Epigenetic Alterations in Parathyroid Cancers
Abstract
:1. Introduction
2. Clinical Features of Parathyroid Cancers
3. Genetic Features of Parathyroid Cancers
4. DNA Methylation in Parathyroid Cancers
4.1. Global DNA Methylation Pattern in Parathyroid Cancers
4.2. Regional DNA Methylation
- (1)
- PCas are characterized by hypermethylation rather than reduced levels of methylation, consistent with the loss of tumor suppressor genes as a hallmark of parathyroid tumorigenesis;
- (2)
- All of the hypermethylated genes in PCas are hypermethylated also in benign parathyroid tumors; indeed, in PCas, the hypermethylation levels are more consistent;
- (3)
- PCas show hypermethylation of the promoter region of genes commonly hypermethylated in human cancers, namely CDKN2B/p15, CDKN2A/p16, SFRPs, RASSF1, HIC1 and APC [35];
- (4)
- The promoter regions of the tumor suppressor genes known to be involved in parathyroid tumorigenesis, namely CDC73, MEN1, CASR and VDR, are not affected by increased methylation; therefore, methylation is not the major molecular mechanism inducing their loss in parathyroid tumor cells;
- (5)
- Hypermethylation affects the promoter of genes encoding molecules of the Wnt/β-catenin pathway (Figure 1). Wnt/β-catenin is potentially deregulated in PCas by loss of parafibromin, which is a member of the polymerase II complex interacting with β-catenin [36]. Therefore, Wnt/β-catenin deregulation has been suggested as a “hub” of parathyroid tumorigenesis [37] (Figure 1). Indeed, accumulation of β-catenin is controversial in PCas, with studies reporting constitutive accumulation of active unphosphorylated β-catenin [26] and others failing in the detection of total β-catenin at the nuclear level [38].
4.3. Chromatin Regulators in Parathyroid Carcinomas
4.3.1. Histones Modifications in Parathyroid Cancers
4.3.2. Aberrant Expression of Methyltransferases in Parathyroid Cancers
5. MicroRNAs Deregulated in Parathyroid Cancers
6. Concluding Remarks
- (1)
- Epigenetic studies increased the list of tumor suppressor genes lost in parathyroid cancers (Table 1), suggesting that loss of tumor suppressor genes, rather than gain of oncogenes is a hallmark of parathyroid tumorigenesis;
- (2)
- Parafibromin, the most common tumor suppressor lost in PCas, emerges as a coordinator regulating a number of different pathways: (1) Wnt/β-catenin; (2) chromatin remodeling; (3) miRNA transcription (Figure 2);
- (3)
- Most deregulated miRNAs in PCas are not exclusive of parathyroid cells, since they characterize the miRNA signature of most common human cancers. As an example, the miR-222/221 cluster is one of the most commonly upregulated miRNAs in human cancers. However, it is of interest to consider that they belong to methylated loci and are common in the human embryonic stem cell miRNA signature;
- (4)
- Distant PCa metastases usually share the miRNA expression profile of the primitive tumors; no data are available about their methylome signature.
Acknowledgements
Author Contributions
Conflicts of Interest
References
- Marcocci, C.; Saponaro, F. Epidemiology, pathogenesis of primary hyperparathyroidism: Current data. Ann. Endocrinol. 2015, 76, 113–115. [Google Scholar] [CrossRef] [PubMed]
- Thakker, R.V. Genetics of parathyroid tumours. J. Intern. Med. 2016, 280, 574–583. [Google Scholar] [CrossRef] [PubMed]
- Goswamy, J.; Lei, M.; Simo, R. Parathyroid carcinoma. Curr. Opin. Otolaryngol. Head Neck Surg. 2016, 24, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Christakis, I.; Bussaidy, N.; Clarke, C.; Kwatampora, L.J.; Warneke, C.L.; Silva, A.M.; Williams, M.D.; Grubbs, E.G.; Lee, J.E.; Perrier, N.D. Differentiating atypical parathyroid neoplasm from parathyroid cancer. Ann. Surg. Oncol. 2016, 23, 2889–2897. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.H.; Harari, A. Parathyroid carcinoma: Update and guidelines for management. Curr. Treat. Opt. Oncol. 2012, 13, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Silverberg, S.J.; Rubin, M.R.; Faiman, C.; Peacock, M.; Shoback, D.M.; Smallridge, R.C.; Schwanauer, L.E.; Olson, K.A.; Klassen, P.; Bilezikian, J.P. Cinacalcet hydrochloride reduces the serum calcium concentration in inoperable parathyroid carcinoma. J. Clin. Endocrinol. Metab. 2007, 92, 3803–3808. [Google Scholar] [CrossRef] [PubMed]
- Fountas, A.; Andrikoula, M.; Giotaki, Z.; Limniati, C.; Tsakiridou, E.; Tigas, S.; Tsatsoulis, A. The emerging role of denosumab in the long-term management of parathyroid carcinoma-related refractory hypercalcemia. Endocr. Pract. 2015, 21, 468–473. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.K.; Schröck, E.; Kester, M.B.; Burns, A.L.; Heffess, C.S.; Ried, T.; Marx, S.J. Comparative genomic hybridization analysis of human parathyroid tumors. Cancer Genet. Cytogenet. 1998, 106, 30–36. [Google Scholar] [CrossRef]
- Kytölä, S.; Farnebo, F.; Obara, T.; Isola, J.; Grimelius, L.; Farnebo, L.O.; Sandelin, K.; Larsson, C. Patterns of chromosomal imbalances in parathyroid carcinomas. Am. J. Pathol. 2000, 157, 579–586. [Google Scholar] [CrossRef]
- Yu, W.; McPherson, J.R.; Stevenson, M.; van Eijk, R.; Heng, H.L.; Newey, P.; Gan, A.; Ruano, D.; Huang, D.; Poon, S.L.; et al. Whole-exome sequencing studies of parathyroid carcinomas reveal novel PRUNE2 mutations, distinctive mutational spectra related to APOBEC-catalyzed DNA mutagenesis and mutational enrichment in kinase associated with cell migration and invasion. J. Clin. Endocirnol. Metab. 2015, 100, E360–E364. [Google Scholar] [CrossRef] [PubMed]
- Sharretts, J.M.; Kebebew, E.; Simonds, W.F. Parathyroid cancer. Semin. Oncol. 2010, 37, 580–590. [Google Scholar] [CrossRef] [PubMed]
- Cetani, F.; Banti, C.; Pardi, E.; Borsari, S.; Viacava, P.; Miccoli, P.; Torregrossa, L.; Basolo, F.; Pelizzo, M.R.; Rugge, M.; et al. CDC73 mutational status and loss of parafibromin in the outcome of parathyroid cancer. Endocr. Connect. 2013, 2, 186–195. [Google Scholar] [CrossRef] [PubMed]
- Haven, C.J.; van Puijenbroek, M.; Tan, M.H.; Teh, B.T.; Fleuren, G.J.; van Wezel, T.; Morreau, H. Identification of MEN1 and HRPT2 somatic mutations in paraffin-embedded (sporadic) parathyroid carcinomas. Clin. Endocrinol. 2007, 67, 370–376. [Google Scholar] [CrossRef] [PubMed]
- Hakim, J.P.; Levine, M.A. Absence of p53 point mutations in parathyroid adenoma and carcinoma. J. Clin. Endocrinol. Metab. 1994, 78, 103–106. [Google Scholar] [PubMed]
- Cryns, V.L.; Rubio, M.P.; Thor, A.D.; Louis, D.N.; Arnold, A. p53 abnormalities in human parathyroid carcinoma. J. Clin. Endocrinol. Metab. 1994, 78, 1320–1324. [Google Scholar] [PubMed]
- Shattuck, T.M.; Kim, T.S.; Costa, J.; Yandell, D.W.; Imanishi, Y.; Palanisamy, N.; Gaz, R.D.; Shoback, D.; Clark, O.H.; Monchik, J.M.; et al. Mutational analyses of RB and BRCA2 as candidate tumour suppressor genes in parathyroid carcinoma. Clin. Endocrinol. 2003, 59, 180–189. [Google Scholar] [CrossRef]
- Roadmap Epigenomics Consortium; Kundaje, A.; Meuleman, W.; Ernst, J.; Bilenky, M.; Yen, A.; Heravi-Moussavi, A.; Kheradpour, P.; Zhang, Z.; Wang, J.; et al. Integrative analysis of 111 reference human epigenomes. Nature 2015, 518, 317–330. [Google Scholar] [CrossRef] [PubMed]
- Beck, S.; Bernstein, B.E.; Campbell, R.M.; Costello, J.F.; Dhanak, D.; Ecker, J.R.; Greally, J.M.; Issa, J.P.; Laird, P.W.; Polyak, K.; et al. A blueprint for an international cancer epigenome consortium. A report from the AACR Cancer Epigenome Task Force. Cancer Res. 2012, 72, 6319–6324. [Google Scholar] [CrossRef] [PubMed]
- Cancer Genome Atlas Research Network; Weinstein, J.N.; Collisson, E.A.; Mills, G.B.; Shaw, K.R.; Ozenberger, B.A.; Ellrott, K.; Shmulevich, I.; Sander, C.; Stuart, J.M. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013, 45, 1113–1120. [Google Scholar] [PubMed]
- Jones, P.A.; Baylin, S.B. The epigenomics of cancer. Cell 2007, 128, 683–692. [Google Scholar] [CrossRef] [PubMed]
- Delhommeau, F.; Dupont, S.; Della Valle, V.; James, C.; Trannoy, S.; Massé, A.; Kosmider, O.; Le Couedic, J.P.; Robert, F.; Alberdi, A.; et al. Mutation in TET2 in myeloid cancers. N. Engl. J. Med. 2009, 360, 2289–2301. [Google Scholar] [CrossRef] [PubMed]
- Starker, L.F.; Svedlund, J.; Udelsman, R.; Dralle, H.; Akerström, G.; Westin, G.; Lifton, R.P.; Björklund, P.; Carling, T. The DNA methylome of benign and malignant parathyroid tumors. Genes Chromosomes Cancer 2011, 50, 735–745. [Google Scholar] [CrossRef] [PubMed]
- Sulaiman, L.; Juhlin, C.C.; Nilsson, I.L.; Fotouhi, O.; Larsson, C.; Hashemi, J. Global and gene-specific promoter methylation analysis in primary hyperparathyroidism. Epigenetics 2013, 8, 646–655. [Google Scholar] [CrossRef] [PubMed]
- Yang, A.S.; Estecio, M.R.H.; Doshi, K.; Kondo, Y.; Tajara, E.H.; Issa, J.-P. A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic Acid. Res. 2004, 32, e38. [Google Scholar] [CrossRef] [PubMed]
- Barazeghi, E.; Gill, A.J.; Sidhu, S.; Norlén, O.; Dina, R.; Palazzo, F.F.; Hellman, P.; Stålberg, P.; Westin, G. 5-Hydroxymethylcytosine discriminates between parathyroid adenoma and carcinoma. Clin. Epigenetics 2016, 8, 31. [Google Scholar] [CrossRef] [PubMed]
- Svedlund, J.; Auren, M.; Sundström, M.; Dralle, H.; Akerström, G.; Björklund, P.; Westin, G. Aberrant WNT/β-catenin signaling in parathyroid carcinoma. Mol. Cancer 2010, 9, 294. [Google Scholar] [CrossRef] [PubMed]
- Agathanggelou, A.; Cooper, W.N.; Latif, F. Role of the Ras-association domain family 1 tumor suppressor gene in human cancers. Cancer Res. 2005, 65, 3497–3508. [Google Scholar] [CrossRef] [PubMed]
- Svedlund, J.; Koskinen Edblom, S.; Marquez, V.E.; Åkerström, G.; Björklund, P.; Westin, G. Hypermethylated in cancer 1 (HIC1), a tumor suppressor gene epigenetically deregulated in hyperparathyroid tumors by histone H3 lysine modification. J. Clin. Endocrinol. Metab. 2012, 97, E1307–E1315. [Google Scholar] [CrossRef] [PubMed]
- Sulaiman, L.; Haglund, F.; Hashemi, J.; Obara, T.; Nordenström, J.; Larsson, C.; Juhlin, C.C. Genome-wide and locus specific alterations in CDC73/HRPT2-mutated parathyroid tumors. PLoS ONE 2012, 7, e46325. [Google Scholar] [CrossRef] [PubMed]
- Hahn, M.A.; Howell, V.M.; Gill, A.J.; Clarkson, A.; Weaire-Buchanan, G.; Robinson, B.G.; Delbridge, L.; Gimm, O.; Schmitt, W.D.; Teh, B.T.; et al. CDC73/HRPT2 CpG island hypermethylation and mutation of 5’-untranslated sequence are uncommon mechanisms of silencing parafibromin in parathyroid tumors. Endocr. Relat. Cancer 2010, 17, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Hewitt, K.M.; Sharma, P.K.; Samowitz, W.; Hobbs, M. Aberrant methylation of the HRPT2 gene in parathyroid carcinoma. Ann. Otol. Rhinol. Laryngol. 2007, 116, 928–933. [Google Scholar] [CrossRef] [PubMed]
- Corbetta, S.; Mantovani, G.; Lania, A.; Borgato, S.; Vicentini, L.; Beretta, E.; Faglia, G.; Di Blasio, A.M.; Spada, A. Calcium-sensing receptor expression and signalling in human parathyroid adenomas and primary hyperplasia. Clin. Endocrinol. 2000, 52, 339–348. [Google Scholar] [CrossRef]
- Yano, S.; Sugimoto, T.; Tsukamoto, T.; Chihara, K.; Kobayashi, A.; Kitazawa, S.; Maeda, S.; Kitazawa, R. Decrease in vitamin D receptor and calcium-sensing receptor in highly proliferative parathyroid adenomas. Eur. J. Endocrinol. 2003, 148, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Vaira, V.; Elli, F.; Forno, I.; Guarnieri, V.; Verdelli, C.; Ferrero, S.; Scillitani, A.; Vicentini, L.; Cetani, F.; Mantovani, G.; et al. The microRNA cluster C19MC is deregulated in parathyroid tumours. J. Mol. Endocrinol. 2012, 49, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Daniel, F.I.; Cherubini, K.; Yurgel, L.S.; Zancanaro de Figueiredo, M.A.; Gonçalves Salum, F. The role of epigenetic transcription repression and DNA methyltransferases in cancer. Cancer 2011, 117, 677–687. [Google Scholar] [CrossRef] [PubMed]
- Mosimann, C.; Hausmann, G.; Basler, K. Parafibromin/Hyrax activates Wnt/Wg target gene transcription by direct association with β-catenin/Armadillo. Cell 2006, 125, 327–341. [Google Scholar] [CrossRef] [PubMed]
- Westin, G. Molecular genetics and epigenetics of nonfamilial (sporadic) parathyroid tumours. J. Intern. Med. 2016, 280, 551–558. [Google Scholar] [CrossRef] [PubMed]
- Cetani, F.; Pardi, E.; Banti, C.; Collecchi, P.; Viacava, P.; Borsari, S.; Fanelli, G.; Naccarato, A.G.; Saponaro, F.; Berti, P.; et al. β-catenin activation is not involved in sporadic parathyroid carcinomas and adenomas. Endocr. Relat. Cancer 2010, 17, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Farber, L.J.; Kort, E.J.; Wang, P.; Chen, J.; Teh, B.T. The tumor suppressor parafibromin is required for posttranscriptional processing of histone mRNA. Mol. Carcinog. 2010, 49, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Haven, C.J.; Howell, V.M.; Eller, P.H.; Dunne, R.; Takahashi, M.; van Puijenbroek, M.; Furge, K.; Kievit, J.; Tan, M.H.; Fleuren, G.J.; et al. Gene expression of parathyroid tumors: Molecular subclassification and identification of the potential malignant phenotype. Cancer Res. 2004, 64, 7405–7411. [Google Scholar] [CrossRef] [PubMed]
- Hahn, M.A.; Dickson, K.A.; Jackson, S.; Clarkson, A.; Gill, A.J.; Marsh, D.J. The tumor suppressor CDC73 interacts with the ring finger proteins RNF20 and RNF40 and is required for the maintenance of histone 2B monoubiquitination. Hum. Mol. Genet. 2012, 21, 559–568. [Google Scholar] [CrossRef] [PubMed]
- Svedlund, J.; Barazeghi, E.; Stålberg, P.; Hellman, P.; Åkerström, G.; Björklund, P.; Westin, G. The histone methyltransferase EZH2, an oncogene common to benign and malignant parathyroid tumors. Endocr. Relat. Cancer 2014, 21, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Sanpaolo, E.; Miroballo, M.; Corbetta, S.; Verdelli, C.; Baorda, F.; Balsamo, T.; Graziano, P.; Fabrizio, F.P.; Cinque, L.; Scillitani, A.; Muscarella, L.A.; Guarnieri, V. EZH2 and ZFX oncogenes in malignant behaviour of parathyroid neoplasms. Endocrine 2016, 54, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Völkel, P.; Dupret, B.; Le Bourhis, X.; Angrand, P.O. Diverse involvement of EZH2 in cancer epigenetics. Am. J. Transl. Res. 2015, 7, 175–193. [Google Scholar] [PubMed]
- Au, S.L.; Wong, C.C.; Lee, J.M.; Fan, D.N.; Tsang, F.H.; Ng, I.O.; Wong, C.M. Enhancer of zeste homolog 2 epigenetically silences multiple tumor suppressor microRNAs to promote liver cancer metastasis. Hepatology 2012, 56, 622–631. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.J.; Han, J.W.; Youn, H.D.; Cho, E.J. The tumor suppressor, parafibromin, mediates histone H3 K9 methylation for cyclin D1 repression. Nucleic Acids Res. 2010, 38, 382–390. [Google Scholar] [CrossRef] [PubMed]
- Souroullas, G.P.; Jeck, W.R.; Parker, J.S.; Simon, J.M.; Liu, J.Y.; Paulk, J.; Xiong, J.; Clark, K.S.; Fedoriw, Y.; Qi, J.; et al. An oncogenic Ezh2 mutation induces tumors through global redistribution of histone 3 lysine 27 trimethylation. Nat. Med. 2016, 22, 632–640. [Google Scholar] [CrossRef] [PubMed]
- Di Leva, G.; Garofalo, M.; Croce, C.M. microRNAs in cancer. Ann. Rev. Pathol. 2014, 9, 287–314. [Google Scholar] [CrossRef] [PubMed]
- Corbetta, S.; Vaira, V.; Guarnieri, V.; Scillitani, A.; Eller-Vainicher, C.; Ferrero, S.; Vicentini, L.; Chiodini, I.; Bisceglia, M.; Beck-Peccoz, P.; Bosari, S.; Spada, A. Differential expression of microRNAs in human parathyroid carcinomas compared with normal parathyroid tissue. Endocr. Relat. Cancer 2010, 17, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Rahbari, R.; Holloway, A.K.; He, M.; Khanafshar, E.; Clark, O.H.; Kebebew, E. Identification of differentially expressed microRNA in parathyroid tumors. Ann. Surg. Oncol. 2011, 18, 1158–1165. [Google Scholar] [CrossRef] [PubMed]
- Rozenblatt-Rozen, O.; Hughes, C.M.; Nannepaga, S.J.; Shanmugam, K.S.; Copeland, T.D.; Guszczynski, T.; Resau, J.H.; Meyerson, M. The parafibromin tumor suppressor protein is part of a human Paf1 complex. Mol. Cell. Biol. 2005, 25, 612–620. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Serra, P.; Esteller, M. DNA methylation-associated sllencing of tumor-suppressor microRNAs- in cancer. Oncogene 2012, 31, 1609–1622. [Google Scholar] [CrossRef] [PubMed]
- Bortolin-Cavaillé, M.L.; Dance, M.; Weber, M.; Cavaillé, J. C19MC microRNAs are processed from introns of large Pol-II, non-protein-coding transcripts. Nucleic Acids Res. 2009, 37, 3464–3473. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Cheung, W.K.; Chen, S.; Lu, G.; Wang, Z.; Xie, D.; Li, K.; Lin, M.C.; Kung, H.F. Computational identification and characterization of primate-specific microRNAs in human genome. Comput. Biol. Chem. 2010, 34, 232–241. [Google Scholar] [CrossRef] [PubMed]
- Morales-Prieto, D.M.; Chaiwangyen, W.; Ospina-Prieto, S.; Schneider, U.; Herrmann, J.; Gruhn, B.; Markert, U.R. MicroRNA expression profiles of trophoblastic cells. Placenta 2012, 33, 725–734. [Google Scholar] [CrossRef] [PubMed]
- Tsai, K.W.; Kao, H.W.; Chen, H.C.; Chen, S.J.; Lin, W.C. Epigenetic control of the expression of a primate-specific microRNA cluster in human cancer cells. Epigenetics 2009, 4, 587–592. [Google Scholar] [CrossRef] [PubMed]
- Strub, G.M.; Kirsh, A.L.; Whipple, M.E.; Kuo, W.P.; Keller, R.B.; Kapur, R.P.; Majesky, M.W.; Perkins, J.A. Endothelial and circulating C19MC microRNAs are biomarkers of infantile hemangioma. JCI Insight 2016, 1, e88856. [Google Scholar] [CrossRef] [PubMed]
- Barnes, D.J.; Hookway, E.; Athanasou, N.; Kashima, T.; Oppermann, U.; Hughes, S.; Swan, D.; Lueerssen, D.; Anson, J.; Hassan, A.B. A germline mutation of CDKN2A and a novel RPLP1-C19MC fusion detected in a rare melanotic neuroectoderma tumor of infancy: A case report. BMC Cancer 2016, 16, 629. [Google Scholar] [CrossRef] [PubMed]
- Kleinman, C.L.; Gerges, N.; Papillon-Cavanagh, S.; Sin-Chan, P.; Pramatarova, A.; Quang, D.A.; Adoue, V.; Busche, S.; Caron, M.; Djambazian, H.; et al. Fusion of TTYH1 with the C19MC microRNA cluster drives expression of a brain-specific DNMT3B isoform in the embryonal brain tumor ETMR. Nat. Genet. 2014, 46, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Flor, I.; Spiekermann, M.; Löning, T.; Dieckmann, K.P.; Belge, G.; Bullerdiek, J. Expression of microRNAs of C19MC in different histological types of testicular germ cell tumour. Cancer Genomics Proteomics 2016, 13, 281–289. [Google Scholar] [PubMed]
- Lu, Y.; Xiao, L.; Liu, Y.; Wang, H.; Li, H.; Zhou, Q.; Pan, J.; Lei, B.; Huang, A.; Qi, S. MIR517C inhibits autophagy and the epithelial-to-mesenchymal (-like) transition phenotype in human glioblastoma through KPNA2-dependent disruption of TP53 nuclear translocation. Autophagy 2015, 11, 2213–2232. [Google Scholar] [CrossRef] [PubMed]
- Keller, R.B.; Demellawy, D.E.; Quaglia, A.; Finegold, M.; Kapur, R.P. Methylation status of the chromosome arm 19q MicroRNA cluster in sporadic and androgenetic-biparental mosaicism-associated hepatic mesenchymal hamartoma. Pediatr. Dev. Pathol. 2015, 18, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Vaira, V.; Verdelli, C.; Forno, I.; Corbetta, S. MicroRNAs in parathyroid physiopathology. Mol. Cell. Endocrinol. 2016. [Google Scholar] [CrossRef] [PubMed]
- Tran, N.D.; Kissner, M.; Subramanyam, D.; Parchem, R.J.; Laird, D.J.; Blelloch, R.H. A miR-372/let-7 axis regulates human germ versus somatic cell fates. Stem Cells 2016, 34, 1985–1991. [Google Scholar] [CrossRef] [PubMed]
- Robson, J.E.; Eaton, S.A.; Underhill, P.; Williams, D.; Peters, J. MicroRNAs 296 and 298 are imprinted and part of the GNAS/Gnas cluster and miR-296 targets IKBKE and Tmed9. RNA 2012, 18, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Savi, F.; Forno, I.; Faversani, A.; Luciani, A.; Caldiera, S.; Gatti, S.; Foa, P.; Ricca, D.; Bulfamante, G.; Vaira, V.; Bosari, S. miR-296/Scribble axis is deregulated in human breast cancer and miR-296 restoration reduces tumour growth in vivo. Clin. Sci. 2014, 127, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Vaira, V.; Faversani, A.; Martin, N.M.; Garlick, D.S.; Ferrero, S.; Nosotti, M.; Kissil, J.L.; Bosari, S.; Altieri, D.C. Regulation of lung cancer metastasis by Klf4-Numb-like signaling. Cancer Res. 2013, 73, 2695–2705. [Google Scholar] [CrossRef] [PubMed]
Gene ID | Chr. Map | Gene Function | Variation in PCas | Frequency in PCas |
---|---|---|---|---|
Loss of function mutated genes | ||||
CDC73 | 1q31.2 | Tumor suppressor involved in transcriptional and post-transcriptional control | ⇩ | 70% |
PRUNE2 | 9q21.2 | Tumor suppressor involved in the suppression of Ras homolog family member A activity | ⇩ | 18% |
MEN1 | 11q12 | Tumor suppressor associated with MEN1 syndrome | ⇩ | 13% |
Hypermethylated genes | ||||
HIC1 | 17p13 | Tumor suppressor involved in inhibition of E2F1 through interaction with SIRT1 | ⇩ | 100% |
APC | 5q22.2 | Tumor suppressor, inhibitor of the Wnt/β-catenin pathway | ⇩ | 33%–100% |
RASSF1A | 3p21.31 | Ras-association domain family 1 | ⇩ | 100% |
SFRP1 | 8p11.21 | Secreted frizzled related protein 1, inhibitor of the Wnt/β-catenin pathway | ⇩ | 100% |
SFRP2 | 4q31.3 | Secreted frizzled related protein 2, inhibitor of the Wnt/β-catenin pathway | ⇩ | n.a. |
SFRP4 | 7p14.1 | Secreted frizzled related protein 4, inhibitor of the Wnt/β-catenin pathway | ⇩ | n.a. |
CDKN2A/p16 | 9p21.3 | Cyclin-dependent kinase inhibitor | ⇩ | n.a. |
CDKN2B/p15 | 9p21.3 | Cyclin-dependent kinase inhibitor | ⇩ | n.a. |
WT1 | 11p13 | Wilms tumor 1, tumor suppressor | ⇩ | n.a. |
Hypomethylated genes | ||||
C19MC | 19q13.42 | microRNA cluster | ⇧ | 58% |
Aberrantly expressed chromatin remodeling genes | ||||
HIST1H1C | 6p22.2 | Replication-dependent histone H1.2 | ⇧ | 100% |
HIST1H2AB | 6p22.2 | Replication-dependent histone H2A | ⇧ | n.a. |
HIST1H2BB | 6p22.2 | Replication-dependent histone H2B | ⇧ | n.a. |
EZH2 | 7q36.1 | Enhancer of zeste 2 polycomb repressive complex 2 subunit | ⇧ | 100% |
Gene ID | Chr. Map | Gene Function | Variation in PCas | Frequency in PCas |
---|---|---|---|---|
miR-517c | 19q13.42 | C19MC microRNA cluster | ⇧ | 100% |
miR-372-3p | 19q13.42 | miR-371-373 cluster | ⇧ | 75% |
miR-139-5p | 11q | ⇩ | n.a. | |
miR-296-5p | 20q13.32 | GNAS imprinted locus | ⇩ | n.a. |
miR-503 | Xq26.3 | ⇧ | n.a. | |
miR-222 | Xp11.3 | miR-221/222 cluster | ⇧ | n.a. |
miR-126-5p | 9q34.3 | ⇩ | n.a. | |
miR-26b | 2q35 | ⇩ | n.a. | |
miR-30b | 8q24.22 | ⇩ | n.a. |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verdelli, C.; Corbetta, S. Epigenetic Alterations in Parathyroid Cancers. Int. J. Mol. Sci. 2017, 18, 310. https://doi.org/10.3390/ijms18020310
Verdelli C, Corbetta S. Epigenetic Alterations in Parathyroid Cancers. International Journal of Molecular Sciences. 2017; 18(2):310. https://doi.org/10.3390/ijms18020310
Chicago/Turabian StyleVerdelli, Chiara, and Sabrina Corbetta. 2017. "Epigenetic Alterations in Parathyroid Cancers" International Journal of Molecular Sciences 18, no. 2: 310. https://doi.org/10.3390/ijms18020310
APA StyleVerdelli, C., & Corbetta, S. (2017). Epigenetic Alterations in Parathyroid Cancers. International Journal of Molecular Sciences, 18(2), 310. https://doi.org/10.3390/ijms18020310