Implications of ABCG2 Expression on Irinotecan Treatment of Colorectal Cancer Patients: A Review
Abstract
:1. Introduction
2. Method
3. ABCG2
4. ABCG2 Gene and Protein Expression in CRC; Findings Concerning Prognosis and Prediction
5. Studies on Inhibitors of ABCG2 in CRC
6. Discussion
Conflicts of Interest
References
- Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin. 2015, 65, 87–108. [Google Scholar] [CrossRef] [PubMed]
- Marques, A.M.; Turner, A.; de Mello, R.A. Personalizing medicine for metastatic colorectal cancer: Current developments. World J. Gastroenterol. 2014, 20, 10425–10431. [Google Scholar] [CrossRef] [PubMed]
- Van Cutsem, E.; Cervantes, A.; Nordlinger, B.; Arnold, D. Metastatic colorectal cancer: Esmo clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2014, 25, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Pommier, Y.; Leo, E.; Zhang, H.; Marchand, C. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem. Biol. 2010, 17, 421–433. [Google Scholar] [CrossRef] [PubMed]
- Pommier, Y. DNA topoisomerase i inhibitors: Chemistry, biology, and interfacial inhibition. Chem. Rev. 2009, 109, 2894–2902. [Google Scholar] [CrossRef] [PubMed]
- Bates, S.E.; Medina-Perez, W.Y.; Kohlhagen, G.; Antony, S.; Nadjem, T.; Robey, R.W.; Pommier, Y. Abcg2 mediates differential resistance to sn-38 (7-ethyl-10-hydroxycamptothecin) and homocamptothecins. J. Pharmacol. Exp. Ther. 2004, 310, 836–842. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Shi, T.; Zhang, L.; Zhu, P.; Deng, M.; Huang, C.; Hu, T.; Jiang, L.; Li, J. Mammalian drug efflux transporters of the atp binding cassette (abc) family in multidrug resistance: A review of the past decade. Cancer Lett. 2016, 370, 153–164. [Google Scholar] [CrossRef] [PubMed]
- Robey, R.W.; Polgar, O.; Deeken, J.; To, K.W.; Bates, S.E. Abcg2: Determining its relevance in clinical drug resistance. Cancer Metastasis Rev. 2007, 26, 39–57. [Google Scholar] [CrossRef] [PubMed]
- Jensen, N.F.; Stenvang, J.; Beck, M.K.; Hanakova, B.; Belling, K.C.; Do, K.N.; Viuff, B.; Nygard, S.B.; Gupta, R.; Rasmussen, M.H.; et al. Establishment and characterization of models of chemotherapy resistance in colorectal cancer: Towards a predictive signature of chemoresistance. Mol. Oncol. 2015, 9, 1169–1185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jandu, H.; Aluzaite, K.; Fogh, L.; Thrane, S.W.; Noer, J.B.; Proszek, J.; Do, K.N.; Hansen, S.N.; Damsgaard, B.; Nielsen, S.L.; et al. Molecular characterization of irinotecan (sn-38) resistant human breast cancer cell lines. BMC Cancer 2016, 16, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doyle, L.A.; Yang, W.; Abruzzo, L.V.; Krogmann, T.; Gao, Y.; Rishi, A.K.; Ross, D.D. A multidrug resistance transporter from human mcf-7 breast cancer cells. Proc. Natl. Acad. Sci. USA 1998, 95, 15665–15670. [Google Scholar] [CrossRef] [PubMed]
- Rajendra, R.; Gounder, M.K.; Saleem, A.; Schellens, J.H.; Ross, D.D.; Bates, S.E.; Sinko, P.; Rubin, E.H. Differential effects of the breast cancer resistance protein on the cellular accumulation and cytotoxicity of 9-aminocamptothecin and 9-nitrocamptothecin. Cancer Res. 2003, 63, 3228–3233. [Google Scholar] [PubMed]
- Rocchi, E.; Khodjakov, A.; Volk, E.L.; Yang, C.H.; Litman, T.; Bates, S.E.; Schneider, E. The product of the abc half-transporter gene abcg2 (bcrp/mxr/abcp) is expressed in the plasma membrane. Biochem. Biophys. Res. Commun. 2000, 271, 42–46. [Google Scholar] [CrossRef] [PubMed]
- Westover, D.; Li, F. New trends for overcoming abcg2/bcrp-mediated resistance to cancer therapies. J. Exp. Clin. Cancer Res. 2015, 34, 159. [Google Scholar] [CrossRef] [PubMed]
- Mao, Q.; Unadkat, J.D. Role of the breast cancer resistance protein (bcrp/abcg2) in drug transport—An update. AAPS J. 2015, 17, 65–82. [Google Scholar] [CrossRef] [PubMed]
- Robey, R.W.; Ierano, C.; Zhan, Z.; Bates, S.E. The challenge of exploiting abcg2 in the clinic. Curr. Pharm. Biotechnol. 2011, 12, 595–608. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, K.; Xie, Y.; Baer, M.R.; Ross, D.D. Role of breast cancer resistance protein (bcrp/abcg2) in cancer drug resistance. Biochem. Pharm. 2012, 83, 1084–1103. [Google Scholar] [CrossRef] [PubMed]
- Noguchi, K.; Katayama, K.; Sugimoto, Y. Human abc transporter abcg2/bcrp expression in chemoresistance: Basic and clinical perspectives for molecular cancer therapeutics. Pharm. Pers. Med. 2014, 7, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Campa, D.; Butterbach, K.; Slager, S.L.; Skibola, C.F.; de Sanjose, S.; Benavente, Y.; Becker, N.; Foretova, L.; Maynadie, M.; Cocco, P.; et al. A comprehensive study of polymorphisms in the abcb1, abcc2, abcg2, nr1i2 genes and lymphoma risk. Int. J. Cancer 2012, 131, 803–812. [Google Scholar] [CrossRef] [PubMed]
- Misaghian, N.; Ligresti, G.; Steelman, L.S.; Bertrand, F.E.; Basecke, J.; Libra, M.; Nicoletti, F.; Stivala, F.; Milella, M.; Tafuri, A.; et al. Targeting the leukemic stem cell: The holy grail of leukemia therapy. Leukemia 2009, 23, 25–42. [Google Scholar] [CrossRef] [PubMed]
- Vermeulen, L.; Todaro, M.; de Sousa Mello, F.; Sprick, M.R.; Kemper, K.; Perez Alea, M.; Richel, D.J.; Stassi, G.; Medema, J.P. Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proc. Natl. Acad. Sci. USA 2008, 105, 13427–13432. [Google Scholar] [CrossRef] [PubMed]
- Ricci-Vitiani, L.; Lombardi, D.G.; Pilozzi, E.; Biffoni, M.; Todaro, M.; Peschle, C.; De Maria, R. Identification and expansion of human colon-cancer-initiating cells. Nature 2007, 445, 111–115. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Liu, F.; Ren, Q.; Zhao, Q.; Ren, H.; Lu, S.; Zhang, L.; Han, Z. Suppression of abcg2 inhibits cancer cell proliferation. Int. J. Cancer 2010, 126, 841–851. [Google Scholar] [CrossRef] [PubMed]
- Chikazawa, N.; Tanaka, H.; Tasaka, T.; Nakamura, M.; Tanaka, M.; Onishi, H.; Katano, M. Inhibition of wnt signaling pathway decreases chemotherapy-resistant side-population colon cancer cells. Anticancer Res. 2010, 30, 2041–2048. [Google Scholar] [PubMed]
- Fang, D.D.; Kim, Y.J.; Lee, C.N.; Aggarwal, S.; McKinnon, K.; Mesmer, D.; Norton, J.; Birse, C.E.; He, T.; Ruben, S.M.; et al. Expansion of cd133(+) colon cancer cultures retaining stem cell properties to enable cancer stem cell target discovery. Br. J. Cancer 2010, 102, 1265–1275. [Google Scholar] [CrossRef] [PubMed]
- Giampieri, R.; Scartozzi, M.; Loretelli, C.; Piva, F.; Mandolesi, A.; Lezoche, G.; Del Prete, M.; Bittoni, A.; Faloppi, L.; Bianconi, M.; et al. Cancer stem cell gene profile as predictor of relapse in high risk stage ii and stage iii, radically resected colon cancer patients. PLoS ONE 2013, 8, e72843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Candeil, L.; Gourdier, I.; Peyron, D.; Vezzio, N.; Copois, V.; Bibeau, F.; Orsetti, B.; Scheffer, G.L.; Ychou, M.; Khan, Q.A.; et al. Abcg2 overexpression in colon cancer cells resistant to sn38 and in irinotecan-treated metastases. Int. J. Cancer 2004, 109, 848–854. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Martin, P.M.; Miyauchi, S.; Ananth, S.; Herdman, A.V.; Martindale, R.G.; Podolsky, R.; Ganapathy, V. Down-regulation of bcrp/abcg2 in colorectal and cervical cancer. Biochem. Biophys. Res. Commun. 2006, 343, 571–577. [Google Scholar] [CrossRef] [PubMed]
- Glasgow, S.C.; Yu, J.; Carvalho, L.P.; Shannon, W.D.; Fleshman, J.W.; McLeod, H.L. Unfavourable expression of pharmacologic markers in mucinous colorectal cancer. Br. J. Cancer 2005, 92, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.G.; Pan, Y.F.; You, J.; Wang, O.C.; Huang, K.T.; Zhang, X.H. Expression of ABCG2 and its significance in colorectal cancer. Asian Pac. J. Cancer Prev. 2010, 11, 845–848. [Google Scholar] [PubMed]
- Wang, X.; Xia, B.; Liang, Y.; Peng, L.; Wang, Z.; Zhuo, J.; Wang, W.; Jiang, B. Membranous abcg2 expression in colorectal cancer independently correlates with shortened patient survival. Cancer Biomark. 2013, 13, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.; Park, J.M.; Jung, C.K.; Lee, B.I.; Oh, S.T.; Choi, M.G. Prognostic impact of membranous atp-binding cassette sub-family g member 2 expression in patients with colorectal carcinoma after surgical resection. Cancer Biol. Ther. 2015, 16, 1438–1444. [Google Scholar] [CrossRef] [PubMed]
- Cederbye, C.N.; Palshof, J.A.; Hansen, T.P.; Duun-Henriksen, A.K.; Linnemann, D.; Stenvang, J.; Nielsen, D.L.; Brunner, N.; Viuff, B.M. Antibody validation and scoring guidelines for abcg2 immunohistochemical staining in formalin-fixed paraffin-embedded colon cancer tissue. Sci. Rep. 2016, 6, 26997. [Google Scholar] [CrossRef] [PubMed]
- Silvestris, N.; Simone, G.; Partipilo, G.; Scarpi, E.; Lorusso, V.; Brunetti, A.E.; Maiello, E.; Paradiso, A.; Mangia, A. Ces2, abcg2, ts and topo-i primary and synchronous metastasis expression and clinical outcome in metastatic colorectal cancer patients treated with first-line folfiri regimen. Int. J. Mol. Sci. 2014, 15, 15767–15777. [Google Scholar] [CrossRef] [PubMed]
- Trumpi, K.; Emmink, B.L.; Prins, A.M.; van Oijen, M.G.; van Diest, P.J.; Punt, C.J.; Koopman, M.; Kranenburg, O.; Rinkes, I.H. Abc-transporter expression does not correlate with response to irinotecan in patients with metastatic colorectal cancer. J. Cancer 2015, 6, 1079–1086. [Google Scholar] [CrossRef] [PubMed]
- Tuy, H.D.; Shiomi, H.; Mukaisho, K.I.; Naka, S.; Shimizu, T.; Sonoda, H.; Mekata, E.; Endo, Y.; Kurumi, Y.; Sugihara, H.; et al. Abcg2 expression in colorectal adenocarcinomas may predict resistance to irinotecan. Oncol. Lett. 2016, 12, 2752–2760. [Google Scholar] [CrossRef] [PubMed]
- Van Cutsem, E.; Labianca, R.; Bodoky, G.; Barone, C.; Aranda, E.; Nordlinger, B.; Topham, C.; Tabernero, J.; Andre, T.; Sobrero, A.F.; et al. Randomized phase iii trial comparing biweekly infusional fluorouracil/leucovorin alone or with irinotecan in the adjuvant treatment of stage iii colon cancer: PETACC-3. J. Clin. Oncol. 2009, 27, 3117–3125. [Google Scholar] [CrossRef] [PubMed]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised recist guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef] [PubMed]
- Koopman, M.; Antonini, N.F.; Douma, J.; Wals, J.; Honkoop, A.H.; Erdkamp, F.L.; de Jong, R.S.; Rodenburg, C.J.; Vreugdenhil, G.; Loosveld, O.J.; et al. Sequential versus combination chemotherapy with capecitabine, irinotecan, and oxaliplatin in advanced colorectal cancer (cairo): A phase iii randomised controlled trial. Lancet 2007, 370, 135–142. [Google Scholar] [CrossRef]
- Therasse, P.; Arbuck, S.G.; Eisenhauer, E.A.; Wanders, J.; Kaplan, R.S.; Rubinstein, L.; Verweij, J.; van Glabbeke, M.; van Oosterom, A.T.; Christian, M.C.; et al. New guidelines to evaluate the response to treatment in solid tumors. J. Natl. Cancer Inst. 2000, 92, 205–216. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.D.; van Loevezijn, A.; Lakhai, J.M.; van der Valk, M.; van Tellingen, O.; Reid, G.; Schellens, J.H.; Koomen, G.J.; Schinkel, A.H. Potent and specific inhibition of the breast cancer resistance protein multidrug transporter in vitro and in mouse intestine by a novel analogue of fumitremorgin c. Mol. Cancer Ther. 2002, 1, 417–425. [Google Scholar] [PubMed]
- Tuy, H.D.; Shiomi, H.; Mukaisho, K.I.; Naka, S.; Sugihara, H.; Tani, T. Inhibiting abcg2 by ko143 may enhance the efficacy of irinotecan treatment in colon cancer. Clin. Gastroenterol. Hepatol. 2015, 13, 1385. [Google Scholar] [CrossRef]
- He, M.; Wei, M.J. Reversing multidrug resistance by tyrosine kinase inhibitors. Chin. J. Cancer 2012, 31, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Ma, Y.; Zhao, Q.; Ren, Z.; Li, Y.; Hou, T.; Peng, H. New use for an old drug: Inhibiting abcg2 with sorafenib. Mol. Cancer Ther. 2012, 11, 1693–1702. [Google Scholar] [CrossRef] [PubMed]
- Sodani, K.; Tiwari, A.K.; Singh, S.; Patel, A.; Xiao, Z.J.; Chen, J.J.; Sun, Y.L.; Talele, T.T.; Chen, Z.S. Gw583340 and gw2974, human egfr and her-2 inhibitors, reverse abcg2- and abcb1-mediated drug resistance. Biochem. Pharm. 2012, 83, 1613–1622. [Google Scholar] [CrossRef] [PubMed]
- Houghton, P.J.; Germain, G.S.; Harwood, F.C.; Schuetz, J.D.; Stewart, C.F.; Buchdunger, E.; Traxler, P. Imatinib mesylate is a potent inhibitor of the abcg2 (bcrp) transporter and reverses resistance to topotecan and sn-38 in vitro. Cancer Res. 2004, 64, 2333–2337. [Google Scholar] [CrossRef] [PubMed]
- Dohse, M.; Scharenberg, C.; Shukla, S.; Robey, R.W.; Volkmann, T.; Deeken, J.F.; Brendel, C.; Ambudkar, S.V.; Neubauer, A.; Bates, S.E. Comparison of atp-binding cassette transporter interactions with the tyrosine kinase inhibitors imatinib, nilotinib, and dasatinib. Drug Metab. Dispos. 2010, 38, 1371–1380. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.K.; Fu, L.W. Interaction of tyrosine kinase inhibitors with the mdr-related abc transporter proteins. Curr. Drug Metab. 2010, 11, 618–628. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.K.; To, K.K.; Huang, L.Y.; Xu, J.H.; Yang, K.; Wang, F.; Huang, Z.C.; Ye, S.; Fu, L.W. Afatinib circumvents multidrug resistance via dually inhibiting atp binding cassette subfamily g member 2 in vitro and in vivo. Oncotarget 2014, 5, 11971–11985. [Google Scholar] [CrossRef] [PubMed]
- Illmer, T.; Schaich, M.; Platzbecker, U.; Freiberg-Richter, J.; Oelschlagel, U.; von Bonin, M.; Pursche, S.; Bergemann, T.; Ehninger, G.; Schleyer, E. P-glycoprotein-mediated drug efflux is a resistance mechanism of chronic myelogenous leukemia cells to treatment with imatinib mesylate. Leukemia 2004, 18, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Mahon, F.X.; Hayette, S.; Lagarde, V.; Belloc, F.; Turcq, B.; Nicolini, F.; Belanger, C.; Manley, P.W.; Leroy, C.; Etienne, G.; et al. Evidence that resistance to nilotinib may be due to bcr-abl, pgp, or src kinase overexpression. Cancer Res. 2008, 68, 9809–9816. [Google Scholar] [CrossRef] [PubMed]
- Mross, K.; Steinbild, S.; Baas, F.; Gmehling, D.; Radtke, M.; Voliotis, D.; Brendel, E.; Christensen, O.; Unger, C. Results from an in vitro and a clinical/pharmacological phase i study with the combination irinotecan and sorafenib. Eur. J. Cancer 2007, 43, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Samalin, E.; Bouche, O.; Thezenas, S.; Francois, E.; Adenis, A.; Bennouna, J.; Taieb, J.; Desseigne, F.; Seitz, J.F.; Conroy, T.; et al. Sorafenib and irinotecan (nexiri) as second- or later-line treatment for patients with metastatic colorectal cancer and kras-mutated tumours: A multicentre phase i/ii trial. Br. J. Cancer 2014, 110, 1148–1154. [Google Scholar] [CrossRef] [PubMed]
- Mazard, T.; Causse, A.; Simony, J.; Leconet, W.; Vezzio-Vie, N.; Torro, A.; Jarlier, M.; Evrard, A.; Del Rio, M.; Assenat, E.; et al. Sorafenib overcomes irinotecan resistance in colorectal cancer by inhibiting the abcg2 drug-efflux pump. Mol. Cancer Ther. 2013, 12, 2121–2134. [Google Scholar] [CrossRef] [PubMed]
- Paillas, S.; Boissiere, F.; Bibeau, F.; Denouel, A.; Mollevi, C.; Causse, A.; Denis, V.; Vezzio-Vie, N.; Marzi, L.; Cortijo, C.; et al. Targeting the p38 mapk pathway inhibits irinotecan resistance in colon adenocarcinoma. Cancer Res. 2011, 71, 1041–1049. [Google Scholar] [CrossRef] [PubMed]
- Simon, R.M.; Paik, S.; Hayes, D.F. Use of archived specimens in evaluation of prognostic and predictive biomarkers. J. Natl. Cancer Inst. 2009, 101, 1446–1452. [Google Scholar] [CrossRef] [PubMed]
- Huet, S.; Marie, J.P.; Gualde, N.; Robert, J. Reference method for detection of pgp mediated multidrug resistance in human hematological malignancies: A method validated by the laboratories of the french drug resistance network. Cytometry 1998, 34, 248–256. [Google Scholar] [CrossRef]
- Beck, W.T.; Grogan, T.M.; Willman, C.L.; Cordon-Cardo, C.; Parham, D.M.; Kuttesch, J.F.; Andreeff, M.; Bates, S.E.; Berard, C.W.; Boyett, J.M.; et al. Methods to detect p-glycoprotein-associated multidrug resistance in patients’ tumors: Consensus recommendations. Cancer Res. 1996, 56, 3010–3020. [Google Scholar] [PubMed]
- Chevillard, S.; Vielh, P.; Validire, P.; Marie, J.P.; Faussat, A.M.; Barbu, V.; Bayle, C.; Benard, J.; Bonnal, C.; Boutonnat, J.; et al. French multicentric evaluation of mdr1 gene expression by RT-PCR in leukemia and solid tumours. Standardization of RT-PCR and preliminary comparisons between RT-PCR and immunohistochemistry in solid tumours. French network of the drug resistance intergroup, and drug resistance network of assistance publique-hopitaux de paris. Leukemia 1997, 11, 1095–1106. [Google Scholar] [PubMed]
- Theile, D.; Grebhardt, S.; Haefeli, W.E.; Weiss, J. Involvement of drug transporters in the synergistic action of folfox combination chemotherapy. Biochem. Pharm. 2009, 78, 1366–1373. [Google Scholar] [CrossRef] [PubMed]
- Kosztyu, P.; Bukvova, R.; Dolezel, P.; Mlejnek, P. Resistance to daunorubicin, imatinib, or nilotinib depends on expression levels of abcb1 and abcg2 in human leukemia cells. Chem. Biol. Interact. 2014, 219, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Kosztyu, P.; Dolezel, P.; Mlejnek, P. Can p-glycoprotein mediate resistance to nilotinib in human leukaemia cells? Pharmacol. Res. 2013, 67, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Fojo, A.T.; Ueda, K.; Slamon, D.J.; Poplack, D.G.; Gottesman, M.M.; Pastan, I. Expression of a multidrug-resistance gene in human tumors and tissues. Proc. Natl. Acad. Sci. USA 1987, 84, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, L.J.; Galski, H.; Fojo, A.; Willingham, M.; Lai, S.L.; Gazdar, A.; Pirker, R.; Green, A.; Crist, W.; Brodeur, G.M.; et al. Expression of a multidrug resistance gene in human cancers. J. Natl. Cancer Inst. 1989, 81, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Kumler, I.; Stenvang, J.; Moreira, J.; Brunner, N.; Nielsen, D.L. Drug transporters in breast cancer: Response to anthracyclines and taxanes. Expert Rev. Anticancer Ther. 2015, 15, 1075–1092. [Google Scholar] [CrossRef] [PubMed]
- Mlejnek, P.; Kosztyu, P.; Dolezel, P.; Bates, S.E.; Ruzickova, E. Reversal of abcb1 mediated efflux by imatinib and nilotinib in cells expressing various transporter levels. Chem. Biol. Interact. 2017, 273, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Bagger, S.O.; Drejer, J.; Brünner, N.; Nielsen, S.L.; Christophersen, P.; Stenvang, J. Sensitization of docetaxel-resistant breast cancer cells to docetaxel by the VRAC modulator SCO-101. In Proceedings of the AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics: Discovery, Biology, and Clinical Applications, Philadelphia, PA, USA, 26–30 October 2017. [Google Scholar]
- Kummar, S.; Chen, A.; Gutierrez, M.; Pfister, T.D.; Wang, L.; Redon, C.; Bonner, W.M.; Yutzy, W.; Zhang, Y.; Kinders, R.J.; et al. Clinical and pharmacologic evaluation of two dosing schedules of indotecan (lmp400), a novel indenoisoquinoline, in patients with advanced solid tumors. Cancer Chemother. Pharmacol. 2016, 78, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Zhu, A.X.; Ready, N.; Clark, J.W.; Safran, H.; Amato, A.; Salem, N.; Pace, S.; He, X.; Zvereva, N.; Lynch, T.J.; et al. Phase i and pharmacokinetic study of gimatecan given orally once a week for 3 of 4 weeks in patients with advanced solid tumors. Clin. Cancer Res. 2009, 15, 374–381. [Google Scholar] [CrossRef] [PubMed]
- Sessa, C.; Cresta, S.; Cerny, T.; Baselga, J.; Rota Caremoli, E.; Malossi, A.; Hess, D.; Trigo, J.; Zucchetti, M.; D’Incalci, M.; et al. Concerted escalation of dose and dosing duration in a phase i study of the oral camptothecin gimatecan (st1481) in patients with advanced solid tumors. Ann. Oncol. 2007, 18, 561–568. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Carcaboso, A.M.; Hubbard, K.E.; Tagen, M.; Wynn, H.G.; Panetta, J.C.; Waters, C.M.; Elmeliegy, M.A.; Stewart, C.F. Compartment-specific roles of atp-binding cassette transporters define differential topotecan distribution in brain parenchyma and cerebrospinal fluid. Cancer Res. 2009, 69, 5885–5892. [Google Scholar] [CrossRef] [PubMed]
- Esmaeilzadeh, M.; Majlesara, A.; Faridar, A.; Hafezi, M.; Hong, B.; Esmaeilnia-Shirvani, H.; Neyazi, B.; Mehrabi, A.; Nakamura, M. Brain metastasis from gastrointestinal cancers: A systematic review. Int. J. Clin. Pract. 2014, 68, 890–899. [Google Scholar] [CrossRef] [PubMed]
- Yaeger, R.; Cowell, E.; Chou, J.F.; Gewirtz, A.N.; Borsu, L.; Vakiani, E.; Solit, D.B.; Rosen, N.; Capanu, M.; Ladanyi, M.; et al. Ras mutations affect pattern of metastatic spread and increase propensity for brain metastasis in colorectal cancer. Cancer 2015, 121, 1195–1203. [Google Scholar] [CrossRef] [PubMed]
Reference | Setting | Treatment | Number of Patients | Methods | “Biomarker” Investigated | Findings | Conclusions; Comments |
---|---|---|---|---|---|---|---|
Giampieri, et al. [26] | Primary stage II and III | 5-FU/capecitabine ± oxaliplatin | 62 | Quantitative PCR | Panel of 66 genes for “stemness” including ABCG2 | “Unfavorable cancer stem cell profile” (19%): Relapse-free survival: 22 months Favorable profile (81%): Relapse-free survival 43 months | Expression levels of cancer stem cells genes may be relevant for the prognosis; ABCG2 among genes with high “weight” |
Candeil, et al. [27] | Normal colon tissue Primary tumour Hepatic metastases | Untreated Untreated Irinotecan-based therapy Chemotherapy without irinotecan | 8 10 23 12 4 non-matched | Semi-quantitative RT-PCR | ABCG2 mRNA | Highly expressed 1/100 of normal colon tissue Five-fold compared with primary tumor NS from primary tumor | ABCG2 mRNA expression might be upregulated by irinotecan treatment, suggesting the potential involvement of ABCG2 in irinotecan resistance |
Gupta, et al. [28] | Normal colon tissue Primary tumour | - | 13 (matched) | Semi-quantitative RT-PCR | ABCG2 mRNA | 6.6 ± 0.6-fold lower in cancer compared to controls (p < 0.0001) No correlation with grade or stage of tumor, or with treatment | ACCG2 mRNA may have a role in tumorigenesis, allowing the accumulation of genotoxins and the overproduction of nitric oxide |
Glasgow, et al. [29] | Primary, Dukes’ stage C | - | 21 mucinous 30 nonmucinous | RT-PCR | ABCG2 mRNA | No difference in mucinous and nonmucinous tumors | 17 with recurrent disease; subset analysis of patients receiving irinotecan not possible |
Liu, et al. [30] | Primary | - | 60 | IHC; whole sections; Multiclonal antibody | ABCG2 | 36.7% of carcinomatous tissue; mainly membranous expression Correlation to lymph node metastases | ABCG2 may be important in the progression and metastasis of CRC |
Wang, et al. [31] | Primary | - | 225 | IHC; whole sections; A mouse monoclonal antibody, BXP-21 | ABCG2 | 83% positive cytoplasmic expression, 13% high 66% positive membranous expression, 16% high High membranous expression correlated to shorter OS Cytoplasmic expression not associated with OS | Membranous ABCG2 expression is a potential independent prognostic factor |
Kang, et al. [32] | Primary | 88.5% received 5-FU-based adjuvant chemotherapy | 234 | IHC; TMA; a rabbit polyclonal antibody | ABCG2 | 78% positive cytoplasmic expression 62% positive membrane High membranous expression associated with better OS Cytoplasmic expression not associated with OS | Membranous ABCG2 expression is a potential prognostic factor |
Reference | Setting | Treatment | Number of Patients | Methods | “Biomarker” Investigated | Findings | Conclusions; Comments |
---|---|---|---|---|---|---|---|
Jensen, et al. [9] | Primary stage II and III | Randomized phase III; 5-FU vs. 5-FU + irinotecan | 688; statistical analysis performed on 580 stage III | Microarray gene expression analysis | ABCG2 mRNA | A separation of the survival curves by the median ABCG2 mRNA expression in the irinotecan receiving patients was observed, while such a separation was not observed in the 5-FU-only treated patients | A predictive role of tumour ABCG2 mRNA expression is strongly suggested |
Silvestris, et al. [34] | Metastatic, 1st line | FOLFIRI | 58 | IHC; whole section; mouse monoclonal antibody BXP-21 | ABCG2 | 56% high expression; no association to clinicopathological characteristics; no correlation to RR, TTP, OS | No predictive role for ABCG2 protein expression was found |
Trumpi, et al. [35] | Metastatic 1st or 2nd line | Capecitabine, irinotecan (sequential or combination; CAIRO study) | 566 | IHC; TMA, mouse monoclonal antibody BXP-21 | ABCG2 | Response to irinotecan was not significantly different in tumors with positive vs negative expression of ABCG2. ABCG2 was not an independent predictor of PFS | ABCG2 protein does not predict response to irinotecan |
Tuy, et al. [36] | Metastatic, 1st line | Irinotecan-based regimens Other regimens (not specified) | 17 171 | IHC; whole section; mouse monoclonal antibody BXP-21 | ABCG2 | Tumors with increased expression of ABCG2 were significantly more resistant to irinotecan | Increased expression of ABCG2 is an independent predictor of SN-38 resistance (risk of resistance increased 12-fold) |
Reference | Treatment | Phase | Number of Patients | Population | Status | DCR | Median PFS (95%CI) (Months) | Median OS (95%CI) (Months) |
---|---|---|---|---|---|---|---|---|
Mross, et al. [52] | Irinotecan + sorafenib | I | 20 + 14 | Various solid tumours, mCRC | Completed | 60% 85% | NR | NR |
Samalin, et al. [53] | Irinotecan + sorafenib (NEXIRI) | I/II | 10 + 54 | KRAS mutated mCRC; 2nd or later lines (67% ≥ 3 prior lines) | Completed | Phase I: 78 Phase II: 64.9 (51–77) | Phase II: 3.7 (3.2–4.7) | Phase II: 8.0 (4.8–9.7) |
NCT01715441 | Irinotecan or sorafenib Irinotecan + sorafenib (NEXIRI 2) | II, randomized | 160 planned | KRAS mutated mCRC, failure of all known drugs | Ongoing | Estimated study completion: September 2015; no published data | ||
NCT00839111 | FOLFIRI + sorafinib | II | 43 planned | mCRC, failure of oxaliplatin-based therapy | Ongoing, not verified since September 2010 | Estimated study completion: November 2010; no published data | ||
NCT00889343 | Irinotecan/oxaliplatin + sorafenib Irinotecan/oxaliplatin + placebo | II, randomized | 101 planned | mCRC, 2nd line | Completed | No published data |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nielsen, D.L.; Palshof, J.A.; Brünner, N.; Stenvang, J.; Viuff, B.M. Implications of ABCG2 Expression on Irinotecan Treatment of Colorectal Cancer Patients: A Review. Int. J. Mol. Sci. 2017, 18, 1926. https://doi.org/10.3390/ijms18091926
Nielsen DL, Palshof JA, Brünner N, Stenvang J, Viuff BM. Implications of ABCG2 Expression on Irinotecan Treatment of Colorectal Cancer Patients: A Review. International Journal of Molecular Sciences. 2017; 18(9):1926. https://doi.org/10.3390/ijms18091926
Chicago/Turabian StyleNielsen, Dorte Lisbet, Jesper Andreas Palshof, Nils Brünner, Jan Stenvang, and Birgitte Martine Viuff. 2017. "Implications of ABCG2 Expression on Irinotecan Treatment of Colorectal Cancer Patients: A Review" International Journal of Molecular Sciences 18, no. 9: 1926. https://doi.org/10.3390/ijms18091926
APA StyleNielsen, D. L., Palshof, J. A., Brünner, N., Stenvang, J., & Viuff, B. M. (2017). Implications of ABCG2 Expression on Irinotecan Treatment of Colorectal Cancer Patients: A Review. International Journal of Molecular Sciences, 18(9), 1926. https://doi.org/10.3390/ijms18091926