Anti-Diabetic Effect of Portulaca oleracea L. Polysaccharideandits Mechanism in Diabetic Rats
Abstract
:1. Introduction
2. Results and Discussion
2.1. Polysaccharide Characterization
2.2. General Condition and Body Weight of Diabetic Rats
2.3. Effects of CPOP (Crude Portulaca oleracea L. Polysaccharide) on Glucose Tolerance in Diabetic Rats
2.4. Effects of CPOP on Fasting Blood Glucose (FBG), Fasting Serum Insulin (FINS) and Insulin Sensitivity Index (ISI)
2.5. Effects of CPOP on Tumor Necrosis Factor-α (TNF-α) and Interleukin-6 (IL-6) Levels in Diabetic Rats
2.6. Effects of CPOP on Methane Dicarboxylic Aldehyde (MDA) Contents and Superoxygen Dehydrogenises (SOD) Activities in Diabetic Rats
2.7. Effects of CPOP on Protein Tyrosine Phosphatase 1B (PTP1B) Activities in Diabetic Rats
3. Materials and Methods
3.1. Materials and Chemicals
3.2. Extraction of Polysaccharide of Portulaca oleracea L.
3.3. Characterization of CPOP
3.4. Monosaccharide Composition Analysis
3.5. Molecular Weight Determination
3.6. Animals
3.7. Establishment of Rat Diabetic Model
3.8. Grouping and Administration
3.9. Glucose Tolerance Test
3.10. Detection and Calculation of FBG, FINS and ISI
3.11. Detection of Serum Interleukin-6 and Tumor Necrosis Factor-α Levels
3.12. Methanedicarboxylic Aldehyde Content and Super Oxygen Dehydrogenase Activity in Liver
3.13. Detecting the Expression Levels of PTP1B in Liver by Western Blot
3.14. Statistical Analysis
3.15. Ethical Consideration
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Westerhaus, B.; Gosmanov, A.R.; Umpierrez, G.E. Diabetes prevention: Can insulin secretagogues do the job? Prim. Care Diabetes 2011, 5, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Defronzo, R.A. From the triumvirate to the ominous octet: A new paradigm for the treatment of type 2 diabetes mellitus. Diabetes 2009, 58, 773–795. [Google Scholar] [CrossRef] [PubMed]
- Wild, S.; Roglic, G.; Green, A.; Sicree, R.; King, H. Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030. Diabetes Care 2004, 27, 1047–1053. [Google Scholar] [CrossRef] [PubMed]
- Kitabchi, A.E.; Temprosa, M.; Knowler, W.C. Role of insulin secretion and sensitivity in the evolution of type 2 diabetes in the diabetes prevention program: Effects of life style intervention and metformin. Diabetes 2005, 54, 2404–2414. [Google Scholar] [PubMed]
- Inzucchi, S.E. Oral antihyperglycemic therapy for type 2 diabetes: Scientific review. JAMA 2002, 287, 360–372. [Google Scholar] [CrossRef] [PubMed]
- Xiang, A.H.; Peters, R.K.; Kjos, S.L.; Goico, J.; Ochoa, C.; Marroquin, A.; Tan, S.; Hodis, H.N.; Azen, S.P.; Buchanan, T.A. Pharmacological treatment of insulin resistance at two different stages in the evolution of type 2 diabetes: Impact on glucose tolerance and β-cell function. J. Clin. Endocrinol. Metab. 2004, 89, 2846–2851. [Google Scholar] [CrossRef] [PubMed]
- Mann, J.F.; Schmieder, R.E.; McQueen, M.; Dyal, L.; Schumacher, H.; Pogue, J.; Wang, X.; Maggioni, A.; Budaj, A.; Chaithiraphan, S.; et al. Renal outcomes with telmisartan, ramipril, or both, in people at high vascular risk (the ONTARGET study): A multicentre, randomised, double-blind, controlled trial. Lancet 2008, 372, 547–553. [Google Scholar] [CrossRef]
- Nissen, S.E.; Wolsk, I.K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N. Engl. J. Med. 2007, 356, 2457–2471. [Google Scholar] [CrossRef] [PubMed]
- Scarpello, J.H.; Hodgson, E.; Howlett, H.C. Effect of metformin on bile salt circulation and intestinal motility in type 2 diabetes mellitus. Diabet. Med. 1998, 15, 651–656. [Google Scholar] [CrossRef]
- Owen, M.R.; Doran, E.; Halestrap, A.P. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem. J. 2000, 348, 607–614. [Google Scholar] [CrossRef] [PubMed]
- Zhen, Z.Y.; Wei, L.; Feng, Z. Deciphering the therapeutic mechanisms of Xiao-Ke-An in treatment of type 2 diabetes in mice by a Fangjiomics approach. Acta Pharmacol. Sin. 2015, 36, 699–707. [Google Scholar]
- Li, W.L.; Zheng, H.C.; Bukuru, J.; de Kimpe, N. Natural medicines used in the traditional Chinese medical system for therapy of diabetes mellitus. J. Ethnopharmacol. 2004, 92, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.P.; Zhang, M.; Wang, W.Y.; Grimsgaard, S. Chinese herbal medicines for type 2 diabetes mellitus. Cochrane Database Syst. Rev. 2004, 3, CD003642. [Google Scholar] [PubMed]
- Xie, W.; Xing, D.; Sun, H.; Wang, W.; Ding, Y.; Du, L. The effects of Ananas comosus L. leaves on diabetic-dyslipidemic rats induced by alloxan and a high-fat/high-cholesterol diet. Am. J. Chin. Med. 2005, 33, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.; Zhang, Y.; Wang, N.; Zhou, H.; Du, L.; Ma, X.; Shi, X.; Cai, G. Novel effects of macrostemonoside A, a compound from Allium macrostemon Bung, on hyperglycemia, hyperlipidemia, and visceral obesity in high-fat diet-fed C57BL/6 mice. Eur. J. Pharmacol. 2008, 599, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.D.; Zhao, Y.N.; Du, L.J.; Cai, G.P. Scorpion in combination with Gypsum: Novel antidiabetic activities in streptozotocin-induced diabetic mice by up-regulating pancreatic PPARγ and PDX-1 expressions. Evid. Based Complement. Altern. Med. 2011, 2011, 683561. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, B.S.; Johnson, D.E. Seed germination ecology of Portulaca oleracea L.: An important weed of rice and upland crops. Ann. Appl. Biol. 2009, 155, 61–69. [Google Scholar] [CrossRef]
- Lee, J.; Chauhan, B.S.; Johnson, D.E. Germination of fresh horse purslane (Trianthema portulacastrum) seeds in response to different environmental factors. Weed Sci. 2011, 59, 495–499. [Google Scholar] [CrossRef]
- D’Andrea, R.M.; Andreo, C.S.; Lara, M.V. Deciphering the mechanisms involved in Portulaca oleracea (C4) response to drought: Metabolic changes including crassulacean acid-like metabolism induction and reversal upon re-watering. Physiol. Plant. 2014, 152, 414–430. [Google Scholar] [CrossRef] [PubMed]
- Uddin, M.K.; Juraimi, A.S.; Hossain, M.S. Purslane weed (Portulaca oleracea): A prospective plant source of nutrition, omega-3 fatty acid, and antioxidant attributes. Sci. World J. 2014, 2014. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Zhang, T.; Zhao, H. Effects of Portulaca oleracea L. polysaccharides on phenotypic and functional maturation of murine bone marrow derived dendritic cells. Nutr. Cancer 2015, 67, 987–993. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.X.; Xin, H.L.; Rahman, K.; Wang, S.-J.; Peng, C.; Zhang, H. Portulaca oleracea L.: A review of phytochemistry and pharmacological effects. BioMed Res. Int. 2015, 2015. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Ying, Z.; Xiang, Z.; Hao, D.; Zhang, W.; Zheng, Y.; Gao, Y.; Ying, X. The anti-inflammation and pharmacokinetics of a novel alkaloid from Portulaca oleracea L. J. Pharm. Pharmacol. 2016, 68, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Rahdari, P.; Hosseini, S.M.; Tavakoli, S. The studying effect of drought stress on germination, proline, sugar, lipid, protein and chlorophyll content in purslane (Portulaca oleracea L.) leaves. J. Med. Plants Res. 2012, 6, 1539–1547. [Google Scholar]
- Lee, A.S.; Lee, Y.J.; Lee, S.M.; Yoon, J.J.; Kim, J.S.; Kang, D.G.; Lee, H.S. Portulaca oleracea ameliorates diabetic vascular inflammation and endothelial dysfunction in db/db mice. Evid. Based Complement. Altern. Med. 2012, 2012. [Google Scholar] [CrossRef] [PubMed]
- Gong, F.; Li, F.; Zhang, L.; Li, J.; Zhang, Z.; Wang, G. Hypoglycemic effects of crude polysaccharide from Purslane. Int. J. Mol. Sci. 2009, 10, 880–888. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, M.I.K. Effects of Portulaca oleracea L. seeds in treatment of type-2 diabetes mellitus patients as adjunctive and alternative therapy. J. Ethnopharmacol. 2011, 137, 643–651. [Google Scholar] [CrossRef] [PubMed]
- Winzell, M.S.; Ahren, B. The high-fat diet-fed mouse: A model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes. Diabetes 2004, 53, 215–219. [Google Scholar] [CrossRef]
- Leinonen, E.; Hurt-Camejo, E.; Wiklund, O.; Hultén, L.M.; Hiukka, A.; Taskinen, M.R. Insulin resistance and adiposity correlate with acute-phase reaction and soluble cell adhesion molecules in type 2 diabetes. Atherosclerosis 2003, 166, 387–394. [Google Scholar] [CrossRef]
- Spranger, J.; Kroke, A.; Mohlig, M.; Hoffmann, K.; Bergmann, M.M.; Ristow, M.; Boeing, H.; Pfeiffer, A.F. Inflammatory cytokines and the risk to develop type 2 diabetes. Diabetes 2003, 52, 812–817. [Google Scholar] [CrossRef] [PubMed]
- Ruan, H.; Hacohen, N.; Golub, T.R.; van Parijs, L.; Lodish, H.F. Tumor necrosis factor-α suppresses adipocytes-specific genes and activates expression of preadipocyte genes in 3T3-L1 adipocytes: Nuclear factor-κB activation by TNF-α is obligatory. Diabetes 2002, 51, 1319–1336. [Google Scholar] [CrossRef] [PubMed]
- Naguib, G.; Al-Mashat, H.; Desta, T.; Graves, D.T. Diabetes prolongs the inflammatory response to a bacterial stimulus through cytokine dysregulation. J. Investig. Dermatol. 2004, 123, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.B.; Yu, M.R.; Yang, Y.Q. Reactive oxygen species-regulated signaling pathways in diabetic nephropathy. J. Am. Soc. Nephrol. 2003, 14, 241–245. [Google Scholar] [CrossRef]
- Susztak, K.; Raff, A.C.; Schiffer, M. Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes 2006, 55, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Koren, S.; Fantus, I.G. Inhibition of the protein tyrosine phosphatase PTP1B: Potential therapy for obesity, insulin resistance and type-2 diabetes mellitus. Best Pract. Res. Clin. Endocrinol. Metab. 2007, 21, 621–640. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Zhang, D.; Mao, X.; Zou, F.; Jin, H.; Ouyang, J. Astragalus polysaccharides decreased the expression of PTP1B through relieving ER stress induced activation of ATF6 in a rat model of type 2 diabetes. Mol. Cell. Endocrinol. 2009, 307, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Tamrakar, A.K.; Maurya, C.K.; Rai, A.K. PTP1B inhibitors for type 2 diabetes treatment: A patent review (2011–2014). Expert Opin. Ther. Pat. 2014, 24, 1101–1115. [Google Scholar] [CrossRef] [PubMed]
- Pan, D.; Wang, L.; Hu, B.; Zhou, P. Structural characterization and bioactivity evaluation of an acidic proteoglycan extract from Ganoderma lucidum fruiting bodies for PTP1B inhibition and anti-diabetes. Biopolymers 2014, 101, 613–623. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.A.; Sharma, S.; Mittra, S.; Sujatha, S.; Kanaujia, A.; Shukla, G.; Katiyar, C.; Lakshmi, B.S.; Bansal, V.S.; Bhatnagar, P.K. Antihyperglycemic effect of Annona squamosa hexane extract in type 2 diabetes animal model: PTP1B inhibition, a possible mechanism of action? Indian J. Pharmacol. 2012, 44, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.X.; Wang, S.S.; Li, T.B.; Li, X.; Jiao, L.; Zhang, L. Purification, structure and immunobiological activity of a new water-soluble polysaccharide from the mycelium of Polyporus albicans (Imaz.) teng. Bioresour. Technol. 2008, 99, 900–904. [Google Scholar] [CrossRef] [PubMed]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Lowry, O.H.; Farr, A.L.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin-Phenol reagents. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [PubMed]
- Filisetti-Cozzi, T.M.; Carpita, N.C. Measurement of uronic acids without interference from neutral sugars. Anal. Biochem. 1991, 197, 157–162. [Google Scholar] [CrossRef]
- Lehrfeld, J. Simultaneous gas-liquid chromatographic determination of aldonic acids and aldoses. Anal. Chem. 1985, 57, 346–348. [Google Scholar] [CrossRef]
Group | Dose (mg/kg) | Baseline Mean Body Weight (g) | Mean Body Weight on Day 14 (g) | Mean Body Weight on Day 28 (g) |
---|---|---|---|---|
NC | – | 208.31 ± 16.28 | 251.08 ± 26.21 | 299.23 ± 31.27 |
MC | – | 209.48 ± 14.85 | 187.92 ± 15.17 ** | 150.42 ± 13.11 ** |
100-CPOP | 100 | 207.75 ± 13.61 | 219.47 ± 22.68 | 247.36 ± 23.14 |
200-CPOP | 200 | 209.62 ± 16.06 | 227.71 ± 24.15 # | 251.03 ± 22.47 ## |
400-CPOP | 400 | 208.83 ± 18.27 | 228.45 ± 19.21 ## | 268.85 ± 25.98 ## |
Glyburide | 25 | 209.29 ± 16.22 | 236.25 ± 20.52 ## | 275.21 ± 24.35 ## |
Group | Dose (mg/kg) | Mean Fasting Blood Sugar Level (mM) | |||
---|---|---|---|---|---|
0 min | 30 min | 60 min | 120 min | ||
NC | – | 4.32 ± 0.88 | 13.65 ± 1.24 | 8.94 ± 1.47 | 4.89 ± 0.95 |
MC | – | 16.04 ± 2.15 ** | 48.65 ± 3.29 ** | 42.32 ± 4.18 ** | 32.74 ± 2.82 ** |
100-CPOP | 100 | 14.42 ± 2.07 # | 42.82 ± 2.81 ## | 33.54 ± 3.23 ## | 25.06 ± 2.67 ## |
200-CPOP | 200 | 12.36 ± 1.52 ## | 33.98 ± 3.61 ## | 24.77 ± 2.75 ## | 18.91 ± 2.03 ## |
400-CPOP | 400 | 10.49 ± 1.84 ## | 28.46 ± 3.05 ## | 19.35 ± 2.36 ## | 14.36 ± 1.42 ## |
Glyburide | 25 | 8.37 ± 1.26 ## | 22.16 ± 2.19 ## | 14.82 ± 1.63 ## | 10.55 ± 1.34 ## |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, Y.; Zang, X.; Ma, J.; Xu, G. Anti-Diabetic Effect of Portulaca oleracea L. Polysaccharideandits Mechanism in Diabetic Rats. Int. J. Mol. Sci. 2016, 17, 1201. https://doi.org/10.3390/ijms17081201
Bai Y, Zang X, Ma J, Xu G. Anti-Diabetic Effect of Portulaca oleracea L. Polysaccharideandits Mechanism in Diabetic Rats. International Journal of Molecular Sciences. 2016; 17(8):1201. https://doi.org/10.3390/ijms17081201
Chicago/Turabian StyleBai, Yu, Xueli Zang, Jinshu Ma, and Guangyu Xu. 2016. "Anti-Diabetic Effect of Portulaca oleracea L. Polysaccharideandits Mechanism in Diabetic Rats" International Journal of Molecular Sciences 17, no. 8: 1201. https://doi.org/10.3390/ijms17081201
APA StyleBai, Y., Zang, X., Ma, J., & Xu, G. (2016). Anti-Diabetic Effect of Portulaca oleracea L. Polysaccharideandits Mechanism in Diabetic Rats. International Journal of Molecular Sciences, 17(8), 1201. https://doi.org/10.3390/ijms17081201