Development and Long-Term Stability of a Novel Microbial Fuel Cell BOD Sensor with MnO2 Catalyst
Abstract
:1. Introduction
2. Results
2.1. Optimization of Hydraulic Retention Time (HRT)
2.2. Correlation between BOD5 and Voltage Output
2.2.1. Calibration with Sodium Acetate Solution
2.2.2. Calibration with Domestic Wastewater (DWW)
2.3. Compliance of Predicted BOD Values (BODp) with BOD5
3. Discussion
3.1. Impact of Operating Parameters
3.2. Impact of Catalysts
3.3. Impact of the Substrate
3.4. Long-Term Stability
3.5. BODp vs. BOD5
4. Materials and Methods
4.1. MFC Construction and Operation
4.2. Synthesis of MnO2 Catalysts
4.3. Calibration Procedure
4.4. Analyzes
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kim, B.H.; Chang, I.S.; Gil, G.C.; Park, H.S.; Kim, H.J. Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnol. Lett. 2003, 25, 541–545. [Google Scholar] [CrossRef] [PubMed]
- Gil, G.C.; Chang, I.S.; Kim, B.H.; Kim, M.; Jang, J.K.; Park, H.S.; Kim, H.J. Operational parameters affecting the performance of a mediator-less microbial fuel cell. Biosens. Bioelectron. 2003, 18, 327–334. [Google Scholar] [CrossRef]
- Hikuma, M.; Suzuki, H.; Yasuda, T. Amperometric estimation of BOD by using living immobilized yeasts. Eur. J. Appl. Microbiol. 1979, 8, 289–297. [Google Scholar] [CrossRef]
- Yang, Z.; Suzuki, H.; Sasaki, S.; McNiven, S.; Karube, I. Comparison of the dynamic transient- and steady-state measuring methods in a batch type BOD sensing system. Sens. Actuator B Chem. 1997, 45, 217–222. [Google Scholar] [CrossRef]
- Hyun, C.K.; Tamiya, E.; Takeuchi, T.; Karube, I. A novel BOD sensor based on bacterial luminescence. Biotechnol. Bioeng. 1993, 41, 1107–1111. [Google Scholar] [CrossRef] [PubMed]
- Carstea, E.; Bridgeman, J.; Baker, A.; Reynolds, D. Fluorescence spectroscopy for wastewater monitoring: A review. Water Res. 2016, 95, 205–219. [Google Scholar] [CrossRef] [PubMed]
- Bourgeois, W.; Burgess, J.E.; Stuetz, R.M. On-line monitoring of wastewater quality: A review. J. Chem. Technol. Biotechnol. 2001, 76, 337–348. [Google Scholar] [CrossRef]
- Jouanneau, S.; Recoules, L.; Durand, M.J.; Boukabache, A.; Picot, V.; Primault, Y.; Lakel, A.; Sengelin, M.; Barillon, B.; Thouand, G. Methods for assessing biochemical oxygen demand (BOD): A review. Water Res. 2014, 49, 62–82. [Google Scholar] [CrossRef] [PubMed]
- Raymond, J.W.; Rogers, T.N.; Shonnard, D.R.; Kline, A.A. A review of structure-based biodegradation estimation methods. J. Hazard. Mater. 2001, 84, 189–215. [Google Scholar] [CrossRef]
- Reynolds, D.M.; Ahmad, S.R. Rapid and direct determination of wastewater BOD values using a fluorescence technique. Water Res. 1997, 31, 2012–2018. [Google Scholar] [CrossRef]
- Riedel, K.; Lehmann, M.; Tag, K.; Renneberg, R.; Kunze, G. Arxula adeninivorans based sensor for the estimation of BOD. Anal. Lett. 1998, 31, 1–12. [Google Scholar] [CrossRef]
- Tan, T.C.; Wu, C. BOD sensors using multi-species living or thermally killed cells of a BODSEED microbial culture. Sens. Actuator B Chem. 1999, 54, 252–260. [Google Scholar] [CrossRef]
- Kumlanghan, A.; Liu, J.; Thavarungkul, P.; Kanatharana, P.; Mattiasson, B. Microbial fuel cell-based biosensor for fast analysis of biodegradable organic matter. Biosens. Bioelectron. 2007, 22, 2939–2944. [Google Scholar] [CrossRef] [PubMed]
- Moon, H.; Chang, I.S.; Kang, K.H.; Jang, J.K.; Kim, B.H. Improving the dynamic response of a mediator-less microbial fuel cell as a biochemical oxygen demand (BOD) sensor. Biotechnol. Lett. 2004, 26, 1717–1721. [Google Scholar] [CrossRef] [PubMed]
- Chang, I.S.; Jang, J.K.; Gil, G.C.; Kim, M.; Kim, H.J.; Cho, B.W.; Kim, B.H. Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor. Biosens. Bioelectron. 2004, 19, 607–613. [Google Scholar] [CrossRef]
- Chang, I.S.; Moon, H.; Jang, J.K.; Kim, B.H. Improvement of a microbial fuel cell performance as a BOD sensor using respiratory inhibitors. Biosens. Bioelectron. 2005, 20, 1856–1859. [Google Scholar] [CrossRef] [PubMed]
- Pandit, S.; Ghosh, S.; Ghangrekar, M.M.; Das, D. Performance of an anion exchange membrane in association with cathodic parameters in a dual chamber microbial fuel cell. Int. J. Hydrogen Energy 2012, 37, 9383–9392. [Google Scholar] [CrossRef]
- Kim, M.; Youn, S.M.; Shin, S.H.; Jang, J.G.; Han, S.H.; Hyun, M.S.; Gadd, G.M.; Kim, H.J. Practical field application of a novel BOD monitoring system. J. Environ. Monit. 2003, 5, 640–643. [Google Scholar] [CrossRef] [PubMed]
- Di Lorenzo, M.; Curtis, T.P.; Head, I.M.; Scott, K. A single-chamber microbial fuel cell as a biosensor for wastewaters. Water Res. 2009, 43, 3145–3154. [Google Scholar] [CrossRef] [PubMed]
- Kang, K.H.; Jang, J.K.; Pham, T.H.; Moon, H.; Chang, I.S.; Kim, B.H. A microbial fuel cell with improved cathode reaction as a low biochemical oxygen demand sensor. Biotechnol. Lett. 2003, 25, 1357–1361. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Hyun, M.S.; Gadd, G.M.; Kim, G.T.; Lee, S.J.; Kim, H.J. Membrane-electrode assembly enhances performance of a microbial fuel cell type biological oxygen demand sensor. Environ. Technol. 2009, 30, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Liu, J.; Wang, Y.; Lin, Y. Novel catalyst support materials for PEM fuel cells: Current status and future prospects. J. Mater. Chem. 2009, 19, 46–59. [Google Scholar] [CrossRef]
- Chhina, H.; Campbell, S.; Kesler, O. An oxidation-resistant indium tin oxide catalyst support for proton exchange membrane fuel cells. J. Power Sources. 2006, 161, 893–900. [Google Scholar] [CrossRef]
- Lefebvre, O.; Ooi, W.K.; Tang, Z.; Abdullah-Al-Mamun, M.; Chua, D.H.C.; Ng, H.Y. Optimization of a Pt-free cathode suitable for practical applications of microbial fuel cells. Bioresour. Technol. 2009, 100, 4907–4910. [Google Scholar] [CrossRef] [PubMed]
- Ekström, H.; Wickman, B.; Gustavsson, M.; Hanarp, P.; Eurenius, L.; Olsson, E.; Lindbergh, G. Nanometer-thick films of titanium oxide acting as electrolyte in the polymer electrolyte fuel cell. Electrochim. Acta 2007, 52, 4239–4245. [Google Scholar] [CrossRef]
- Maiyalagan, T.; Viswanathan, B. Catalytic activity of platinum/tungsten oxide nanorod electrodes towards electro-oxidation of methanol. J. Power Sources 2008, 175, 789–793. [Google Scholar] [CrossRef]
- Lu, M.; Kharkwal, S.; Ng, H.Y.; Li, S.F.Y. Carbon nanotube supported MnO2 catalysts for oxygen reduction reaction and their applications in microbial fuel cells. Biosens. Bioelectron. 2011, 26, 4728–4732. [Google Scholar] [CrossRef] [PubMed]
- APHA. Standard Methods for the Examination for Water and Wastewater, 21st ed.; American Public Health Association: Washington, DC, USA, 2005. [Google Scholar]
- Zhang, L.; Liu, C.; Zhuang, L.; Li, W.; Zhou, S.; Zhang, J. Manganese dioxide as an alternative cathodic catalyst to platinum in microbial fuel cells. Biosens. Bioelectron. 2009, 24, 2825–2829. [Google Scholar] [CrossRef] [PubMed]
- Lefebvre, O.; Shen, Y.; Tan, Z.; Uzabiaga, A.; Chang, I.S.; Ng, H.Y. Full-loop operation and cathodic acidification of a microbial fuel cell operated on domestic wastewater. Bioresour. Technol. 2011, 102, 5841–5848. [Google Scholar] [CrossRef] [PubMed]
- Pant, D.; van Bogaert, G.; Diels, L.; Vanbroekhoven, K. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour. Technol. 2010, 101, 1533–1543. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Sheng, G.-P.; Luo, H.-W.; Li, W.-W.; Wang, L.-F.; Yu, H.-Q. Fouling of proton exchange membrane (PEM) deteriorates the performance of microbial fuel cell. Water Res. 2012, 46, 1817–1824. [Google Scholar] [CrossRef] [PubMed]
- Rismani-Yazdi, H.; Carver, S.M.; Christy, A.D.; Tuovinen, O.H. Cathodic limitations in microbial fuel cells: An overview. J. Power Sources 2008, 180, 683–694. [Google Scholar] [CrossRef]
Type of Sensor | Time Period | Type of Wastewater | Variables for Polynomial Regression | Range of Organic Concentration (BOD5) Measured (ppm) | R Square | F-Value | Prob > F |
---|---|---|---|---|---|---|---|
β-MnO2 | 3 months | AWW | Voltage vs. BOD | 44–343 | 0.990 | 511 | 3.14 × 10−6 |
β-MnO2 | 6 months | DWW | Voltage vs. BOD | 36–178 | 0.980 | 360 | 2.281 × 10−7 |
β-MnO2 | 1 year | AWW | Voltage vs. BOD | 44–343 | 0.971 | 173 | 4.55 × 10−5 |
β-MnO2 | 1.5 years | DWW | Voltage vs. BOD | 33–160 | 0.934 | 114 | 5.18 × 10−6 |
γ-MnO2 | 3 months | AWW | Voltage vs. BOD | 44–343 | 0.979 | 236 | 2.12 × 10−5 |
γ-MnO2 | 6 months | DWW | Voltage vs. BOD | 36–178 | 0.967 | 209 | 1.79 × 10−6 |
γ-MnO2 | 1 year | AWW | Voltage vs. BOD | 44–343 | 0.966 | 145 | 6.93 × 10−5 |
γ-MnO2 | 1.5 years | DWW | Voltage vs. BOD | 33–160 | 0.906 | 77 | 2.20 × 10−5 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kharkwal, S.; Tan, Y.C.; Lu, M.; Ng, H.Y. Development and Long-Term Stability of a Novel Microbial Fuel Cell BOD Sensor with MnO2 Catalyst. Int. J. Mol. Sci. 2017, 18, 276. https://doi.org/10.3390/ijms18020276
Kharkwal S, Tan YC, Lu M, Ng HY. Development and Long-Term Stability of a Novel Microbial Fuel Cell BOD Sensor with MnO2 Catalyst. International Journal of Molecular Sciences. 2017; 18(2):276. https://doi.org/10.3390/ijms18020276
Chicago/Turabian StyleKharkwal, Shailesh, Yi Chao Tan, Min Lu, and How Yong Ng. 2017. "Development and Long-Term Stability of a Novel Microbial Fuel Cell BOD Sensor with MnO2 Catalyst" International Journal of Molecular Sciences 18, no. 2: 276. https://doi.org/10.3390/ijms18020276
APA StyleKharkwal, S., Tan, Y. C., Lu, M., & Ng, H. Y. (2017). Development and Long-Term Stability of a Novel Microbial Fuel Cell BOD Sensor with MnO2 Catalyst. International Journal of Molecular Sciences, 18(2), 276. https://doi.org/10.3390/ijms18020276