Role and Function of A2A and A3 Adenosine Receptors in Patients with Ankylosing Spondylitis, Psoriatic Arthritis and Rheumatoid Arthritis
Abstract
:1. Introduction
2. Results
2.1. Patients and Healthy Subjects
2.2. A2A and A3ARs Are Upregulated in Lymphocytes from Patients with Chronic Inflammatory Rheumatic Diseases
2.3. Increased Potency of A2A and A3ARs Agonists in Lymphocytes from Patients with Chronic Inflammatory Rheumatic Diseases
2.4. A2A and A3AR Agonists Reduces NF-κB Activation in Lymphocytes from the Examined Subjects
2.5. A2A and A3AR Activation Inhibits Cytokines Release from Lymphocytes of the Examined Subjects
2.6. A2A and A3AR Agonists Reduced MMPs Activation in Monocytes from the Examined Subjects
3. Discussion
4. Materials and Methods
4.1. Sample Collection and Human Lymphocyte Preparation
4.2. Real-Time Quantitative Polymerase Chain Reaction Experiments
4.3. Saturation Binding Experiments to A1, A2A, A2B and A3ARs
4.4. Lymphocyte Cell Culture
4.5. Measurement of cAMP Levels
4.6. NF-κB Activation in Human Cultured Lymphocytes
4.7. Pro-Inflammatory Cytokine Release in Cultured Lymphocytes
4.8. Measurement of Total MMP-1 and MMP-3 Release in Cultured Monocytes
4.9. Statistical Analysis
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
RA | Rheumatoid arthritis |
AS | Ankylosing spondylitis |
PsA | Psoriatic arthritis |
ARs | Adenosine receptors |
NF-κB | Nuclear factor κ-B |
TNF-α | Tumor necrosis factor α |
IL | Interleukin |
MMP | Metalloproteinases |
cAMP | Cyclic adenosine monophosphate |
DMARDS | Disease-modifying antirheumatic drug |
NSAIDs | Nonsteroidal anti-inflammatory drugs |
NURR1 | Nuclear orphan receptor |
PDE-4 | Phosphodiesterase-4 |
ACR | American College of Rheumatology |
RF | Rheumatoid factor |
ACPA | Anti-citrullinated cyclic peptide |
DAS28 | Disease Activity Score evaluated in 28 joints |
HAQ | Health Assessment Questionnaire |
ASAS | Assessment of SpondyloArthritis international Society |
CASPAR | Classification of Psoriatic Arthritis |
BASDAI | Bath Ankylosing Spondylitis Disease Activity Index |
BASFI | Bath Ankylosing Spondylitis Functional Index |
RT-PCR | Real-time polymerase chain reaction |
PMA | Phorbol myristate acetate |
References
- Borea, P.A.; Gessi, S.; Merighi, S.; Varani, K. Adenosine as a multi-signalling guardian angel in human diseases: When, where and how does it exert its protective effects? Trends Pharmacol. Sci. 2016, 37, 419–434. [Google Scholar] [CrossRef] [PubMed]
- Borea, P.A.; Varani, K.; Vincenzi, F.; Baraldi, P.G.; Tabrizi, M.A.; Merighi, S.; Gessi, S. The A3 adenosine receptor: History and perspectives. Pharmacol. Rev. 2015, 67, 74–102. [Google Scholar] [CrossRef] [PubMed]
- Gessi, S.; Merighi, S.; Fazzi, D.; Stefanelli, A.; Varani, K.; Borea, P.A. Adenosine receptor targeting in health and disease. Expert Opin. Investig. Drugs 2011, 20, 1591–1609. [Google Scholar] [CrossRef] [PubMed]
- Preti, D.; Baraldi, P.G.; Moorman, A.R.; Borea, P.A.; Varani, K. History and perspectives of A2A adenosine receptor antagonists as potential therapeutic agents. Med. Res. Rev. 2015, 35, 790–848. [Google Scholar] [CrossRef] [PubMed]
- Gessi, S.; Merighi, S.; Sacchetto, V.; Simioni, C.; Borea, P.A. Adenosine receptors and cancer. Biochim. Biophys. Acta 2011, 1808, 1400–1412. [Google Scholar] [CrossRef] [PubMed]
- Haskó, G.; Linden, J.; Cronstein, B.; Pacher, P. Adenosine receptors: Therapeutic aspects for inflammatory and immune diseases. Nat. Rev. Drug Discov. 2008, 7, 759–770. [Google Scholar] [CrossRef] [PubMed]
- Impellizzeri, D.; Di Paola, R.; Esposito, E.; Mazzon, E.; Paterniti, I.; Melani, A.; Bramanti, P.; Pedata, F.; Cuzzocrea, S. CGS 21680, an agonist of the adenosine A2A receptor, decreases acute lung inflammation. Eur. J. Pharmacol. 2011, 668, 305–316. [Google Scholar] [CrossRef] [PubMed]
- Varani, K.; Caramori, G.; Vincenzi, F.; Adcock, I.; Casolari, P.; Leung, E.; Maclennan, S.; Gessi, S.; Morello, S.; Barnes, P.J.; et al. Alteration of adenosine receptors in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2006, 173, 398–406. [Google Scholar] [CrossRef] [PubMed]
- Varani, K.; Vincenzi, F.; Tosi, A.; Gessi, S.; Casetta, I.; Granieri, G.; Fazio, P.; Leung, E.; MacLennan, S.; Granieri, E.; et al. A2A adenosine receptor overexpression and functionality, as well as TNF-α levels, correlate with motor symptoms in Parkinson’s disease. FASEB J. 2010, 24, 587–598. [Google Scholar] [CrossRef] [PubMed]
- Vincenzi, F.; Corciulo, C.; Targa, M.; Merighi, S.; Gessi, S.; Casetta, I.; Gentile, M.; Granieri, E.; Borea, P.A.; Varani, K. Multiple sclerosis lymphocytes upregulate A2A adenosine receptors that are antiinflammatory when stimulated. Eur. J. Immunol. 2013, 43, 2206–2216. [Google Scholar] [CrossRef] [PubMed]
- Varani, K.; Padovan, M.; Govoni, M.; Vincenzi, F.; Trotta, F.; Borea, P.A. The role of adenosine receptors in rheumatoid arthritis. Autoimmun. Rev. 2010, 10, 61–64. [Google Scholar] [CrossRef] [PubMed]
- Joseph, A.; Brasington, R.; Kahl, L.; Ranganathan, P.; Cheng, T.P.; Atkinson, J. Immunologic rheumatic disorders. J. Allergy Clin. Immunol. 2010, 125, S204–S215. [Google Scholar] [CrossRef] [PubMed]
- Quiñonez-Flores, C.M.; González-Chávez, S.A.; Del Río Nájera, D.; Pacheco-Tena, C. Oxidative stress relevance in the pathogenesis of the rheumatoid arthritis: A systematic review. BioMed Res. Int. 2016, 2016, 6097417. [Google Scholar] [CrossRef] [PubMed]
- Varani, K.; Massara, A.; Vincenzi, F.; Tosi, A.; Padovan, M.; Trotta, F.; Borea, P.A. Normalization of A2A and A3 adenosine receptor up-regulation in rheumatoid arthritis patients by treatment with anti-tumor necrosis factor α but not methotrexate. Arthritis Rheum. 2009, 60, 2880–2891. [Google Scholar] [CrossRef] [PubMed]
- Varani, K.; Padovan, M.; Vincenzi, F.; Targa, M.; Trotta, F.; Govoni, M.; Borea, P.A. A2A and A3 adenosine receptor expression in rheumatoid arthritis: Upregulation, inverse correlation with disease activity score and suppression of inflammatory cytokine and metalloproteinase release. Arthritis Res. Ther. 2011, 13, R197. [Google Scholar] [CrossRef] [PubMed]
- Vincenzi, F.; Padovan, M.; Targa, M.; Corciulo, C.; Giacuzzo, S.; Merighi, S.; Gessi, S.; Govoni, M.; Borea, P.A.; Varani, K. A2A adenosine receptors are differentially modulated by pharmacological treatments in rheumatoid arthritis patients and their stimulation ameliorates adjuvant-induced arthritis in rats. PLoS ONE 2013, 8, e54195. [Google Scholar] [CrossRef] [PubMed]
- Mazzon, E.; Esposito, E.; Impellizzeri, D.; DI Paola, R.; Melani, A.; Bramanti, P.; Pedata, F.; Cuzzocrea, S. CGS 21680, an agonist of the adenosine A2A receptor, reduces progression of murine type II collagen-induced arthritis. J. Rheumatol. 2011, 38, 2119–2129. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi-Rad, M.; Attaya, H.; Lesha, E.; Vegh, A.; Maleki-Miandoab, T.; Nosair, E.; Sepehrvand, N.; Davarian, A.; Rajebi, H.; Pakniat, A.; et al. Ankylosing spondylitis: A state of the art factual backbone. World J. Radiol. 2015, 7, 236–252. [Google Scholar] [PubMed]
- Chen, C.; Zhang, X.; Xiao, L.; Zhang, X.; Ma, X. Comparative effectiveness of biologic therapy regimens for ankylosing spondylitis: A systematic review and a network meta-analysis. Medicine 2016, 95, e3060. [Google Scholar] [CrossRef]
- De Andrade, K.R.; de Castro, G.R.; Vicente, G.; da Rosa, J.S.; Nader, M.; Pereira, I.A.; Fröde, T.S. Evaluation of circulating levels of inflammatory and bone formation markers in axial spondyloarthritis. Int. Immunopharmacol. 2014, 21, 481–486. [Google Scholar] [CrossRef] [PubMed]
- Sritheran, D.; Leung, Y.Y. Making the next steps in psoriatic arthritis management: Current status and future directions. Ther. Adv. Musculoskelet. Dis. 2015, 7, 173–186. [Google Scholar] [CrossRef] [PubMed]
- Fishman, P.; Cohen, S. The A3 adenosine receptor (A3AR): Therapeutic target and predictive biological marker in rheumatoid arthritis. Clin. Rheumatol. 2016, 35, 2359–2362. [Google Scholar] [CrossRef] [PubMed]
- Cronstein, B. How does methotrexate suppress inflammation? Clin. Exp. Rheumatol. 2010, 28, S21–S23. [Google Scholar] [PubMed]
- Festugato, M. Adenosine: An endogenous mediator in the pathogenesis of psoriasis. An. Bras. Dermatol. 2015, 90, 862–867. [Google Scholar] [CrossRef] [PubMed]
- Ralph, J.A.; McEvoy, A.N.; Kane, D.; Bresnihan, B.; FitzGerald, O.; Murphy, E.P. Modulation of orphan nuclear receptor NURR1 expression by methotrexate in human inflammatory joint disease involves adenosine A2A receptor-mediated responses. J. Immunol. 2005, 175, 555–565. [Google Scholar] [CrossRef]
- Schafer, P. Apremilast mechanism of action and application to psoriasis and psoriatic arthritis. Biochem. Pharmacol. 2012, 83, 1583–1590. [Google Scholar] [CrossRef] [PubMed]
- Rudwaleit, M.; van der Heijde, D.; Landewé, R.; Listing, J.; Akkoc, N.; Brandt, J.; Braun, J.; Chou, C.T.; Collantes-Estevez, E.; Dougados, M.; et al. The development of Assessment of Apondyloarthritis international Society classification criteria for axial spondyloarthritis (part II): Validation and final selection. Ann. Rheum. Dis. 2009, 68, 777–783. [Google Scholar] [CrossRef] [PubMed]
- Taylor, W.; Gladman, D.; Helliwell, P.; Marchesoni, A.; Mease, P.; Mielants, H. CASPAR Study Group, Classification criteria for psoriatic arthritis: Development of new criteria from a large international study. Arthritis Rheum. 2006, 54, 2665–2673. [Google Scholar] [CrossRef] [PubMed]
- Venken, K.; Elewaut, D. New immune cells in spondyloarthritis: Key players or innocent bystanders? Best Pract. Res. Clin. Rheumatol. 2015, 29, 706–714. [Google Scholar] [CrossRef] [PubMed]
- Ochaion, A.; Bar-Yehuda, S.; Cohen, S.; Barer, F.; Patoka, R.; Amital, H.; Reitblat, T.; Reitblat, A.; Ophir, J.; Konfino, I.; et al. The anti-inflammatory target A3 adenosine receptor is over-expressed in rheumatoid arthritis, psoriasis and Crohn’s disease. Cell Immunol. 2009, 258, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Fishman, P.; Bar-Yehuda, S.; Liang, B.T.; Jacobson, K.A. Pharmacological and therapeutic effects of A3 adenosine receptor agonists. Drug Discov. Today 2012, 17, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, S.; Vargas, J.; Hoffmann, A. Signaling via the NFκB system, Wiley Interdiscip. Rev. Syst. Biol. Med. 2016, 8, 227–241. [Google Scholar] [CrossRef] [PubMed]
- Noort, A.R.; Tak, P.P.; Tas, S.W. Non-canonical NF-κB signaling in rheumatoid arthritis: Dr Jekyll and Mr Hyde? Arthritis Res. Ther. 2015, 17, 15. [Google Scholar] [CrossRef] [PubMed]
- Świerkot, J.; Sokolik, R.; Czarny, A.; Zaczyńska, E.; Nowak, B.; Chlebicki, A.; Korman, L.; Madej, M.; Wojtala, P.; Lubiński, Ł.; et al. Activity of JAK/STAT and NF-κB in patients with axial spondyloarthritis. Postep. Hig. Med. Doswiadczalnej. 2015, 69, 1291–1298. [Google Scholar] [CrossRef]
- Mediero, A.; Perez-Aso, M.; Cronstein, B.N. Activation of adenosine A2A receptor reduces osteoclast formation via PKA- and ERK1/2-mediated suppression of NFκB nuclear translocation. Br. J. Pharmacol. 2013, 169, 1372–1388. [Google Scholar] [CrossRef] [PubMed]
- Ochaion, A.; Bar-Yehuda, S.; Cohen, S.; Amital, H.; Jacobson, K.A.; Joshi, B.V.; Gao, Z.G.; Barer, F.; Patoka, R.; Del Valle, L.; et al. The A3 adenosine receptor agonist CF502 inhibits the PI3K, PKB/Akt and NF-κB signaling pathway in synoviocytes from rheumatoid arthritis patients and in adjuvant-induced arthritis rats. Biochem. Pharmacol. 2008, 76, 482–494. [Google Scholar] [CrossRef] [PubMed]
- Cronstein, B.N.; Sitkovsky, M. Adenosine and adenosine receptors in the pathogenesis and treatment of rheumatic diseases. Nat. Rev. Rheumatol. 2017, 13, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Yeremenko, N.; Paramarta, J.E.; Baeten, D. The interleukin-23/interleukin-17 immune axis as a promising new target in the treatment of spondyloarthritis. Curr. Opin. Rheumatol. 2014, 26, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Cantini, F.; Niccoli, L.; Nannini, C.; Cassarà, E.; Kaloudi, O.; Giulio Favalli, E.; Becciolini, A.; Biggioggero, M.; Benucci, M.; Li Gobbi, F.; et al. Italian board for the TAilored BIOlogic therapy (ITABIO), Tailored first-line biologic therapy in patients with rheumatoid arthritis, spondyloarthritis, and psoriatic arthritis. Semin. Arthritis Rheum. 2016, 45, 519–532. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.W.; Zhang, K.F.; Lu, J.S.; Su, T. Serum matrix metalloproteinases-3 levels in patients with ankylosing spondylitis. Genet. Mol. Res. 2015, 14, 17068–17078. [Google Scholar] [CrossRef] [PubMed]
- Ramonda, R.; Modesti, V.; Ortolan, A.; Scanu, A.; Bassi, N.; Oliviero, F.; Punzi, L. Serological markers in psoriatic arthritis: Promising tools. Exp. Biol. Med. 2013, 238, 1431–1436. [Google Scholar] [CrossRef] [PubMed]
- Dancevic, C.M.; McCulloch, D.R. Current and emerging therapeutic strategies for preventing inflammation and aggrecanase-mediated cartilage destruction in arthritis. Arthritis Res. Ther. 2014, 16, 429. [Google Scholar] [CrossRef] [PubMed]
No. Healthy Subjects | 80 |
No. female/male | 59/21 |
Age, mean ± SEM years | 54.1 ± 5.6 |
A. Rheumatoid arthritis | |
No. Early rheumatoid arthritis (ERA) | 26 |
No. female/male | 21/5 |
Age, mean ± SEM years | 52.4 ± 2.5 |
Disease duration (months) | 10.3 ± 3.1 |
Rheumatoid Factor | 6/26 (23%) |
ACPA | 10/26 (38%) |
DAS28, mean ± SEM | 3.2 ± 0.2 |
HAQ, mean ± SEM | 1.2 ± 0.1 |
Concomitant DMARDs or TNF inhibitors | 0 |
No. Rheumatoid arthritis (RA) | 30 |
No. female/male | 26/4 |
Age, mean ± SEM years | 53.8 ± 2.9 |
Disease duration (months) | 74.3 ± 8.4 |
Rheumatoid Factor | 9/30 (30%) |
ACPA | 13/30 (43%) |
DAS28, mean ± SEM | 3.4 ± 0.2 |
HAQ, mean ± SEM | 1.3 ± 0.1 |
Concomitant DMARDs: | |
Methotrexate (10–15 mg/week) | 30 100%) |
B. Spondyloarthritis | |
No. Seronegative spondyloarthritis (including AS and PsA) | 26 |
No. female/male | 7/19 |
Age, mean ± SEM years | 38.4 ± 2.4 |
Disease duration (months) | 121 ± 14 |
Ankylosing spondylitis (AS) | 18 (69.3%) |
Axial involvement (only) | 14/18 (77.8%) |
Entheseal involvement 1 | 8/18 (50%) |
Axial and peripheral involvement | 4/18 (22.2%) |
HLA B27 positive | 8/18 (44.5%) |
Psoriatic arthritis (PsA) | 8 (30.7%) |
Peripheral involvement (only) | 5/8 (62.5%) |
Axial and peripheral involvement | 3/8 (37.5%) |
Entheseal involvement 1 | 4/8 (50%) |
Dactylitis | 1/8 (12.5%) |
Clinimetric measures: | |
DAS28 2, mean ± SEM | 3.9 ± 0.3 |
HAQ 2, mean ± SEM | 0.8 ± 0.1 |
BASDAI 3, mean ± SEM | 5.2 ± 0.5 |
BASFI 3, mean ± SEM | 0.8 ± 0.3 |
Concomitant DMARDs: | |
Methotrexate (10–15 mg/week) | 1 (3.8%) |
Leflunomide | 1 (3.8%) |
TNF inhibitors: | |
Infliximab in AS/PsA | 10/2 (55.5%/25%) |
Adalimumab in AS/PsA | 8/4 (44.5%/50%) |
Etanercept in AS/PsA | 0/2 (0%/25%) |
A1ARs - KD (nM) | A2AARs - KD (nM) | A2BARs - KD (nM) | A3ARs - KD (nM) | |
---|---|---|---|---|
Bmax (fmol/mg protein) | Bmax (fmol/mg protein) | Bmax (fmol/mg protein) | Bmax (fmol/mg protein) | |
Healthy subjects | 1.66 ± 0.12 | 1.26 ± 0.10 | 2.11 ± 0.20 | 1.79 ± 0.15 |
(n = 80) | 35 ± 3 | 55 ± 6 | 53 ± 4 | 136 ± 10 |
ERA patients | 1.69 ± 0.13 | 2.01 ± 0.16 * | 2.34 ± 0.16 | 3.11 ± 0.21 * |
(n = 26) | 32 ± 2 | 167 ± 13 * | 54 ± 3 | 277 ± 23 * |
RA patients | 1.58 ± 0.14 | 1.73 ± 0.11 * | 2.23 ± 0.13 | 3.54 ± 0.23 * |
(n = 30) | 34 ± 3 | 175 ± 17 * | 55 ± 6 | 298 ± 24 * |
AS patients | 1.61 ± 0.13 | 2.67 ± 0.15 * | 2.21 ± 0.17 | 2.91 ± 0.18 * |
(n = 18) | 32 ± 4 | 185 ± 11 * | 51 ± 4 | 333 ± 21 * |
PsA patients (n = 8) | 1.59 ± 0.11 | 3.31 ± 0.27 * | 2.15 ± 0.18 | 2.79 ± 0.15 * |
33 ± 2 | 192 ± 11 * | 52 ± 5 | 341 ± 23 * |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ravani, A.; Vincenzi, F.; Bortoluzzi, A.; Padovan, M.; Pasquini, S.; Gessi, S.; Merighi, S.; Borea, P.A.; Govoni, M.; Varani, K. Role and Function of A2A and A3 Adenosine Receptors in Patients with Ankylosing Spondylitis, Psoriatic Arthritis and Rheumatoid Arthritis. Int. J. Mol. Sci. 2017, 18, 697. https://doi.org/10.3390/ijms18040697
Ravani A, Vincenzi F, Bortoluzzi A, Padovan M, Pasquini S, Gessi S, Merighi S, Borea PA, Govoni M, Varani K. Role and Function of A2A and A3 Adenosine Receptors in Patients with Ankylosing Spondylitis, Psoriatic Arthritis and Rheumatoid Arthritis. International Journal of Molecular Sciences. 2017; 18(4):697. https://doi.org/10.3390/ijms18040697
Chicago/Turabian StyleRavani, Annalisa, Fabrizio Vincenzi, Alessandra Bortoluzzi, Melissa Padovan, Silvia Pasquini, Stefania Gessi, Stefania Merighi, Pier Andrea Borea, Marcello Govoni, and Katia Varani. 2017. "Role and Function of A2A and A3 Adenosine Receptors in Patients with Ankylosing Spondylitis, Psoriatic Arthritis and Rheumatoid Arthritis" International Journal of Molecular Sciences 18, no. 4: 697. https://doi.org/10.3390/ijms18040697
APA StyleRavani, A., Vincenzi, F., Bortoluzzi, A., Padovan, M., Pasquini, S., Gessi, S., Merighi, S., Borea, P. A., Govoni, M., & Varani, K. (2017). Role and Function of A2A and A3 Adenosine Receptors in Patients with Ankylosing Spondylitis, Psoriatic Arthritis and Rheumatoid Arthritis. International Journal of Molecular Sciences, 18(4), 697. https://doi.org/10.3390/ijms18040697