Acta 2005, 353, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Feng, R.; Lu, Y.; Bowman, L.; Qian, Y.; Castranova, V.; Ding, M. Inhibition of activator protein-1, NF-B, and MAPKs and induction of phase 2 detoxifying enzyme activity by chlorogenic acid. J. Biol. Chem. 2005, 280, 27888–27895. [Google Scholar] [CrossRef] [PubMed]
- Cao, G.; Sofic, E.; Prior, R. Antioxidant and prooxidant behavior of flavonoids: Structure-activity relationships. Free Radic. Biol. Med. 1997, 22, 749–760. [Google Scholar] [CrossRef]
- Dimitrios, B. Sources of natural phenolic antioxidants. Trends Food Sci. Technol. 2006, 17, 505–512. [Google Scholar] [CrossRef]
- Roleira, F.; Tavares-da-Silva, E.; Varela, C.; Costa, S.; Silva, T.; Garrido, J.; Borges, F. Plant derived and dietary phenolic antioxidants: Anticancer properties. Food Chem. 2015, 183, 235–258. [Google Scholar] [CrossRef] [PubMed]
- Reddivari, L.; Vanamala, J.; Safe, S.; Miller, J. The bioactive compounds α-chaconine and gallic acid in potato extracts decrease survival and induce apoptosis in LNCAP and PC3 prostate cancer cells. Nutr. Cancer 2010, 62, 601–610. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, K.; Hibasami, H.; Murakami, T.; Terahara, N.; Mori, M.; Tsukui, A. Induction of apoptosis in cultured human stomach cancer cells by potato anthocyanins and its inhibitory effects on growth of stomach cancer in mice. Food Sci. Technol. Res. 2006, 12, 22–26. [Google Scholar] [CrossRef]
Phenolic Classes | Phenolic Compounds | Range (mg/100 g Dry Extract) | References |
Phenolic acids | chlorogenic acid | 27.6 | [43] |
100.0–220.0 | [53] | ||
17.4–1274.6 | [51] | ||
47.0–283.0 | [49] | ||
17.3–1468.1 | [36] | ||
21.0–40.0 | [58] | ||
60.0–292.0 | [17] | ||
0.2–2193.0 | [3] | ||
caffeic acid | 0.1–0.2 | [53] | |
5.0–50.0 | [49] | ||
1.1–172.4 | [36] | ||
2.0–6.9 | [58] | ||
0–41.6 | [3] | ||
coumaric acid | 0–9.2 | [49] | |
0–1.6 | [36] | ||
protocatechuic acid | 0–7.6 | [36] | |
vanillic acid | 0–22.4 | [36] | |
ferulic acid | 0.6–9.0 | [49] | |
0–3.9 | [36] | ||
0–1.4 | [3] | ||
cryptochlorogenic acid | 16.0–27.0 | [53] | |
3.1–163.3 | [36] | ||
8.0–59.0 | [17] | ||
0.1–168.3 | [3] | ||
neochlorogenic acid | 2.9–9.9 | [53] | |
49.2–91.2 | [36] | ||
0.5–1.5 | [58] | ||
3.0–11.0 | [17] | ||
0.1–87.6 | [3] | ||
gallic acid | 0–1.0 | [36] | |
p-hydroxybenzoic acid | 0–7.8 | [36] | |
Flavonols | rutin | 0.5–2.6 | [53] |
0.6–1.3 | [17] | ||
0–12.2 | [3] | ||
kaempferol rutinose | 0.5–1.7 | [17] | |
quercetin-3-o-glu-rut | 2.5 | [53] | |
Flavan-3-ols | catechin | 43.0–204.0 | [49] |
0–1.5 | [36] | ||
0–1.4 | [3] | ||
Anthocyanidins | anthocyanins | 1.4–163.3 | [51] |
87.0 | [59] | ||
953.8–1630.3 | [60] | ||
21.0–109.0 | [56] | ||
Phenolic Classes | Phenolic Compounds | Range (mg/100 g Fresh Product) | References |
Phenolic acids | chlorogenic acid | 1.4–12.1 | [39] |
0.9–27.0 | [31] | ||
0.4–34.0 | [41] | ||
0.4–30.1 | [61] | ||
8.7–28.6 | [38] | ||
caffeic acid | 0–1.2 | [41] | |
0.6–10.2 | [61] | ||
5.2–12.2 | [38] | ||
coumaric acid | 0.8–6.5 | [38] | |
protocatechuic acid | 0.2–0.5 | [31] | |
6.1–10.3 | [62] | ||
1.9–2.0 | [38] | ||
vanillic acid | 0.6 | [31] | |
ferulic acid | 0.1 | [31] | |
0–0.1 | [61] | ||
1.5–4.9 | [38] | ||
syringic acid | 0.2–0.5 | [31] | |
0.9–1.7 | [38] | ||
p-coumaric acid | 0.2–3.0 | [31] | |
sinapic acid | 0.3–0.9 | [31] | |
0–0.4 | [61] | ||
gallic acid | 0.5–0.6 | [38] |
Extraction System | Analytical Technique | Potato Cultivar | Phenolic Compounds Described | References |
---|---|---|---|---|
Solid-liquid extraction | HPLC-DAD | ‘Kufri chandromukhi’ | Chlorogenic acid, caffeic acid, gallic acid | [43] |
HPLC UV-Vis | 9 italian cultivars (‘Agata‘, ‘Primura‘, ‘Arinda‘, ‘Merit‘, ‘Marabel‘, ‘Jelli‘, ‘Frinka‘, ‘Sponta‘, ‘Agria‘) | Chlorogenic acid | [39] | |
HPLC-MS | ‘Ranger Russet’ ‘Norkotah Russet’ | Neochlorogenic acid, chlorogenic acid, caffeic acid, quercetin-3-o-glu-rut, rutin, kaempferol-3-o-rutinoside, cryptochlorogenic acid, quinic acid | [53] | |
HPLC-DAD, HPLC-MS, HPLC-FLD | 23 Native Andean cultivars | Chlorogenic acid, neochlorogenic acid, cryptochlorogenic acid, caffeic acid, protocatechuic acid, vanillic acid, ferulic acid, petanin, rutin, kaempferol-3-o-rutinoside | [51] | |
HPLC-DAD | 320 specialty potato genotypes | Chlorogenic acid, caffeic acid, gallic acid, catechin | [40] | |
Not cited | ‘Russet Burbank’ | Chlorogenic acid, ferulic acid, vanillic acid, caffeic acid, benzoic acid | [83] | |
HPLC-MS | ‘Jasim’, ‘Atlantic’, ‘Jawan’, ‘Superior’, ‘Jopung’ | Chlorogenic acid, caffeic acid, ferulic acid, p-coumaric acid, trans-cinnamic acid | [41] | |
HPLC-DAD | ‘Nicola’, ‘Sieglinde F’, ‘Isci 4052’, ‘Isci 67’ | Chlorogenic acid, caffeic acid, ferulic acid, catechin | [49] | |
HPLC | Not cited (Indian cultivar) | Gallic acid, caffeic acid, chlorogenic acid, protocatechuic acid | [84] | |
HPLC-DAD | 13 native Andean genotypes | Neochlorogenic acid, cryptochlorogenic acid, chlorogenic acid, kaempferol-3-o-rutinoside, quercetin | [60] | |
HPLC | ‘Karlena’ | Gallic acid, neochlorogenic acid, protocatechuic acid, catechin, cryptochlorogenic acid, chlorogenic acid, vanillic acid, caffeic acid, ferulic acid, p-coumaric acid | [36] | |
HPLC UV-Vis | ‘Siecle’, ‘Purple Majesty’, ‘Dakota pearl’, ‘FL 1533’, ‘Vivaldi’, ‘Yukon gold’ | Chlorogenic acid, caffeic acid | [13] | |
HPLC-DAD, HPLC-MS | ‘Goldrosh’, ‘Nordonna’, ‘Dakota Pearl’, ‘Norkotah’, ‘Red Nordland’, ‘Sangre’, ‘Viking’, ‘Dark Red Nordland’ | Chlorogenic acid, caffeic acid, gallic acid, ferulic acid, catechin, p-coumaric acid, o-coumaric acid | [46] | |
HPLC-DAD | 8 cultivars | Chlorogenic acid, caffeic acid, epicatechin, p-coumaric acid, vanillic acid, quercetin | [47] | |
HPLC-DAD | ‘Sava’, ‘Bintje’ | Protocatechuic acid, gentisic acid, gallic acid, chlorogenic acid, salicylic acid, caffeic acid, ferulic acid, p-coumaric acid | [19] | |
HPLC-DAD-MS | ‘Bintje’, ‘Piccolo’, ‘Purple Majesty’ | Chlorogenic acid, neochlorogenic acid, cryptochlorogenic acid, kaempferol rutinose, rutin | [17] | |
HPLC-DAD/APCI-MS | 16 cultivars | Chlorogenic acid, caffeic acid, 3-o-caffeoylquinic acid, 1-o-caffeoylquinic acid | [77] | |
HPLC-DAD-MS | 13 Italian cultivars | 5-o-caffeoylquinic acid, 4-o-caffeoylquinic acid, 3-o-caffeoylquinic acid, ferulic acid, anthocyanins | [66] | |
UPLC-MS | ‘Purple Majesty’, ‘Yukon gold’, ‘Atlantic’ | Chlorogenic acid, caffeic acid, ferulic acid, sinapic acid | [61] | |
HPLC-DAD-MS | 50 cultivars | Chlorogenic acid, rutin, kaempferol-3-rutinose | [52] | |
UPLC-DAD | ‘Vitelotte’, ‘Luminella’, ‘Charlotte’, ‘Bintje’ | Chlorogenic acid, neochlorogenic acid, cryptochlorogenic acid, caffeic acid, ferulic acid, p-coumaric acid, syringic acid, vanillic acid, catechin, rutin, kaempferol-3-o-rutinoside | [3] | |
HPLC-DAD | ‘Sava’ | Gallic acid, protocatechuic acid, gentisic acid, chlorogenic acid, vanillic acid, syringic acid, caffeic acid, salicylic acid, p-coumaric acid, ferulic acid | [9] | |
HPLC-DAD | Not cited | Chlorogenic acid, neochlorogenic acid, cryptochlorogenic acid, coumaric acid, genistin, quercetin-3-β-d-galactoside, naringin ,naringenin, luteolin, genistein, kaempferol, flavan-3-ol | [85] | |
UPLC-MS | Not cited | chlorogenic acid, quinic acid, caffeic acid, methyl caffeate | [86] | |
HPLC-DAD-MS | 15 Colombian cultivars | Chlorogenic acid, neochlorogenic acid, cryptochlorogenic acid, caffeic acid | [76] | |
HPLC UV | ‘Agria’ | Chlorogenic acid, ferulic acid, gallic acid | [18] | |
HPLC UV | ‘Valfi’, ‘Blaue Elise’, ‘Bore Valley’, ‘Blue Cango’ | Chlorogenic acid, caffeic acid, ferulic acid, coumaric acid, cryptochlorogenic acid, neochlorogenic acid, p-coumaric acid | [27] | |
Ultrasound-assisted extraction | HPLC-DAD | ‘Nicola’, ‘Timo’, ‘Siikli’, ‘Rosamund’, ‘Van Gogh’ | Chlorogenic acid, caffeic acid, ferulic acid, sinapic acid, vanillic acid, syringic acid | [31] |
HPLC-DAD | ‘Agria’ | Protocatechuic acid, chlorogenic acid, neochlorogenic acid, cryptochlorogenic acid | [62] | |
HPLC-DAD | 20 potato cultivars | Chlorogenic acid, petunidin-3-glucoside chloride, pelargonidin-3-glucopyranoside | [81] | |
HPLC-MS | ‘Purple’, ‘Innovator’, ‘Russet’, ‘Yellow’ | Chlorogenic acid, caffeic acid, p-coumaric acid, ferulic acid | [8] | |
HPLC-DAD | ‘Penta’, ‘Marcy’ | Chlorogenic acid, caffeic acid, gallic acid, p-coumaric acid, ferulic acid | [15] | |
HPLC-DAD | ‘Diamond’ | Chlorogenic acid, caffeic, 4-hydroxybenzoic, p-coumaric, and trans-o-hydroxycinnamic acids | [87] | |
HPLC-DAD- -MS | ‘Blue Bell’, ‘Melody’ | Chlorogenic acid, caffeic acid, quinic acid, ferulic acid, cryptochlorogenic acid, rutin | [88] | |
HPLC-MS | ‘Russet’ | Chlorogenic acid, caffeic acid, neochlorogenic acid | [42] | |
RP-HPLC UV-DAD | ‘BP1’ | Chlorogenic acid, caffeic acid, ferulic acid | [44] | |
HPLC-DAD | ‘Netherlands #7’ | Gallic acid, protocatechuic acid, chlorogenic acid | [69] | |
Microwave-assisted extraction | HPLC-UV | ‘Red’ | Chlorogenic acid, caffeic acid, gallic acid, protocatechuic acid, syringic acid, ferulic acid, coumaric acid | [38] |
HPLC-DAD | ‘Calwhite’ | Chlorogenic acid, caffeic acid, neochlorogenic acid, cryptochlorogenic acid, ferulic acid, p-coumaric acid | [82] | |
Pressurized liquid extraction (PLE) + solid-liquid extraction | HPLC-DAD | ‘Lady Claire’ | Caffeic acid | [45] |
HPLC-UV | ‘Red’ | Gallic, chlorogenic and syringic acid | [80] |
Food | Potato Type | Criteria | References |
---|---|---|---|
Processed Lamb Meat | Potato Peels (Solanum tuberosum cv. ‘Kufri chandramukhi‘) | TBARS and carbonyl content | [43] |
Fish-Rapeseed Oil Mixture and in Oil-in-Water Emulsions | Potato peels (Solanum tuberosum cv. ‘Sava‘ and ‘Bintje‘) | Peroxide value, anisidine value, tocopherol concentration, and sensory evaluation | [19] |
Soybean oil, sunflower oil | Potato peels (Solanum tuberosum cv. ‘Diamond‘) | Peroxide values, p-anisidine | [16] |
Minced horse mackerel (Trachurus trachurus) | Potato Peels (Solanum tuberosum‘Sava‘ variety | Peroxide value, volatiles, carbonyl compounds, and protected against the loss of a-tocopherol and tryptophan and tyrosine residues | [9] |
Ground Salmon | Potato peels and tubers (‘Purple‘, ‘Innovator‘, ‘Russet‘ and ‘Yellow‘) | TBARS | [8] |
Sunflower oil | Potato peels (Solanum tuberosum cv. ‘Diamond‘) | Both primary (hydroperoxides) and secondary oxidation products | [87] |
Soybean oil | Potato peel (Agria) | Peroxide, totox and p-anisidine values | [18] |
Part of Potato | in Vivo/in Vitro | Subject | Effect | Disease | References |
---|---|---|---|---|---|
Potato flakes | in vivo | Male rats fed a high-cholesterol diet | Antioxidant effects | Oxidative stress | [59] |
Extracts of peel and whole potatoes | in vitro | Human mammalian cancer cell (MCF-7) | Antioxidant activity; antiproliferative activity | Breast cancer | [49] |
Potato peel extract | in vitro | Rat erytrocyte, Human erytrocyte membrane | Antioxidant effects | Oxidative damage | [84] |
Whole potato | in vitro | Breast cancer cultures MCF-7 and MDA-MB-468 | Anti-carcinogenic properties | Breast cancer | [68] |
Whole potato | in vivo | 20-day-old rats | Anticancer activity, antioxidant capacity | Breast cancer | [111] |
Whole potato | in vivo | Free-living healthy men | Antioxidant effects, Anti-inflammatory activity | Oxidative stress and inflammation biomarkers | [112] |
Whole potato extracts | in vitro | Human Colon Cancer Cell Lines | Antioxidant activity, anticancer properties | Colon cancer | [61] |
Potato peel tuber and granule | in vitro | HepG2 liver cells | Antioxidant effects, and neuroprotective activities | Liver LDL (Low-density lipoprotein ) cholesterol uptake and protection of cortical neurons from cell death | [81] |
Whole potato | in vitro | Human colon cancer cell lines | Antioxidant activity, antiproliferative and pro-apoptotic properties | Colon cancer | [113] |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akyol, H.; Riciputi, Y.; Capanoglu, E.; Caboni, M.F.; Verardo, V. Phenolic Compounds in the Potato and Its Byproducts: An Overview. Int. J. Mol. Sci. 2016, 17, 835. https://doi.org/10.3390/ijms17060835
Akyol H, Riciputi Y, Capanoglu E, Caboni MF, Verardo V. Phenolic Compounds in the Potato and Its Byproducts: An Overview. International Journal of Molecular Sciences. 2016; 17(6):835. https://doi.org/10.3390/ijms17060835
Chicago/Turabian StyleAkyol, Hazal, Ylenia Riciputi, Esra Capanoglu, Maria Fiorenza Caboni, and Vito Verardo. 2016. "Phenolic Compounds in the Potato and Its Byproducts: An Overview" International Journal of Molecular Sciences 17, no. 6: 835. https://doi.org/10.3390/ijms17060835