Expansion of T Cells with Interleukin-21 for Adoptive Immunotherapy of Murine Mammary Carcinoma
Abstract
:1. Introduction
2. Results
2.1. Expansion Comparison of 4T1 Draining Lymph Node (DLN) Cells in Interleukin (IL)-2, IL-21, IL-2/21, IL-7/15 or IL-7/15/21
2.2. T Cell Phenotype
2.3. Interferon (IFN)-γ ELISA
2.4. Anti-Tumor Efficacy
3. Discussion
4. Methods
4.1. Mice
4.2. Tumor Cell Lines
4.3. Draining Lymph Node Sensitization
4.4. Lymphocyte Activation and In Vitro Expansion
4.5. Adoptive Immunotherapy
4.6. Flow Cytometry
4.7. IFN-γ Release Assay
4.8. Tumor Measurements
4.9. Statistical Analysis
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Klebanoff, C.A.; Gattinoni, L.; Palmer, D.C.; Muranski, P.; Ji, Y.; Hinrichs, C.S.; Borman, Z.A.; Kerkar, S.P.; Scott, C.D.; Finkelstein, S.E.; et al. Determinants of Successful CD8+ T-Cell Adoptive Immunotherapy for Large Established Tumors in Mice. Clin. Cancer Res. 2011, 17, 5343–5352. [Google Scholar] [CrossRef] [PubMed]
- Pouw, N.; Treffers-Westerlaken, E.; Kraan, J.; Wittink, F.; Ten Hagen, T.; Verweij, J.; Debets, R. Combination of IL-21 and IL-15 Enhances Tumour-Specific Cytotoxicity and Cytokine Production of TCR-Transduced Primary T Cells. Cancer Immunol. Immunother. 2010, 59, 921–931. [Google Scholar] [CrossRef]
- Huarte, E.; Fisher, J.; Turk, M.J.; Mellinger, D.; Foster, C.; Wolf, B.; Meehan, K.R.; Fadul, C.E.; Ernstoff, M.S. Ex Vivo Expansion of Tumor Specific Lymphocytes with IL-15 and IL-21 for Adoptive Immunotherapy in Melanoma. Cancer Lett. 2009, 285, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Bear, H.D.; Roberts, J.; Cornell, D.; Tombes, M.B.; Kyle, B. Adoptive Immunotherapy of Cancer with Pharmacologically Activated Lymph Node Lymphocytes: A Pilot Clinical Trial. Cancer Immunol. Immunother. 2001, 50, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Riley, J.; Rosenberg, S.; Parkhurst, M. Comparison of Common γ-Chain Cytokines, Interleukin-2, Interleukin-7, and Interleukin-15 for the in Vitro Generation of Human Tumor-Reactive T Lymphocytes for Adoptive Cell Transfer Therapy. J. Immunother. 2006, 29, 284–293. [Google Scholar] [CrossRef] [PubMed]
- Cha, E.; Graham, L.; Manjili, M.H.; Bear, H.D. IL-7 + IL-15 are Superior to IL-2 for the Ex Vivo Expansion of 4T1 Mammary Carcinoma-Specific T Cells with Greater Efficacy against Tumors In Vivo. Breast Cancer Res. Treat. 2010, 122, 359–369. [Google Scholar] [CrossRef] [PubMed]
- Chatila, T.; Silverman, L.; Miller, R.; Geha, R. Mechanisms of T Cell Activation by the Calcium Ionophore Ionomycin. J. Immunol. 1989, 143, 1283–1289. [Google Scholar] [PubMed]
- Kazanietz, M.G.; Lewin, N.E.; Gao, F.; Pettit, G.R.; Blumberg, P.M. Binding of [26-3H]Bryostatin 1 and Analogs to Calcium-Dependent and Calcium-Independent Protein Kinase C Isozymes. Mol. Pharmacol. 1994, 46, 374–379. [Google Scholar] [PubMed]
- Pettit, G.R.; Herald, S.L.; Doubek, D.L.; Arnold, E.; Clardy, J. Isolation and Structure of Bryostatin 1. J. Am. Chem. Soc. 1982, 104, 6846–6848. [Google Scholar] [CrossRef]
- Le, H.K.; Graham, L.; Miller, C.H.; Kmieciak, M.; Manjili, M.H.; Bear, H.D. Incubation of Antigen-Sensitized T Lymphocytes Activated with Bryostatin 1 + Ionomycin in IL-7 + IL-15 Increases Yield of Cells Capable of Inducing Regression of Melanoma Metastases Compared to Culture in IL-2. Cancer Immunol. Immunother. 2009, 58, 1565–1576. [Google Scholar] [CrossRef] [PubMed]
- Payne, K.K.; Zoon, C.K.; Wan, W.; Marlar, K.; Keim, R.C.; Kenari, M.N.; Kazim, A.L.; Bear, H.D.; Manjili, M.H. Peripheral Blood Mononuclear Cells of Patients with Breast Cancer can be Reprogrammed to Enhance Anti-HER-2/Neu Reactivity and Overcome Myeloid-Derived Suppressor Cells. Breast Cancer Res. Treat. 2013, 142, 45–57. [Google Scholar] [CrossRef]
- Kmieciak, M.; Basu, D.; Payne, K.K.; Toor, A.; Yacoub, A.; Wang, X.Y.; Smith, L.; Bear, H.D.; Manjili, M.H. Activated NKT Cells and NK Cells Render T Cells Resistant to Myeloid-Derived Suppressor Cells and Result in an Effective Adoptive Cellular Therapy Against Breast Cancer in the FVBN202 Transgenic Mouse. J. Immunol. 2011, 187, 708–717. [Google Scholar] [CrossRef] [PubMed]
- Kmieciak, M.; Toor, A.; Graham, L.; Bear, H.D.; Manjili, M.H. Ex Vivo Expansion of Tumor-Reactive T Cells by Means of Bryostatin 1/Ionomycin and the Common γ Chain Cytokines Formulation. J. Vis. Exp. 2011, 47, 2381. [Google Scholar] [CrossRef] [PubMed]
- Miller, C.H.; Graham, L.; Bear, H.D. Phenotype, Functions and Fate of Adoptively Transferred Tumor Draining Lymphocytes Activated Ex Vivo in Mice with an Aggressive Weakly Immunogenic Mammary Carcinoma. BMC Immunol. 2010, 11, 54. [Google Scholar] [CrossRef] [PubMed]
- Chin, C.S.; Miller, C.H.; Graham, L.; Parviz, M.; Zacur, S.; Patel, B.; Duong, A.; Bear, H.D. Bryostatin 1/Ionomycin (B/I) Ex Vivo Stimulation Preferentially Activates L-Selectinlow Tumor-Sensitized Lymphocytes. Int. Immunol. 2004, 16, 1283–1294. [Google Scholar] [CrossRef] [PubMed]
- Parviz, M.; Chin, C.S.; Graham, L.J.; Miller, C.; Lee, C.; George, K.; Bear, H.D. Successful Adoptive Immunotherapy with Vaccine-Sensitized T Cells, Despite no Effect with Vaccination Alone in a Weakly Immunogenic Tumor Model. Cancer Immunol. Immunother. 2003, 52, 739–750. [Google Scholar] [CrossRef] [PubMed]
- Klebanoff, C.A.; Gattinoni, L.; Torabi-Parizi, P.; Kerstann, K.; Cardones, A.R.; Finkelstein, S.E.; Palmer, D.C.; Antony, P.A.; Hwang, S.T.; Rosenberg, S.A.; et al. Central Memory Self/Tumor-Reactive CD8+ T Cells Confer Superior Antitumor Immunity Compared with Effector Memory T Cells. Proc. Natl. Acad. Sci. USA 2005, 102, 9571–9576. [Google Scholar] [CrossRef] [PubMed]
- Gattinoni, L.; Klebanoff, C.A.; Palmer, D.C.; Wrzesinski, C.; Kerstann, K.; Yu, Z.; Finkelstein, S.E.; Theoret, M.R.; Rosenberg, S.A.; Restifo, N.P. Acquisition of Full Effector Function in Vitro Paradoxically Impairs the in Vivo Antitumor Efficacy of Adoptively Transferred CD8+ T Cells. J. Clin. Investig. 2005, 115, 1616–1626. [Google Scholar] [CrossRef] [PubMed]
- Parrish-Novak, J.; Dillon, S.R.; Nelson, A.; Hammond, A.; Sprecher, C.; Gross, J.A.; Johnston, J.; Madden, K.; Xu, W.; West, J.; et al. Interleukin 21 and its Receptor are Involved in NK Cell Expansion and Regulation of Lymphocyte Function. Nature 2000, 408, 57–63. [Google Scholar] [PubMed]
- Spolski, R.; Leonard, W.J. Interleukin-21: Basic Biology and Implications for Cancer and Autoimmunity. Annu. Rev. Immunol. 2008, 26, 57–79. [Google Scholar] [CrossRef]
- Leonard, W.J.; Spolski, R. Interleukin-21: A Modulator of Lymphoid Proliferation, Apoptosis and Differentiation. Nat. Rev. Immunol. 2005, 5, 688–698. [Google Scholar] [CrossRef] [PubMed]
- Wolfl, M.; Merker, K.; Morbach, H.; van Gool, S.W.; Eyrich, M.; Greenberg, P.D.; Schlegel, P.G. Primed Tumor-Reactive Multifunctional CD62L+ Human CD8+ T Cells for Immunotherapy. Cancer Immunol. Immunother. 2011, 60, 173–186. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Figliola, M.J.; Dawson, M.J.; Huls, H.; Olivares, S.; Switzer, K.; Mi, T.; Maiti, S.; Kebriaei, P.; Lee, D.A.; et al. Reprogramming CD19-Specific T Cells with IL-21 Signaling can Improve Adoptive Immunotherapy of B-Lineage Malignancies. Cancer Res. 2011, 71, 3516–3527. [Google Scholar] [CrossRef] [PubMed]
- Chapuis, A.G.; Ragnarsson, G.B.; Nguyen, H.N.; Chaney, C.N.; Pufnock, J.S.; Schmitt, T.M.; Duerkopp, N.; Roberts, I.M.; Pogosov, G.L.; Ho, W.Y.; et al. Transferred WT1-Reactive CD8+ T Cells can Mediate Antileukemic Activity and Persist in Post-Transplant Patients. Sci. Transl. Med. 2013, 5, 174ra27. [Google Scholar] [CrossRef] [PubMed]
- Zeng, R.; Spolski, R.; Finkelstein, S.E.; Oh, S.; Kovanen, P.E.; Hinrichs, C.S.; Pise-Masison, C.A.; Radonovich, M.F.; Brady, J.N.; Restifo, N.P.; et al. Synergy of IL-21 and IL-15 in Regulating CD8+ T Cell Expansion and Function. J. Exp. Med. 2005, 201, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Kasaian, M.T.; Whitters, M.J.; Carter, L.L.; Lowe, L.D.; Jussif, J.M.; Deng, B.; Johnson, K.A.; Witek, J.S.; Senices, M.; Konz, R.F.; et al. IL-21 Limits NK Cell Responses and Promotes Antigen-Specific T Cell Activation: A Mediator of the Transition from Innate to Adaptive Immunity. Immunity 2002, 16, 559–569. [Google Scholar] [CrossRef]
- Hinrichs, C.S.; Spolski, R.; Paulos, C.M.; Gattinoni, L.; Kerstann, K.W.; Palmer, D.C.; Klebanoff, C.A.; Rosenberg, S.A.; Leonard, W.J.; Restifo, N.P. IL-2 and IL-21 Confer Opposing Differentiation Programs to CD8+ T Cells for Adoptive Immunotherapy. Blood 2008, 111, 5326–5333. [Google Scholar] [CrossRef] [PubMed]
- Brentjens, R.J.; Latouche, J.B.; Santos, E.; Marti, F.; Gong, M.C.; Lyddane, C.; King, P.D.; Larson, S.; Weiss, M.; Riviere, I.; et al. Eradication of Systemic B-Cell Tumors by Genetically Targeted Human T Lymphocytes Co-Stimulated by CD80 and Interleukin-15. Nat. Med. 2003, 9, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Di Carlo, E.; Comes, A.; Orengo, A.M.; Rosso, O.; Meazza, R.; Musiani, P.; Colombo, M.P.; Ferrini, S. IL-21 Induces Tumor Rejection by Specific CTL and IFN-γ-Dependent CXC Chemokines in Syngeneic Mice. J. Immunol. 2004, 172, 1540–1547. [Google Scholar] [CrossRef] [PubMed]
- Klebanoff, C.A.; Finkelstein, S.E.; Surman, D.R.; Lichtman, M.K.; Gattinoni, L.; Theoret, M.R.; Grewal, N.; Spiess, P.J.; Antony, P.A.; Palmer, D.C.; et al. IL-15 Enhances the in Vivo Antitumor Activity of Tumor-Reactive CD8+ T Cells. Proc. Natl. Acad. Sci. USA 2004, 101, 1969–1974. [Google Scholar] [CrossRef] [PubMed]
- Sondergaard, H.; Frederiksen, K.S.; Thygesen, P.; Galsgaard, E.D.; Skak, K.; Kristjansen, P.E.; Odum, N.; Kragh, M. Interleukin 21 Therapy Increases the Density of Tumor Infiltrating CD8+ T Cells and Inhibits the Growth of Syngeneic Tumors. Cancer Immunol. Immunother. 2007, 56, 1417–1428. [Google Scholar] [CrossRef] [PubMed]
- Teague, R.M.; Sather, B.D.; Sacks, J.A.; Huang, M.Z.; Dossett, M.L.; Morimoto, J.; Tan, X.; Sutton, S.E.; Cooke, M.P.; Ohlen, C.; et al. Interleukin-15 Rescues Tolerant CD8+ T Cells for use in Adoptive Immunotherapy of Established Tumors. Nat. Med. 2006, 12, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Gattinoni, L.; Klebanoff, C.A.; Restifo, N.P. Paths to Stemness: Building the Ultimate Antitumour T Cell. Nat. Rev. Cancer. 2012, 12, 671–684. [Google Scholar] [CrossRef] [PubMed]
- Chin, C.S.; Graham, L.J.; Hamad, G.G.; George, K.R.; Bear, H.D. Bryostatin/Ionomycin-Activated T Cells Mediate Regression of Established Tumors. J. Surg. Res. 2001, 98, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Joshi, N.S.; Kaech, S.M. Effector CD8 T Cell Development: A Balancing Act between Memory Cell Potential and Terminal Differentiation. J. Immunol. 2008, 180, 1309–1315. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, J.; Frey, M.; Teschner, D.; Carbol, A.; Theobald, M.; Herr, W.; Distler, E. IL-21-Treated Naive CD45RA+ CD8+ T Cells Represent a Reliable Source for Producing Leukemia-Reactive Cytotoxic T Lymphocytes with High Proliferative Potential and Early Differentiation Phenotype. Cancer Immunol. Immunother. 2011, 60, 235–248. [Google Scholar] [CrossRef] [PubMed]
- Wherry, E.J.; Teichgraber, V.; Becker, T.C.; Masopust, D.; Kaech, S.M.; Antia, R.; von Andrian, U.H.; Ahmed, R. Lineage Relationship and Protective Immunity of Memory CD8 T Cell Subsets. Nat. Immunol. 2003, 4, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Parish, I.A.; Kaech, S.M. Diversity in CD8+ T Cell Differentiation. Curr. Opin. Immunol. 2009, 21, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Obar, J.J.; Lefrancois, L. Memory CD8+ T Cell Differentiation. Ann. N. Y. Acad. Sci. 2010, 1183, 251–266. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zoon, C.K.; Wan, W.; Graham, L.; Bear, H.D. Expansion of T Cells with Interleukin-21 for Adoptive Immunotherapy of Murine Mammary Carcinoma. Int. J. Mol. Sci. 2017, 18, 270. https://doi.org/10.3390/ijms18020270
Zoon CK, Wan W, Graham L, Bear HD. Expansion of T Cells with Interleukin-21 for Adoptive Immunotherapy of Murine Mammary Carcinoma. International Journal of Molecular Sciences. 2017; 18(2):270. https://doi.org/10.3390/ijms18020270
Chicago/Turabian StyleZoon, Christine K., Wen Wan, Laura Graham, and Harry D. Bear. 2017. "Expansion of T Cells with Interleukin-21 for Adoptive Immunotherapy of Murine Mammary Carcinoma" International Journal of Molecular Sciences 18, no. 2: 270. https://doi.org/10.3390/ijms18020270
APA StyleZoon, C. K., Wan, W., Graham, L., & Bear, H. D. (2017). Expansion of T Cells with Interleukin-21 for Adoptive Immunotherapy of Murine Mammary Carcinoma. International Journal of Molecular Sciences, 18(2), 270. https://doi.org/10.3390/ijms18020270